




Adaptive Beamformer Example

The material in Chapter 9 highlighted the importance of IP in the design of complex
FPGA-based systems. In particular, the use of soft IP has had a major impact in creat-
ing such systems. This has created a new market, as witnessed by the Design & Reuse
website (http://www.design-reuse.com/) which has 16,000 IP cores from 450 vendors,
and the open source cores available from the OpenCores website (opencores.org). This,
along with the major FPGA vendors’ cores (LogiCore from Xilinx and MegaCore® from
Altera) as well as their partners’ programs, represents a core body of work.

A lot of companies and FPGA developers will have invested a lot of effort into cre-
ating designs which well match their specific application. It may then seem relatively
straightforward to extend this effort to create soft IP for a range of application domains
for this function. However, the designer may have undertaken a number of optimiza-
tions specific to a FPGA family which will not transfer well to other vendors. Moreover,
the design may not necessarily scale well to the functional parameters.

The ability to create an IP core requires a number of key stages. Firstly, the designer
needs to generate the list of parameters to which the core design should scale. The archi-
tecture should then be designed such that it scales effectively across these parameters;
to be done effectively, this requires a detailed design process. The description is con-
sidered in this chapter for a QR-based IP core for adaptive beamforming. It is shown
how an original architecture developed for the design can then be mapped and folded
to achieve an efficient scalable implementation based on the system requirements.

Section 11.1 provides an introduction to the topic of adaptive beamforming. Section
11.2 outlines the generic process and then how it is applied to adaptive beamforming.
Section 11.3 discusses how the algorithm is mapped to the architecture and shows how
it is applied to the squared Givens rotations for RLS filtering. The efficient architecture
design is then outlined in Section 11.4 and applied to the QR design example. Section
11.5 outlines the design of a generic QR architecture. A key aspect of the operation is the
retiming the generic architecture which is covered in Section 11.6. Section 11.7 covers
the parameterizable QR architecture, and the generic control is then covered in Section
11.8. The application to the beamformer design is then addressed in Section 11.9, with
final comments given in Section 11.10.

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

let &hbox {char '046}http://www.design-reuse.com/
http://www.design-reuse.com/

 FPGA-based Implementation of Signal Processing Systems

 X(n) y(n)

Adaptive filter

e(n)

Auxiliary
antennae

Primary
antenna

Output

Beam pattern

Desired signal

Jammer

Jammer

Adaptive

weight

calculation

Delay

Beamforming

Output

Complex inputs from

antenna array:

Figure . Diagram of an adaptive beamformer for interference canceling

. Introduction to Adaptive Beamforming

Adaptive beamforming is a form of filtering whereby input signals are received from a
number of spatially separated antennae, referred to as an antenna array. Typically, its
function is to suppress signals from every direction other than the desired “look direc-
tion” by introducing deep nulls in the beam pattern in the direction of the interfer-
ence. The beamformer output is a weighted linear combination of input signals from
the antenna array represented by complex numbers, therefore allowing an optimization
both in amplitude and phase due to the spatial element of the incoming data.

Figure 11.1 shows an example with one primary antenna and a number of auxiliary
antennae. The primary signal constitutes the input from the main antennae, which has
high directivity. The auxiliary signals contain samples of interference threatening to
swamp the desired signal. The filter eliminates this interference by removing any sig-
nals in common with the primary input signal. The input data from the auxiliary and
primary antennae are fed into the adaptive filter, from which the weights are calculated.
These weights are then applied on the delayed input data to produce the output beam.

There are a range of applications for adaptive beamforming, from military radar appli-
cations to communications and medical applications (Athanasiadis et al. 2005; Baxter
and McWhirter 2003; Choi and Shim 2000; de Lathauwer et al. 2000; Hudson 1981;
Shan and Kailath 1985; Wiltgen 2007). Due to the possible applications for such a core,
this chapter investigates the development of an IP core to perform the key computation
found in a number of such adaptive beamforming applications.

. Generic Design Process

Figure 11.2 gives a summary of a typical design process followed in the development
of a single use implementation. It also gives the additional considerations required in
generic IP core design. In both cases, the process begins with a detailed specification

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Analysis
from specification

Functional
C-model

Bit accurate

Specification

Analysis of algorithms

Choice of algorithm

Choice of implementation
of algorithm

Floating point

Fixed point

Wordlength and SNR analysis

Data rate and
performance analysis

Desired clock rate

Pipeline cuts

Circuit retiming

Architecture
design

Circuit control

C models Test benches

Choice of sub-modules,
arithmetic units, memory

blocks etc

Implementation

Target technology

Reuse potential

Added value for future designs
Consideration of overall cost of

generic design
Suitable components for

IP design
Consistent components over a

range of applications

Decision for
Design For Reuse

Identifying components
for IP design

IP parameters

Algorithmic factors,
e.g. number of inputs, SNR

Finite precision: Wordlengths,
 truncation, rounding
Level of pipelining:
Timing and control

Choice of sub-modules,
 e.g. arithmetic units or memory blocks

specific to target technology

Identifying IP
parameters

Generic test and
synthesis
platform

Parameterised architecture

Design scaled using input parameters
Generic mapping of algorithm

down to efficient architecture with
high processor usage

Generic scheduling of operations onto
architecture

Generic control design

Scalable
architecture

Single implementation
design process

Additional considerations for a
 generic design process

Figure . Generic design process

of the problem. At this point, consideration may be given to employing a design-for-
reuse strategy to develop a generic product. This is based on a number of factors, the
most prevalent being whether such a generic core would be worthwhile to have. Would
it be applicable over a range of applications, or is it a one-off requirement? There is an
initial extra cost in terms of money and time in the development of a generic core, so
it is essential that this cost will be more than recouped if the IP core is used in future
designs.

Once defined, an analysis is performed to determine the most suitable algorithm.
Once chosen, the method for implementation of this algorithm is key as, even with sim-
ple addition, there are a number of different arithmetic techniques; these impact on the
overall performance of a circuit, in terms, for example, of area compactness, critical
path, and power dissipation.

Within a design, there may only be a number of key components that will be suit-
able to implement as IP cores. These are the parts of the design that will have a level of
consistency from application to application. It is imperative to determine expected vari-
ations for future specifications. Are all these variables definable with parameters within

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

the generic design, or would other techniques be required to create the flexibility of the
design? An example of this could be hardware and software co-design. Here, the fixed
components could be implemented as IP cores driven by a software harness adding the
needed flexibility for further developments.

The choice of fixed-point or floating-point arithmetic is also vital. From the data
rate and performance analysis, a decision can be made regarding certain issues for the
architecture design. A desired clock rate may be required to meet certain data rate
requirements. Again this will relate to the target technology or specific FPGA device.
Clock rate and area criteria will also influence the choice of submodules within the
design and the level at which they may need to be pipelined so as to meet circuit
speeds.

What we have is an interlinked loop, as depicted in Figure 11.2, with each factor influ-
encing a number of others. With additional pipeline cuts there will be effects on circuit
timing and area as well as the desired improvement in clock rate. All these factors influ-
ence the final architecture design. It is a multidimensional optimization with no one
parameter operating in isolation.

Within a generic design, different allowable ranges may be set on the parameters
defining the generated architectures. Different wordlength parameters will then have
a knock-on effect on the level of pipelining required to meet certain performance crite-
ria. The choice of submodules will also be an important factor. The target technology will
determine the maximum achievable data rates and also the physical cost of the imple-
mentation.

Again, for a generic design, choices could be made available for a range of target
implementations. Parameters could be set to switch between ASIC-specific and FPGA-
specific code. Even within a certain implementation platform, there should be param-
eters in place to support a range of target technologies or devices, so as to make the
most of their capabilities and the availability of on board processors or arithmetic
units.

There may also be a need for a refined architecture solution meeting the performance
criteria but at a reduced area cost. This is the case when the algorithm functionality is
mapped down onto a reduced number of processors, the idea being that the level of
hardware for the design could be scaled to meet the performance criteria of the applica-
tion. With scalable designs comes the need for scalable control circuitry and scheduling
and retiming of operations. These factors form the key mechanics of a successful generic
design. Generating an architecture to meet the performance criteria of a larger design
is one thing, but developing the generic scheduling and control of such a design is of a
different level of complexity.

Software modeling of the algorithm is essential in the design development. Initially,
the model is used to functionally verify the design and to analyze finite precision effects.
It then forms the basis for further development, allowing test data to be generated and
used within a testbench to validate the design. For the generic IP core, the software
modeling is an important part of the design-for-reuse process. A core may be available
to meet the needs of a range of applications; however, analysis is still required from the
outset to determine the desired criteria for the implementation, such as SNR and data
wordlengths. The software model is used to determine the needs for the system, and
from this analysis a set of parameters should be derived and used to generate a suitable
implementation using the IP core.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Weight calculation

1

Beamforming

Beam zBeam1

w1

Complex inputs from antenna array:

N
-

a
n

te
n

n
a
e

Receiver

ADC

ADC

ADC

Receiver

Receiver

Delay

weights

Weight

calculationConstraints

Stage 3 Stage 1 Stage 2

1

Adaptive

algorithm

…

z z

ADCReceiver

ADCReceiver

A auxiliary

inputs

P primary

inputs

N inputs

Figure . Multiple beam adaptive beamformer system

11.2.1 Adaptive Beamforming Specification

Adaptive beamforming is a general algorithm applicable in a range of applications, from
medical separation of signals to military radar applications. The key factor for develop-
ment of a generic design is to determine the key component within a range of adaptive
beamforming applications that would be consistent to some degree and could therefore
be suitable to develop as an IP core. To widen the potential of the core, it will need to be
able to support a varied range of specifications dealing with issues such as the following:

Number of inputs: A varying number of auxiliary and primary inputs need to be sup-
ported (Figure 11.3). The weights are calculated for a block of the input data coming
from N antennae and then applied to the same input data to generate the beamformer
output for that block. For the final design, a more efficient post-processor is developed
to extract the weights such as that described in Shepherd and McWhirter (1993).

Supporting a range of FPGA/ASIC technologies: By including some additional code
and parameters the same core design can be re-targeted to a different technology.
Doing this could enable a design to be prototyped on FPGA before targeting to ASIC.

Support for performance criteria: The variation in adaptive beamformer applications
creates a wide span of desired features. For example, mobile communications power
considerations and chip area could be the driving criteria, while for others a high data
rate system could be the primary objective.

Scalable architecture: May need to be created to support a range of design criteria.
Some key points driving the scalable architecture are desired data rate, area con-
straints, clock rate constraints and power constraints.

Clock rate performance: Depends on the architecture design and target technology
chosen. Specifying the system requirements enables the designer to make a choice
regarding the target technology and helps reach a compromise with other perfor-
mance criteria such as power and area.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Wordlength: As different applications require different wordlengths, a range of
wordlengths should be supported.

Level of pipelining: The desired clock rate may rely on pipelining within the design to
reduce the critical path. Giving a choice of pipelining within the submodules of the
design will greatly influence performance.

These values will form the basis from which to develop the adaptive beamformer solu-
tion from the generic architecture. The surrounding software models and testbenches
should include the same level of scalability so as to complete the parameterization
process.

11.2.2 Algorithm Development

The function of a typical adaptive beamformer is to suppress signals from every
direction other than the desired “look direction” by introducing deep nulls in the beam
pattern in the direction of the interference. The beamformer output is a weighted
combination of signals received by a set of spatially separated antennae. An adaptive
filtering algorithm calculating the filter weights is a central process of the adaptive
beamforming application.

The aim of an adaptive filter is to continually optimize itself according to the envi-
ronment in which it is operating. A number of mathematically and highly complex
algorithms exist to calculate the filter weights according to an optimization criterion.
Typically the target is to minimize an error function, which is the difference between a
desired performance and the actual performance. Figure 11.4 highlights this process.

A great deal of research has been carried out into different methods for calculating
the filter weights (Haykin 2002). The algorithms range in complexity and capability, and
detailed analysis is required in order to determine a suitable algorithm. However there
is no distinct technique for determining the optimum adaptive algorithm for a specific

Adaptive

algorithm

FIR
transversal

filter

Σ
w(n)

yest(n)

e(n)

x(n)

y(n)

–
+

X(n)

x(n) system input data

y(n) desired system response

yest(n) estimation of desired response

y(n)-yest(n) = e(n) estimation error

w(n) adaptive weight vector

w(n+1) updated adaptive weight vector

Figure . Adaptive filter system

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

application. The choice comes down to a balance of the range of characteristics defining
the algorithms, such as:

� rate of convergence, i.e. the rate at which the adaptive algorithm reaches an optimum
solution;

� steady-state error, i.e. the proximity to an optimum solution;
� ability to track statistical variations in the input data;
� computational complexity;
� ability to operate with ill-conditioned input data;
� sensitivity to variations in the wordlengths used in the implementation.

As was discussed in Chapter 2, two methods for deriving recursive algorithms for
adaptive filters use Wiener filter theory and the method of least squares, resulting in the
LMS and the RLS algorithms, respectively. Whilst the LMS algorithm is simpler, its lim-
itations lie in its sensitivity to the condition number of the input data matrix as well as
slow convergence rates. In contrast, the RLS algorithm is more elaborate, offering supe-
rior convergence rates and reduced sensitivity to ill-conditioned data. On the negative
side, the RLS algorithm is substantially more computationally intensive than the LMS
equivalent, although it is preferred here.

In particular, the QR-RLS decomposition is seen as the algorithm for adaptively cal-
culating the filter weights (Gentleman and Kung 1982; Kung 1988; McWhirter 1983). It
reduces the computation order of the calculations and removes the need for a matrix
inversion, giving a more stable implementation.

. Algorithm to Architecture

A key aspect of achieving a high-performance implementation is to ensure an efficient
mapping of the algorithm into hardware. This involves developing a hardware archi-
tecture in which independent operations are performed in parallel so as to increase the
throughput rate. In addition, pipelining may be employed within the processor blocks to
achieve faster throughput rates. One architecture that uses both parallelism and pipelin-
ing is the systolic array (Kung 1988). As well as processing speed, Chapter 13 highlights
its impact on power consumption. The triangular systolic array (Figure 11.5), first intro-
duced in Chapter 2, consists of two types of cells, referred to as BCs and ICs. Figure 11.6
illustrates the process from algorithm to architecture for this implementation.

It starts with the RLS algorithm solved by QR decomposition, shown as equations.
The next stage depicts the RLS algorithm solved through QR decomposition using a
sequential algorithm; at each iteration a new set of values are input to the equations, thus
continuously progressing towards a solution. The new data are represented by xT (n) and
y(n), where x is the input data (auxiliary) matrix and y is the desired (primary) data. The
term n represents the iteration of the algorithm. The QR operation can be depicted as
a triangular array of operations. The data matrix is input at the top of the triangle and
with each row another term is eliminated, eventually resulting in an upper triangular
matrix.

The dependence graph (DG) in Figure 11.6 depicts this triangularization process. The
cascaded triangular arrays within the diagram represent the iterations through time, i.e.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

RR R

x3(n+2)

x3(n+1)

x3(n)

x2(n+2)

x2(n+1)

x2(n)

x1(n+2)

x1(n+1)

R′R′

c, s

R′

R

R′
R

R′

R

R′

R12 R13

R23

R11

R22

R33R = from last iteration

R′ = new R

Where:

c and s are the rotation
paramters

x1(n)

Figure . Triangular systolic array for QRD
RLS filtering

each one represents a new iteration. The arrows between the cascaded arrays highlight
the dependency through time.

11.3.1 Dependence Graph

The dependencies between data can be identified in a DG. This allows the maximum
level of concurrency to be identified by breaking the algorithm into nodes and arrows.
The nodes outline the computations and the direction of the arrows shows the depen-
dence of the operations. This is shown for the QR algorithm by the three-dimensional
DG in Figure 11.7. The diagram shows three successive QR iterations, with arcs

e4,4

u34R33

u24R23R22

u14R13R12R11

γ0(n)

γin(n)

x3(n)x2(n)x1(n) y(n)

e(n)

xin

xout

xBC

c, s

c and s are rotation parameters

γ (n) is the product of cosines generated in the
course of eliminating xT(n)

α(n)

c, s c, s

u14(n–1)
u24(n–1) = u(n–1)
u34(n–1)

γout(n)

Where:

x1(n) x2(n) x3(n) = xT(n)

R11(n–1) R12(n–1) R13(n–1)
R22(n–1) R23(n–1)

R33(n–1)
= R(n–1)

Figure . From algorithm to architecture

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

xT(n)

time

R13 (n+2)

R23 (n+2)

R33 (n+2)

node

R33 (n–1)

R11 (n+2)

x1 (n) x2 (n) x3 (n)

x1(n+1) x2 (n+1) x3 (n+1)

x1 (n+2) x2 (n+2) x3 (n+2)

R12 (n+2)

R22 (n+2)

arrow

R11 (n–1) R12 (n–1)

R22 (n–1) R23 (n–1)

R13 (n–1)

R

QR iteration:

n

n+1

n+2

Figure . Dependence graph for QR decomposition

connecting the dependent operations. Some of the variable labels have been omitted
for clarity.

In summary, the QR array performs the rotation of the input xT (n) vector with R values
held within the memory of the QR cells so that each input x value into the BCs is rotated
to zero. The same rotation is continued along the line of ICs via the horizontal arrows
between QR cells. From this DG, it is possible to derive a number of SFG representations.
The most obvious projection, which is used here, is to project the DG along the time
(i.e. R) arrows.

11.3.2 Signal Flow Graph

The transition from DG to SFG is clearly depicted in Figure 11.8. To derive the SFG
from the DG, the nodes of the DG are assigned to processors, and then their operations
are scheduled on these processors. One common technique for processor assignment
is linear projection of all identical nodes along one straight line onto a single processor,
as indicated by the projection vector d in Figure 11.8. Linear scheduling is then used to
determine the order in which the operations are performed on the processors.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

s
Normal

schedule
vector

Schedule lines

X3(n+2)
X2(n+2) X3(n+1)

X1(n+2) X2(n+1) X3(n)
X1(n+1) X2(n) •
X1(n) • •

R11(n) R12(n) R13(n)

R23(n)R22(n)

R33(n)

(b) Signal Flow Graph

d
Projection
direction

(a) Dependence Graph

Feedback path

Algorithmic delay
showing that R(n) is
stored for use for the
iteration at time (n+1)

Projection
along the
time axis

X1(n) X2(n) X3(n)
X1(n+1) X2(n+1) X3(n+1)

X1(n+2) X2(n+2) X3(n+2)

Figure . From dependence graph to signal flow graph

The schedule lines in Figure 11.8 indicate the operations that are performed in parallel
at each cycle. Mathematically they are represented by a schedule vector s normal to the
schedule lines, which points in the direction of dependence of the operations. That is, it
shows the order in which each line of operations is performed.

There are two basic rules that govern the projection and scheduling, and ensure that
the sequence of operations is retained. Given a DG and a projection vector d, the sched-
ule is permissible if and only if:
� all the dependence arcs flow in the same direction across the schedule lines;
� the schedule lines are not parallel with the projection vector d.

In the QR example in Figure 11.8, each triangular array of cells within the DG repre-
sents one QR update. When cascaded, the DG represents a sequence of QR updates. By
projecting along the time axis, all the QR updates may be assigned onto a triangular SFG
as depicted in Figure 11.8(b). In the DG, the R values are passed through time from one
QR update to another, represented by the cascaded triangular arrays. This transition is
more concisely represented by the loops in Figure 11.8(b), which feed the R values back
into the cells via an algorithmic delay needed to hold the values for use in the next QR
update. This is referred to as a recursive loop.

The power of the SFG is that it assumes that all operations performed within the nodes
take one cycle, as with the algorithmic delays, represented by small black nodes, which
are a necessary part of the algorithm. The result is a more concise representation of the
algorithm than the DG.

The rest of this chapter gives a detailed account of the processes involved in deriving
an efficient architecture and hence hardware implementation of the SFG representation

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

N inputs
N processors

Schedule lines

Usage:

100 %

81.81 %

63.63 %

54.55 %

36.36 %

18.18 %
Schedule
vector, S

Projection

Figure . Simple linear array mapping

of the algorithm. In particular, the emphasis is on creating an intuitive design that will
be parameterizable, therefore enabling a fast development for future implementations.

. Efficient Architecture Design

With the complexity of the SGR QR-RLS algorithm, coupled with the number of proces-
sors increasing quadratically with the number of inputs, it is vital to generate efficient
QR array architectures tailored to the applications that meet desired performance with
the lowest area cost. This is achievable by mapping the triangular functionality down
onto a smaller array of processors. Deriving an efficient architecture for this QR array
is complicated by its triangular shape and the position of the BCs along the diagonal. A
simple projection of operations from left to right onto a column of N processors leads to
an architecture where the processors are required to perform both the IC and BC oper-
ations (which were described in Chapter 2). In addition, while the first processor is used
100% efficiently, this rate usage decreases down the column of processors such that the
Nth processor is only used once in every N cycles. This results in an overall efficiency
of about 60% as shown in Figure 11.9.

Rader (1992 1996) solved the issue of low processor usage by mirroring part B in the x-
axis (see Figure 11.10) and then folding it back onto the rest of the QR array. Then, all the

y

N inputs

x

(a)

BA

(b) (d)

N/2 processors

(c)

projection

Figure . Radar mapping (Rader 1992, 1996)

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Horizontal projection

Processor

usage

100%

66.67%

66.67%

Vertical projection

Processor

usage
33.33% 66.67% 100% 100%

d
Projection

s
Normal

schedule
vector

Schedule
lines

X3(n+2)
X2(n+2) X3(n+1)

X1(n+2) X2(n+1) X3(n)
X1(n+1) X2(n) •
X1(n) • •

d
Projection

y(n+2)
y(n+1)
y(n)
•
•
•

Boundary

Internal

Both boundary
and internal

QR operation:

Figure . Projecting the QR array onto a linear architecture

operations were mapped down onto a linear architecture of N∕2 processors. This works
quite effectively but the BC and IC operations still need to be performed on the same
processor, involving the design of a generic cell architecture or an implementation based
on the CORDIC algorithm, see Hamill (1995). Another solution (Tamer and Ozkurt
2007) used a tile structure on which to map the QR cells.

Figure 11.11 gives an example of how the QR operations need to be scheduled. It shows
a simplified QR array with just three auxiliary (x) inputs and one primary (y) input. The
schedule lines show the sequence in which the QR operations need to be performed
due to the dependence on variables passing between the cells. On each schedule line,
there are a number of operations that can be performed at the same time. The normal
schedule vector, s, then depicts the order of the operations, that is, the order of the
schedule lines. Two examples are given for the projection vector, d. There is a horizontal
projection of the QR operations onto a column of three processors. Likewise, a vertical

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

projection is possible down to four processors. As with the example above, the resulting
architectures require that both the BC and IC operations are performed on the same
processor.

Another mapping (Walke 1997) solves this issue of requiring QR cells that perform
both operations. The mapping assigns the triangular array of 2m2 + 3m + 1 cells (i.e.
N = 2m + 1 inputs) onto a linear architecture consisting of one BC processor and m IC
processors. It folds and rotates the triangular array so that all the BC operations may
be assigned to one processor, while all the IC operations are implemented on a row of
separate processors. All processors in the resulting linear architecture are locally inter-
connected and used with 100% efficiency, thus displaying the characteristics of a systolic
array and hence offering all the advantages associated with these structures. This pro-
cedure is depicted in Figure 11.12 for a seven-input triangular array (for a more detailed
description, see Lightbody 1999; Lightbody et al. 2003; Walke 1997).

For clarity, each QR operation is assigned a coordinate originating from the R (or U)
term calculated by that operation, i.e. the operation R1,2 is denoted by the coordinate 1, 2,
and U1,7 is denoted by 1, 7. To simplify the explanation, the multiplier at the bottom of
the array is treated as a BC, denoted by 7, 7.

The initial aim of mapping a triangular array of cells down onto a smaller architecture
is to maneuver the cells so that they form a locally interconnected regular rectangular
array. This can then be partitioned evenly into sections, each to be assigned to an indi-
vidual processor. This should be done in such a way as to achieve 100% cell usage and a
nearest neighbor connected array. Obtaining the rectangular array is achieved through
the following four stages. The initial triangular array is divided into two smaller trian-
gles, A and B. A cut is then made after the (m + 1)th BC at right angles to the diagonal
line of BCs (Figure 11.12(a)). Triangle A forms the bottom part of a rectangular array,
with m + 1 columns and m + 1 rows.

Triangle B now needs to be manipulated so that it can form the top part of the rect-
angular array. This is done in two stages. By mirroring triangle B first in the x-axis, the
BCs are aligned in such a way that they are parallel to the BCs in the triangle A, form-
ing a parallelogram, as shown in Figure 11.12(b). The mirrored triangle B is then moved
up along the y-axis and left along the x-axis to above A forming the rectangular array
(Figure 11.12(c)). As depicted, the BC operations are aligned down two columns and
so the rectangular array is still not in a suitable format for assigning operations onto a
linear architecture.

The next stage aims to fold the large rectangular array in half so that the two columns
of BC operations are aligned along one column. This fold interleaves the cells so that a
compact rectangular processor array (Figure 11.12(d)) is produced. From this rectan-
gular processor array, a reduced architecture can be produced by projection down the
diagonal onto a linear array, with all the BC operations assigned to one BC processor
and all the IC operations assigned to a row of m IC processors (Figure 11.12(e)). The
resulting linear architecture is shown in more detail in Figure 11.13.

The lines drawn through each row of processors in Figure 11.12(e) (labeled 1,… , 7),
represent the set of QR operations that are performed on each cycle of the linear array.
They are used to derive the schedule for architecture, as denoted more compactly by
a schedule vector s, normal to the schedule lines. In Figure 11.13, it is assumed that
registers are present on all processor outputs to maintain the data between the cycles of
the schedule. Multiplexers are present at the top of the array so that system inputs to the

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

A

Boundary
cells

(a) Triangular array

Cycle
number

1

1

2

3

4

5

6

7

3,6

2,7

4,5

1,1

2,2

3,3

5,5

6,6

7,7

1,2 1,3

2,3

1,4

2,4

3,4

1,5

1,6

1,7

2,5

3,5

2,6

4,6 4,7

5,7

6,7

5,6

3,7

Cell process
projected onto

linear array

(e) Projection of cells on to a linear array of
locally connected processors

(b) Modified array

Move
cells

Interleave
cells

(c) Rectangular array (d) Locally connected
array

B
A

A

A
B

B

B

4,4

Figure . Interleaved processor array

QR array can be supplied to the cells at the right instance in time. The linear array has
only local interconnections, so all the cell inputs come from adjacent cells. The bottom
multiplexers govern the different directions of dataflow that occur between rows of the
original array.

The folding of the triangular QR array onto an architecture with reduced number of
processors means that the R values need to be stored for more than one clock cycle.
They are held locally within the recursive data paths of the QR cells, rather than external

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

IC2BC1

δ′

δ

d′

d

Output

y(n)

δ1(n) = 1 x2(n)x1(n)

IC3

x6(n)

x3(n)

r

r′

r

r′

IC4

x5(n)

x4(n)

r

r′

MUX MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUXMUX

Figure . Linear architecture for a seven-input QR array

memory (i.e. the values are pipelined locally to delay them until they are needed). Some
of the required delays are met by the latency of existing operations within the loop and
the remainder are achieved by inserting additional registers.

11.4.1 Scheduling the QR Operations

The derivation of the architecture is only a part of the necessary development as a valid
schedule needs to be determined to ensure that the data required by each set of opera-
tions are available at the time of execution. This implies that the data must flow across the
schedule lines in the direction of the schedule vector. The rectangular processor array
in Figure 11.12(d) contains all the operations required by the QR algorithm, showing
the sequence in which they are to be implemented on the linear architecture. Therefore,
this diagram can be used to show the schedule of the operations to be performed on the
linear architecture.

An analysis of the scheduling and timing issues can now be refined. Looking at the
first schedule line, it can be seen that operations from two different QR updates have
been interleaved. The shaded cells represent the current QR update at time n and the
unshaded cells represent the previous unfinished update at time n − 1. Effectively the QR
updates have been interleaved. This is shown in more clarity in Figure 11.14. The first QR
operation begins at cycle 1, then after 2m + 1 cycles of the linear architecture the next
QR operation begins. Likewise, after a further 2m + 1 cycles the third QR operation is
started. In total, it takes 4m + 1 cycles of the linear architecture to complete one specific
QR update.

From Figure 11.14, it can be seen that the x inputs into the QR cells come from either
external system data, i.e. from the snapshots of data forming the input x(n) matrix and
y(n) vector, or internally from the outputs of other processors. The external inputs are
fed into the linear architecture every 2m + 1 clock cycles.

If each QR cell takes a single clock cycle to produce an output, then there will be
no violation of the schedule shown in Figure 11.12. However, additional timing issues
must be taken into account as processing units in each QR cell have detailed timing

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Processor

array

Time

Interleaving the

successive QR

updates

11

12

13

10

9

8

1

6

5

3

4

1

2

2,63,51,7

3,62,74,5

3,74,6

4,75,6

5,7

6,7

2,51,63,4

1,2

1,3

1,42,3

1,52,4

3,62,74,5

3,74,6

6,75,6

5,7

6,7

1,2

1,3

1,42,3

1,52,4

5,5

6,6

7,7

1,1

2,2

3,3

2,51,63,4

7 4,4

5,5

6,6

7,7

1,1

2,2

3,3

x4(1)

x3(1)

x2(1)

x1(1)
Cycle:

Processor
 array

Update n

Update n+2

Update n+1

QR updates

y(1)

x5(1)

x6(1)

Figure . Interleaving successive QR operations. (Source: Lightbody 2003. Reproduced with
permission of IEEE.)

requirements. The retiming of the operations is discussed in more detail later on in this
chapter.

Note that the processor array highlighted in Figure 11.14 is equivalent to the processor
array given in Figure 11.12(d). This processor array is the key starting point from which
to develop a generic QR architecture.

. Generic QR Architecture

The technique shown so far was applied to a QR array with only one primary input. More
generally, the QR array would consist of a triangular part and a rectangular part (Figure
11.15(a)), the sizes of which are determined by the number of auxiliary and primary
inputs, respectively. Typically, the number of inputs to the triangular part is at least a

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

1,31,2 1,51,4 1,71,6

2,3 2,52,4 2,72,6

3,53,4 3,73,6

4,64,5 4,7

5,75,6

5,7

2,10

1,101,91,8

2,9

3,10

2,8

3,93,8

4,8 4,104,9

5,95,8 5,10

6,8 6,106,9

7,97,8 7,10

1,1

2,2

3,3

4,4

5,5

6,6

7,7

2m+1 auxiliary inputs p primary inputs

fold

2m+1

1
2

3

4

5
6

7

8

9

10
11

12

13 14 15 16

Schedule
lines

(a)

(b)

2,101,10

1,9

1,8

2,9

3,10

2,8

3,93,8

4,8 4,104,9

5,95,8 5,10

6,8 6,106,9

7,8 7,107,9

1,31,2 1,51,4 1,71,6

2,3 2,52,4 2,72,6

3,53,4 3,73,6

4,64,5 4,7

5,75,6

5,7

1,1

2,2

3,3

4,4

5,5

6,6

7,7

1
2

3

4

5
6

7

8

9

10
11

12

16151413

Schedule
lines

Figure . Generic QR array. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

factor greater than the number of inputs to the rectangular part, with example numbers
for radar being 40 inputs for the triangular part and only 2 for the rectangular part.

The mapping procedure presented in this section implements both the triangular and
rectangular components of the QR array in a single architecture. As before, the BC and
IC operations are kept to two distinct processors. The additional factor presented by
the generic mapping technique is that a choice of linear or rectangular architectures is

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

available. The number of IC processors may be reduced further, allowing more flexibil-
ity in the level of hardware reduction. However, at least one BC processor is required,
even if the number of ICs is reduced below one row. Note that the connections have
been removed from Figure 11.15 and in later following diagrams in order to reduce the
complexity of the diagram and aid clarity.

11.5.1 Processor Array

In the previous section, the triangular structure of the QR array was manipulated into
a rectangular processor array of locally interconnected processors, as shown in Figure
11.12(d). From this starting point, the operations can be mapped onto a reduced archi-
tecture. A simplified method for creating the processor array is demonstrated in the
following example.

The processor array is obtained through two steps. Firstly, a fold is made by folding
over the corner of the array after the mth cell from the right-hand side, as depicted in
Figure 11.15. The cells from the fold are interleaved between the rows of unfolded cells
as shown. The next stage is to remove the gaps within the structure by interleaving suc-
cessive QR updates in the same manner as shown in Figure 11.14. The choice of position
of the fold and the size of the triangular part of the array are important. By placing the
fold after the mth cell from the right-hand side, a regular rectangular array of operations
can be produced.

This is shown in greater detail in the Figure 11.16, which shows that there is a sec-
tion which repeats over time and contains each of all the required QR operations. This
section is referred to as the processor array. It is more clearly depicted in Figure 11.17,
which shows just the repetitive section from Figure 11.16.

4,64,5 4,84,7 4,104,9

5,75,6 5,95,8 5,10

6,86,7 6,106,9

7,97,8 7,10 2,101,10

1,9

1,8

2,9

3,10

1,31,2 1,51,4 1,71,6

2,3 2,52,4 2,72,6 2,8

3,53,4 3,73,6 3,93,8

4,64,5 4,84,7 4,104,9

5,75,6 5,95,8 5,10

6,86,7 6,106,9

7,97,8 7,10

Processor

array

Update n

Operation :

Time

Update n+1

1,31,2 1,51,4 1,71,6

2,3 2,52,4 2,72,6

3,53,4 3,73,6

4,64,5 4,7

Update n+2

1,1

2,2

3,3

4,4

5,5

6,6

7,7

1,1

2,2

3,3

4,4

4,4

5,5

6,6

7,7

Figure . Repetitive section

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

2,10

1,10

1,9

1,8

2,9

3,10

2,7

2,8 3,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,10

4,9

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,9 7,8

1,3

1,2

1,5

1,4

1,7

1,6

2,3

2,5

2,4

2,63,5

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

2m+1 rows

m+p+1 columns

QR update:

n+1

n+2

n

Figure . Processor array. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

In this example, the processor array contains QR operations built up from three suc-
cessive QR updates, represented by the differently shaded cells. The interconnections
are included within this diagram, showing that all cells are locally connected. The size
of the processor array is determined by the original size of the triangular QR array,
which in turn is governed by the number of auxiliary and primary inputs, 2m + 1 and
p, respectively. The resulting processor array has 2m + 1 rows and m + p + 1 columns.
As expected, the product of these two values gives the number of operations within the
original QR array. From the processor array, a range of architectures with reduced num-
ber of processors can be obtained by dividing the array into partitions and then assigning
each of the partitions to an individual processor. There are several possible variants of
QR architecture:

Linear architecture: The rectangular array is projected down onto a linear architecture
with one BC and m + p ICs.

Rectangular architecture: The rectangular array is projected down onto a number of
linear rows of cells. The architecture will have r rows (where 1 < r ≤ 2m + 1), and
each row will have one BC and m + p ICs.

Sparse linear architecture: The rectangular array is projected down onto a linear archi-
tecture with one BC and less than m + p ICs.

Sparse rectangular architecture: The rectangular array is projected down onto a num-
ber of linear rows of cells. The architecture will have r rows (where 1 < r ≤ 2m + 1),
and each row will have one BC and less than m + p ICs.

Linear Array
The linear array is derived by assigning each column of operations to an individual pro-
cessor, as shown in Figure 11.18. In total, it takes 4m + p + 1 = 16 cycles of the linear
array to complete each QR operation. In addition, there are 2m + 1 = 7 cycles between
the start of successive QR updates. This value is labeled as TQR. Note that so far the

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

2,10

1,10

1,9

1,8

2,9

3,10

2,7

2,83,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,10

4,9

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,97,8

1,3

1,2

1,5

1,4

1,7

1,6

2,3

2,5

2,4

2,63,5

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

Project down
onto m+p+1

cells

m+p+1 cells

IC5IC3IC1 IC6IC4IC2BC

1

2

3

4

5

6

7

Schedule
lines

S

Figure . Linear array. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

latency of the QR cells is considered to be one clock cycle, i.e. on each clock cycle one
row of QR operations is performed on the linear architecture. Later sections will exam-
ine the effect of a multi-cycle latency, which occurs when cell processing elements with
detailed timings are used in the development of the generic QR architecture.

Sparse Linear Array
A further level of hardware reduction is given in Figure 11.19, resulting in a sparse linear
array. Here the number of IC processors has been halved. When multiple columns (i.e.
NIC columns) of IC operations are assigned to each processor then the number of itera-
tions of the architecture is increased by this factor. Hence, for the sparse linear array, TQR
is expressed as the product of 2m + 1 (used in the linear array) and NIC. The schedule
for the sparse linear array example is illustrated in Figure 11.20.

Rectangular Array
The processor array can be partitioned by row rather than by column so that a number
of rows of QR operations are assigned to a linear array of processors. The example below
shows the processor array mapped down on an array architecture. As the processor array
consisted of 7 rows, 4 are assigned to one row and 3 are assigned to the other. To balance
the number of rows for each linear array, a dummy row of operations is needed and is
represented by the cells marked by the letter D.

On each clock cycle, the rectangular array processor executes two rows of the origi-
nal processor array. Each QR iteration takes 18 cycles to be completed, two more clock
cycles than for the linear array due to the dummy row of operations. However, the QR

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

2,10

1,10

1,9

1,8

2,9

3,10

2,7

2,83,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,10

4,9

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,97,8

1,3

1,2

1,5

1,4

1,7

1,6

2,3

2,5

2,4

2,63,5

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

Project down

onto 4

processors

4 processors

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15 16 17 18 19

IC3IC1 IC2BC

Schedule
lines

S

Figure . Sparse linear array

updates are started more frequently. In this case TQR is 4, compared to the linear array
which took 7 cycles. For the array architecture, TQR is determined by

TQR =
(2m + 1) + ND

Nrows
,

where Nrows is the number of lines of processors in the rectangular architecture, and
ND is the number of rows of dummy operations needed to balance the schedule. The
resulting value relates to the number of cycles of the architecture required to perform
all the operations within the processor array.

Sparse Rectangular Array
The sparse rectangular array assigns the operations to multiple rows of sparse linear
arrays. A number of rows of the processor array are assigned to each linear array. The
columns are also partitioned so that multiple columns of operations are assigned to each
IC processor, as shown in Figure 11.22.

The QR update takes 34 cycles for completion and each update starts every 7 cycles,
i.e. TQR = 7. Including the term NIC, the equation for TQR becomes

TQR =
((2m + 1) + ND)NIC

Nrows
.

For example, TQR = ((2 × 3 + 1 + 0) × 2)∕2 = 7 cycles.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

1,3

1,2

1,4

2,3

2,5

2,4

3,5

3,4

1,5

2,6

1,6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

7,9

7,10

6,10

6,9

5,9 3,10

5,10

4,10

1,1

2,2

3,3

4,4

5,5

4,5

5,5

6,6

7,7

3,6

4,6

4,5

4,7

5,7

5,6

5,8

6,8

6,7

6,9

7,8

1,10

3,7

4,8

5,9

2,10

1,9

1,8

2,9

3,10

2,7

2,8

3,9

3,8

4,10

4,9

3,5

1,6

2,6

1,7

7,9

1,1

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

7,10

6,10

5,10

1,1

2,2

1,2

6,6

7,7

3,6

4,6

4,7

5,7

5,6

5,8

6,8

6,7

6,9

7,8

1,10

3,7

4,8

5,9

2,10

1,9

1,8

2,9

3,10

2,7

2,8

3,9

3,8

4,10

4,9

5,10

1,7

7,9

6,10

1,3

1,2

1,4

2,3

2,5

2,4

3,5

3,4

1,5

2,6

1,7

1,64,5

4,6

3,6

2,75,6 7,10

2,2

3,3

4,4

5,5

Schedule
lines

Key: QR update
shown in full

X
parameter

Rotation
parameters

Boundary
cell output

Figure . One QR update scheduled on the sparse linear array. (Source: Lightbody 2003.
Reproduced with permission of IEEE.)

The discussion to date has concentrated on mapping QR arrays that have an odd num-
ber of auxiliary inputs. The technique can be applied to an array with an even number
with a slight reduction in overall efficiency.

. Retiming the Generic Architecture

The QR architectures discussed so far have assumed that the QR cells have a latency of
one clock cycle. The mapping of the architectures is based on this factor; hence there
will be no conflicts of the data inputs. However, the inclusion of actual timing details

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

IC25IC23IC21 IC26IC24IC22BC2

IC15IC13IC11 IC16IC14IC12BC1

Project down

onto 2 rows of

processors

Columns = m+p+1 processors

Not all feedback
connections shown

2,10

1,10

1,9

1,8

2,9

3,10

2,7

2,8 3,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,10

4,9

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,9 7,8

1,3

1,2

1,5

1,4

1,7

1,6

2,3

2,5

2,4

2,6 3,5

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

DDD DDDD

Row 1

Row 2

1

2

3

4

1

2

3

4

Nrows = number
of rows of
linear arrays

S

Figure . Rectangular array

within the QR cells will affect this guarantee of a valid data schedule. The arithmetic
IP processors (McCanny et al. 1997; Northeastern University 2007), used to implement
the key arithmetic functions such as multiplication, addition and division involve timing
details which will impact the overall circuit timing. Embedding processor blocks with
specific timing information, coupled with the impact of truncation and internal word
growth, means that detailed retiming of the original SFGs of the QR cells must be per-
formed before the processors can be used to implement the QR architecture (Trainor
et al. 1997). The overall effect of retiming is to incur variable latencies in the output
data paths of the QR cells. The effect of real timing information within the QR cells is
discussed in this section.

The choice for the QR array was to use floating-point arithmetic to support the
dynamic range of the variables within the algorithm. The floating-point library used
supported variable wordlengths and levels of pipelining, as depicted in Figure 11.23.

In adaptive beamforming, as with many signal processing applications, complex arith-
metic representations are needed as incoming signals contain a magnitude and phase
component. This is implemented using one signal for the real part and another for the
imaginary part, and gives the BC and IC operations shown in the SFGs depicted in
Figure 11.24.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Project down onto 2

rows of 4 processors

2,10

1,10

1,9

1,8

2,9

2,7

2,8 3,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,9

5,7

5,6

5,8

6,8

6,7

7,8

1,3

1,2

1,5

1,4 2,3

2,5

2,4

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

2IC1 2IC32C22BC

1IC31IC21BC

4 processors

Not all
feedback

connections
are shown

Row 1

Row 2

1

2

3

4

5

6

7

1

2

3

4

5

6

7

3,10

4,105,9

5,106,9 1,7

1,6

2,6 3,5

s

Operations

for row 1

Operations

for row 2

cycle

Schedule

lines

Schedule

vector

1IC1

Figure . Sparse rectangular array. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

The floating-point complex multiplication is built up from four real multiplications
and two real additions: (a + jb)(c + jd) = (ac − bd) + j(ad + bc). An optimization is
available to implement the complex multiplication using three multiplications and fives
additions/subtractions as illustrated in Section 6.2.2. However, given that an addition
is of a similar area to multiplication within floating-point arithmetic due to the costly
exponent calculation, this is not beneficial. For this reason, the four-multiplication ver-
sion is used. The detail of the complex arithmetic operations is given in Figure 11.25.

The SFGs for the BCs and ICs are given in Figures 11.26 and 11.27, respectively. These
diagrams show the interconnections of the arithmetic modules within the cell archi-
tectures. Most functions are self-explanatory, except for the shift-subtracter. For small
values of x, the operation

√
1 − x can be approximated by 1 − x2 which may be imple-

mented by a series of shifts denoted by D = A − Shift(A, N). This operation is used to
implement the forgetting factor, 𝛽, within the feedback paths of the QR cells. This value,
𝛽, is close to 1, therefore x is set to 1 − 𝛽 for the function application.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

+ + × − R

A

B

S

X

Y

P

N

D

Q

Fin

Fout

A

B
Sub

S

A

D

Floating
point
block

Function Addition
S = A+B

0 – 3 0 – 3 0 – 1 0 – 10 – 2 0 – Mbits+1

Adder/sub
S = A+B

when Sub = 0
else S = A–B

Shift-
subtractor:

D = A–
Shift (A, N).

Multiplier:
P = X×Y

Divider:
Q = N/D

Rounder

Symbol

Latency
PA PA PS PM PD PRLabel for

Latency

Add Sub Add Shft Sub Mult Div Round

Figure . Arithmetic modules. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

1

d

R

R

G

δout

δin

dnew

dold

b

Recursive

loop

Recursive

loop

a

xin

R

xout

b

a

xin

b

a

(b) Internal Cell(a) Boundary Cell

rnew

rold

Key:

Special multiply

function

c(a–jb)

c(a2+b)2a+jb

RounderR

Shift multiply

Complex

Real

Extended
precision

Z
–1 Algorithmic

delay

G

Real
operation

Real /complex
operation

Complex
operation

in
new

old
out

ininoldnew

old

in

inin

d

d

xdd

d

x
b

xa

2

2

=

+=

=

∗=

oldinout

inoldnew

brxx

axrr

−=
+= 2

*

* Complex conjugate

1/dold

Z
–1

Z
–1

Z
–1

δ

δ β δ

β δ

β

Figure . Cell SFGs for the complex arithmetic SGR QR algorithm. (Source: Lightbody 2003.
Reproduced with permission of IEEE.)

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

×

× ×
× × × × × ×+ +

+ +–

×

a+jb

a

Function Special

Function:

Complex

Addition:

Complex

Multiplication:

Symbol

a

c

c

ca+jcb

c +

a+jb

(a+c)+j(b+d)

a+c

c+jd G

c(a–jb)

c(a2+b2)

a+jb

a+jb

(ac–bd)+j(ad+bc)

c+jd

jb
jb jd

a jb jb jd
a jb ca jcb

ca

PM

PA PA

PA PA+PM PA+PM

PA PA PA

PM

PM

PM PM PM PM
PM PM

cb
j(b+d)

ac–bd j(ad+bc) c(a2+b2)

Real

components

Total latency

Complex/Real

Multiplication:

Figure . Arithmetic modules. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

There are a number of feedback loops within the QR cells, as shown in Figures 11.26
and 11.27. These store the R values from one RLS iteration to the next. These loops will
be a fundamental limitation to achieving a throughput rate that is close to the clock rate
and, more importantly, could lead to considerable inefficiency in the circuit utilization.
In other words, even when using a full QR array, the delay in calculating the new R values
will limit the throughput rate.

Figures 11.26 and 11.27 show the QR cell descriptions with generic delays placed
within the data paths. These are there to allow for the re-synchronization of operations
due to the variable latencies within the arithmetic operators, i.e. to ensure correct tim-
ing. The generic expressions for the programmable delays are listed in Tables 11.1 and
11.2 for the BC and IC, respectively.

Secondly, to maintain a regular data schedule, the latencies of the QR cells are adjusted
so that the x values and rotation parameters are output from the QR cells at the same
time. The latency of the IC in producing these outputs can be expressed generically using
a term LIC. The latencies of the BC in producing the rotation parameters, a and b, are also
set to LIC to keep outputs synchronized. However, the latency of the BC in producing
the 𝛿out is set to double this value, 2LIC, as this relates back to the original scheduling
of the full QR array, which showed that no two successive BC operations are performed
on successive cycles. By keeping the structure of the data schedule, the retiming process
comes down to a simple relationship.

11.6.1 Retiming QR Architectures

This subsection continues with the discussion of retiming issues and how to include
them in a generic architecture.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

TQR

1

d

R

R

G

*

δout

Latency of δout = 2LIC

δin

dnew

dold

b (LB)

Recursive loop

a (LA)

xBC

1/dold

β 2dold

a
latency of a, LA,
increased to LIC

δout (Lδ)

b
latency of b, LB,
increased to LIC

PB7

PB4

PB1

PB3

PB5a

PB5b

Parameterisable
delay blocks

Key:

Real data path
Complex data path

PB2a
PB2b

PB8

PB6

–

Figure . Generically retimed BC

Retiming of the Linear Array Architecture
The latency has the effect of stretching out the schedule of operations for each QR
update. This means that iteration n = 2 begins 2m + 1 clock cycles after the start of iter-
ation n = 1. However, the introduction of processor latency stretches out the scheduling
diagram such that iteration n = 2 begins after (2m + 1)LIC clock cycles. This is obviously
not an optimum use of the linear architecture as it would only be used every LICth clock
cycle. A factor, TQR, was introduced in the previous section as the number of cycles
between the start of successive QR updates, as determined by the level of hardware
reduction.

It can be shown that a valid schedule which results in a 100% utilization can be
achieved by setting the latency LIC to a value that is relatively prime to TQR. That is,

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

xout, latency of xout =LIC

b
latency of b
set to LIC

a
latency of a
set to LIC

Recursive loop

R

xIC

b

a

rnew

rold

TQR

xout (Lx)

PI5

PI3

PI6PI2

Parameterisable
delay blocks

All data paths
complex

PI1a

PI1b

PI4

–

Figure . Generically retimed IC

if the two values do not share a common factor other than 1 then their lowest common
multiple will be their product. Otherwise there will be data collisions at the products of
LIC and TQR with their common multiplies. Thus if TQR = mod c and LIC = mod c then
TQR = d × c and LIC = e × c, giving c = TQR∕d = LIC∕e, where c is a common multiple
of TQR and LIC and a positive integer other than 1, and d and e are factors of TQR and

Table . BC generic timing

BC Delay Value

BRL 2PA + 2PM + PR + PS − TQR
PB1 PM
PB2 TQR − PA − PB
PB2a If BRL < 0, then −BRL, otherwise, 0
PB2b If BRL < 0, then PB2 − PB2a, otherwise PB2
PB3 If BRL > 0, then BRL, otherwise, 0
PB4 2PA + PM + PR + PD − PB3
PB5 2PA + 2PM + PR + PD − TQR
PB5a If PB5 < 0, then PB5, otherwise, 0
PB5b If PB5 > 0, then PB5, otherwise, 0
PB6 LIC − L𝛿
PB7 LIC − La
PB8 LIC − Lb

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Table . IC generic timing

IC Delay Value

IRL 2PA + PM + PR − TQR
PI1 TQR − PA − PS
PI1a If IRL < 0, −IRL, otherwise, 0
PI1b If IRL < 0, PI1 − PI1a, otherwise, PI1
PI2 If IRL > 0, IRL, otherwise, PI1
PI3 PI2 + PA + PM
PI4 LIC − Lx
PI5 LIC
PI6 LIC − PI2

Table . Generic expressions for the latencies of the BC and IC

Latency Value

La PM
Lb PM + PB5
L𝛿 PB3 + PB4 + 2PM
LX PI3 + PA

LIC respectively. Hence, there would be a collision at TQR × e = LIC × d. This means that
the products of both TQR × e and LIC × d must be less than TQR × LIC. Therefore, there
is a collision of data. Conversely, to obtain a collision free set of values, c is set to 1.

The time instance TQR × LIC does not represent a data collision as the value of TQR is
equal to 2m + 1, as the QR operation that was in line to collide with a new QR operation
will have just been completed. The other important factor in choosing an optimum value
of TQR and LIC is to ensure that the processors are 100% efficient.

The simple relationship between TQR and LIC is a key factor in achieving a high uti-
lization for each of the types of structure. More importantly, the relationship gives a
concise mathematical expression that is needed in the automatic generation of a generic
QR architecture complete with scheduling and retiming issues solved.

Figure 11.28 shows an example schedule for the seven-input linear array that was orig-
inally shown in Figure 11.12 where LIC is 3 and TQR is 7. The shaded cells represent the
QR operations from different updates that are interleaved with each other and fill the
gaps left by the highlighted QR update. The schedule is assured to be filled by the com-
pletion of the first QR update; hence, this is dependent on the latency, LIC.

. Parameterizable QR Architecture

The main areas of parameterization include the wordlength, the latency of arithmetic
functions, and the value of TQR. Different specifications may require different finite pre-
cision, therefore the wordlength is an important parameter. The QR cells have been built
up using a hierarchical library of arithmetic functions, which are parameterized in terms
of wordlength, with an option to include pipelining to increase the operation speed as

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

5,5

2,63,51,7

3,62,74,5

3,74,6

4,75,6

5,7

6,7

2,51,63,4

1,2

1,3

1,42,3

1,52,4

1,1

2,2

3,3

4,4

6,6

7,7

5,5

2,63,51,7

3,62,74,5

3,74,6

4,75,6

5,7

2,51,63,4

1,2

1,3

1,42,3

1,52,4

1,1

2,2

3,3

4,4

6,6

5,5

2,63,51,7

3,62,74,5

3,74,6

2,51,63,4

1,2

1,3

1,42,3

1,52,4

1,1

2,2

3,3

4,4

5,5

2,51,63,4

1,2

1,3

1,42,3

1,52,4

1,1

2,2

3,3

1,2

1,3

1,42,3

1,1

2,2

1,2

1,1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Figure . Schedule for a linear array with an IC latency
of 3

required. These parameters are passed down through the hierarchy of the HDL descrip-
tion of the QR cells to these arithmetic functions. Another consideration is the value of
TQR, which determines the length of the memory needed within the recursive loops of
the QR cells which hold the R and u values from one QR update to the next. Both TQR
and the level of pipelining within the arithmetic functions are incorporated in generic
timing expressions of the SGR QR cells.

11.7.1 Choice of Architecture

Table 11.4 demonstrates the process for designing a QR architecture when given a spe-
cific sample rate and QR array size. The examples below are for a large QR array with 45
auxiliary inputs and 4 primary inputs, i.e. m = 22 and p = 12. The resulting processor
array is 2m + 1 = 45 rows by m + p + 1 = 35 columns. For a given sample throughput

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Table . Other example architectures (clock speed = 100 MHz)

Number of processors
Data rate

Arch. Details BC IC total TQR MSPS

Full QR Processor for each QR
cell

45 1170 1215 4 25

Rectangular 1 Processor array assigned
onto 12 linear arrays,
each responsible for
4 rows

12 312 324 4 25

Rectangular 2 Processor array assigned
onto 3 linear arrays,
each responsible for
45∕3 = 15 rows

3 78 81 (2m + 1)∕3
(15)

6.67

Rectangular 3 Processor array assigned
onto 15 linear arrays
(13 ICs), each
responsible for
45∕3 = 15 rows
2 columns of ICs to
each

15 195 210 (2m + 1)∕15 16.67

Sparse
rectangular

2 columns of ICs to each
IC processor of
3 linear arrays

3 39 42 2(2m + 1)∕3
(30)

3.33

Linear 1 BC and 26 ICs 1 26 27 2m + 1
(45)

2.22

Sparse linear 2 columns of ICs
assigned to each IC
processor of a linear
array

1 13 14 2(2m + 1)
(90)

1.11

rate and clock rate, we can determine the value for TQR, as depicted in the table. Note
that the resulting value for TQR and LIC must be relatively prime, but for these examples
we can leave this relationship at present.

The general description for TQR, as shown above, can be rearranged to give the fol-
lowing relationship:

NIC
Nrows

=
TQR

2m + 1
.

This result is rounded down to the nearest integer. There are three possibilities:

� If TQR
2m+1 > 1 then a sparse linear array is needed.

� If TQR
2m+1 = 1 then a linear array is needed.

� If TQR
2m+1 < 1 then a rectangular array is needed.

Depending on the dimensions of the resulting architecture, the designer may decide to
opt for a sparse rectangular architecture.

Note that the maximum throughput that the full triangular array can meet is limited
to 25 MSamples/s due to the four-cycle latency within the QR cell recursive path for the

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

2,10

1,10

1,9

1,8

2,9

3,10

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,97,8

2,3

2,5

2,4

2,63,5

3,4

6,101

2

3

4

5

6

7

1,3

1,2

1,5

1,4

1,7

1,6

2,7

2,83,7

3,6

3,9

3,8

4,6

4,8

4,7

4,10

4,9

7,9

7,10

4,5

2,9

θ

x′

x

θ′

Mirrored cell
C=I, F=M
Mode MC

1,3

θ

x′

x

θ′

Mirrored input cell
C=E, F=M
Mode MIC

1,9

θ

x′

x

Input cell
C=E, F=U
Mode IC

4,5

xθ

x′

Unmirrored cell
C=I, F=U
Mode UC

5,5

6,6

7,7

1,1

2,2

3,3

4,4

θ′ θ′

Figure . Types of cells in processor array

specific implementation listed in Lightbody et al. The first rectangular array solution is
meeting the same throughput performance as the full QR array using only 408 ICs and
12 BCs, instead of the full array which requires 1530 ICs and 45 BCs.

11.7.2 Parameterizable Control

A key aspect of the design of the various architectures is the determination of the control
data needed to drive the multiplexers in these structures. Due to the various mappings
that have been applied, it is more relevant of think of the IC operation as having four
different modes of operation: input, mirrored input, unmirrored cell and mirrored cell
(Figure 11.29). The mirrored ICs are the result of the fold used to derive the rectangular
processor array from the QR array and simply reflect a different dataflow. The cell orien-
tation is governed by the multiplexers and control, and is therefore an issue concerning
control signal generation.

The four modes of operation can be controlled using two control signals, C, which
determines whether the x input is from the array (I) or from external data (E), and F,
which distinguishes between a folded (M) and an unfolded operation (U). The latter
determines the source direction of the inputs. The outputs are then from the opposite
side of the cell. A mechanism for determining the control of each architecture is given
next.

11.7.3 Linear Architecture

The control signals for the linear architecture were derived directly from its data sched-
ule. The modes of operation of the cells were determined for each cycle of the sched-
ule, as shown in Table 11.5. Figure 11.30 shows the QR cells with the applied control
and multiplexers, and the control signals for a full QR operation for this example are
given in Table 11.6. The control and timing of the architectures for the other vari-
ants become more complex – in particular, the effect that latency has on the control

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Table . Modes of operation of the QR cells for the linear array

Cycle BC IC IC IC IC IC IC

1 IC UC UC UC UC UC MIC
2 UC IC UC UC UC MIC UM
3 UC UC IC UC MIC UC MIC
4 UC UC UC IC UM MIC UM
5 UC UC UC UC IC UM MIC
6 UC UC UC UC UM IC UM
7 UC UC UC UC UM UM IC

E I

XExt

XL

θ

BC

E I

δExt

C

(a) Boundary cell

E I

XExt

XL

Xout

UM

θL

XR

F

θR

θout

I C

C

(b) Internal cell

F

UM

Figure . QR cells for the linear architecture

Table . Linear array control for the x-inputs and for mirrored/not mirrored cells

Cyc. C C C C C C C F F F F F F

1 E I I I I I E U U U U U M
2 I E I I I E I U U U U M U
3 I I E I E I I U U U M U M
4 I I I E I I I U U U U M U
5 I I I I E I I U U U U U M
6 I I I I I E I U U U U U U
7 I I I I I I E U U U U U U
8 E I I I I I E U U U U U M
9 I E I I I E I U U U U M U

10 I I E I E I I U U U M U M
11 I I I E I I I U U U U M U
12 I I I I E I I U U U U U M
13 I I I I I E I U U U U U U

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

2,10

1,10

1,9

1,8

2,9

3,10

2,7

2,83,7

3,6

3,9

3,8

4,6

4,5

4,8

4,7

4,10

4,9

5,7

5,6

5,9

5,8

5,10

6,8

6,7

6,97,8

1,3

1,2

1,5

1,4

1,7

1,6

2,3

2,5

2,4

2,63,5

3,4

6,107,9

7,105,5

6,6

7,7

1,1

2,2

3,3

4,4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16 17 18 19

Schedule
lines

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

7,10

6,10

5,10

1,1

2,2

1,2

6,6

7,7

3,6

4,6

4,7

5,7

5,6

5,8

6,8

6,7

6,9

7,8

1,10

3,7

4,8

5,9

2,10

1,9

1,8

2,9

3,10

2,7

2,8

3,9

3,8

4,10

4,9

5,10

1,7

7,9

6,10

1,3

1,2

1,4

2,3

2,5

2,4

3,5

3,4

1,5

2,6

1,7

1,64,5

4,6

3,6

2,75,6 7,10

2,2

3,3

4,4

5,5

i,ji,j mirroredunmirrored

(b) Schedule

(a) processor array

θ1,1
3 cycles

X1,2
1cycle

2
delays

 x

θ

unused

End cell

Figure . Sparse linear array schedule

sequences. In the sparse variants, extra delays need to be placed within the cells to orga-
nize the schedule, and in the rectangular variants, the cells need to be able to take x and
𝜃 inputs from the cells above and below as well as from adjacent cells. Each of these
variants shall be looked at in turn.

11.7.4 Sparse Linear Architecture

Figure 11.31(a) shows two columns of operations being assigned onto each IC. From the
partial schedule shown in Figure 11.31(b), it can be seen that the transition of a value
from left to right within the array requires a number of delays. The transfer of 𝜃1 from
BC(1, 1), to the adjacent IC(1, 2) takes three cycles. However, the transfer of X12 from
the IC to the BC only takes one cycle.

The example in Figure 11.32 shows the partitioning of three columns of ICs. Schedul-
ing them onto a single processor requires their sequential order to be maintained. The

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Example: NIC = 3

Schedule:

21 3 2′1′ 3′

t+6t+5t+4t+3t+2t+1

4
2

Cycle:

2′

21

0′ 1′

0

3′

3

0′′ 2′′1′′ 3′′

Schedule
lines

Projection onto 1

internal cellIC

NIC = 3

Figure . Example partitioning of three columns onto one processor. (Source: Lightbody 2003.
Reproduced with permission of IEEE.)

IC operations have been numbered 1, 2, 3 for the first row, and 1′, 2′, 3′ for the sec-
ond row. The outputs generated from operation 2 are required for operations 1′ and 3′.
Because all the operations are being performed on the same processor, delays are needed
to hold these values until they are required by operations 1′ and 3′. Operation 3 is per-
formed before operation 1′, and operations 3, 1′ and 2′ are performed before operation
3′, which relates to 2 and 4 clock cycle delays, respectively. This has been generically
defined according to the number of columns of operations within the processor array
assigned to each IC, NIC, as shown in Figure 11.33.

Two output values, x and 𝜃, are transferred from operation c + 1 to c and c + 2. The
value that is fed to a specific operation depends on whether the cells perform the folded
or unfolded modes of operation as summarized in Table 11.5. If the data is transferred

Figure . Generic partitioning of NIC columns onto one processor

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Table . Required delays for sparse linear array (U, not mirrored; M, mirrored)

Data transfer
Direction in terms
of QR operation

Dataflow
direction Delays Label

U → U (i, j) → (i, j + 1), 𝜃 → NIC + 1 D1
(i, j) → (i + 1, j), x ← NIC − 1 D2

M → M (i, j) → (i + 1, j), 𝜃 ← NIC − 1 D2
(i, j) → (i, j + 1), x → NIC + 1 D1

U → M(end cell) (i, j) → (i, j + 1), 𝜃 ↓ NIC D3
M → U(end cell) (i, j) → (i + 1, j), x ↓ NIC D3

between the same type of cell (i.e. U → U , or M → M) then the delay will be either
NIC − 1 or NIC + 1, according toTable 11.7. However, if the data transfer is between dif-
ferent types of cell (i.e. U → M, or M → U, as in the case of the end processor), then the
number of delays will be NIC. This is summarized in Table 11.7.

These delays are then used within the sparse linear architecture to keep the desired
schedule as given in Figure 11.34. The three levels of delays are denoted by the square
blocks labeled D1, D2 and D3. These delays can be redistributed to form a more efficient
QR cell architectures as shown in Figure 11.35. The extra L and R control signals indicate
the direction source of the inputs, with E and I control values determining whether the
inputs come from an adjacent cell or from the same cell. EC refers to the end IC that
differs slightly in that there are two modes of operation when the cell needs to accept
inputs from its output. The control sequences for this example are given in Figure 11.36.

From Figure 11.36, it can be seen that EC is the same as R and is the inverse of L. In
addition, the states alternate between E and I with every cycle, therefore, one control

Figure . Sparse linear array cells

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Figure . Redistributed delays for sparse linear array cells

sequence could be used to determine the control of the internal inputs. This control
value has been labeled D. The control signals shall be categorized as external input con-
trol, Ci, fold control, Fi, array control, Li and internal input control, Di The subscripts
are coordinates representing the cells to which the control signals are being fed.

One of the key issues with the sparse linear array is the effect of the latencies in the
QR cells on the schedule (which previously assumed a one-cycle delay). With the lin-
ear architecture, the schedule was scaled by the latency. However, with the sparse linear
array, there was a concern that the delays NIC − 1, NIC, NIC + 1 would also need to be

Cycle External

Input

1 X1(1) E I I I

II I I

II I I

II I I
II I I

II I I

EI I I

EI I E

I I I E

I I I E

I I I E

I I E I
I I E I

I I E I

U U M

U U M

U U M

U U M

U U M

U M U

U U U
U U U
U U U
U U U
U U U

U U U
U U U

U U U

E I E

E I E

E I E

E I E

E I E

E I E

E I E

I E I

I E I

I E I

I E I

I E I

I E I

I E I

C1 C2 C3 C4 F2 F3 F4 L R EC

X3(1), X8(0)

X2(1)

2

3

4

5

6

7

8

9

10

11

12

13

14

Fold ControlExternal Input Control Internal Input

Control

X6(0)

X7(0)

X9(0)

X10(0)

X4(1)

X5(1)

Figure . Control sequence for sparse linear array

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Example: NIC =3

Schedule:

21 3 2′1′ 3′

t t+8 t+16 t+24 t+32 t+40

NIC = 3

32
16

Cycle:

Latency = 8

2′

21

0′ 1′

0

3′

3

0′′ 2′′1′′ 3′′

Schedule
lines

Projection onto 1

internal cellIC

Figure . Possible effect of latency on sparse linear array schedule

scaled in order to keep the structure of the original schedule, which would cause inef-
ficiency. This is depicted in Figure 11.37 for a latency of 8. This is not the case, as the
delays NIC − 1, NIC, NIC + 1 can be applied using the existing latency within the QR
cells. The minimum allowed number of clock cycles between successive operations is
the latency. By setting NIC − 1 to this minimum value, and then setting NIC to be one
clock cycle more and NIC + 1 to be two clock cycles more, a valid and efficient schedule
can be achieved. This is depicted in Figure 11.38.

In the example given in Figure 11.39, the latency of the IC is 3, so this gives the mini-
mum value for NIC as 4. NIC + 1 is therefore 5 and NIC − 1 is 3 clock cycles. The shaded
cells in Figure 11.39 show one complete QR update with interconnection included. The
rest of the QR operations are shown but with limited detail to aid clarity. Since it is
most probable that the latency of the IC will exceed the number of columns assigned to
each processor, it figures that the delays within the linear sparse array will depend on
LIC, i.e. the NIC − 1 delay will not be needed and the schedule realignment will be per-
formed by the single- and double-cycle delays shown in Figure 11.35. The highlighted
cells represent a full QR update, while the other numbered cells represent interleaved
QR operations. The faded gray BCs with no numbers represent unused positions within
the schedule.

11.7.5 Rectangular Architecture

The rectangular architecture consists of multiple linear array architectures that are con-
catenated. Therefore, the QR cells need to be configured so that they can accept inputs

Schedule:

2 1′ 3′

… t+8 … t+16 … t+18

NIC = 3

10
8

Cycle:

Latency = 8

… … …

Figure . Merging the delays into the latency
of the QR cells

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Figure . Effect of latency on schedule for the sparse
linear array (NIC = 3)

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Figure . QR cells for the rectangular array

from the above linear array. In addition, the top linear array needs to be able to accept
values from the bottom linear array. The QR cells are depicted in Figure 11.40. The con-
trol signals, E and I, decide on whether the X inputs are external (i.e. system inputs)
or internal. The control value, T , refers to inputs from the above array and A refers to
inputs from adjacent cells. When used as subscripts, TR and TL refer to values coming
from the left and right cells of the array above. AR and AL refer to the values coming
from the right and left adjacent cells within the same linear array.

11.7.6 Sparse Rectangular Architecture

The QR cells for the sparse rectangular array need to be able to feed inputs back to
themselves, in addition to the variations already discussed with the linear and rectan-
gular architectures. The extra control circuitry is included in the QR diagrams shown
in Figure 11.41. The control and the delays required by the sparse arrays to realign the
schedule are brought together into LMR multiplexer cells (Figure 11.42) that include
delays needed take account of the retiming analysis demonstrated in this section.

It was discussed with the sparse linear array how certain transfer in data values
required the insertion of specific delays to align the schedule. This also applies to the
rectangular array and the same rules can be used.

The starting point for determining the schedule for the sparse rectangular array is the
schedule for the sparse linear array. From this, the rows of operations are divided into
sections, each to be performed on a specific sparse linear array. The control, therefore,
is derived from the control for the linear sparse version. The next section deals with
parametric ways of generating the control for the various QR architectures. In addition
to the control shown so far, the next section analyzes how latency may be accounted for
within the control generation.

11.7.7 Generic QR Cells

The sparse rectangular array QR cells, shown in Figure 11.41, can be used for all of
the QR architecture variants, by altering the control signals and timing parameters.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

Figure . QR cells for the sparse rectangular array

U M

L M R
F
D

12 2

RML

E I

I EE I

M U F

LC

D

LC = 1 on the last
right-most column

12 2

RML

E I

I EE I

F

LC

D

L M R
F
D

Figure . LMR control circuitry for sparse arrays

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

However, in the sparse variants, there are added delays embedded within the LMR con-
trol cells. These can be removed for the full linear and rectangular array versions, by
allowing them to be programmable so that they may be set to zero for the non-sparse
versions. The key to the flexibility in the parameterizable QR core design is the generic
generation of control signals. This is discussed in the following section.

. Generic Control

The previous section detailed the various architectures derived from the QR array. Some
detail was given of the control signals needed to operate the circuits. This section looks
at generic techniques for generating the control signals that may be applied to all the QR
architecture variants. It is suggested that a software interface is used to calculate each
control sequence as a bit-vector seed (of length TQR) that may be fed through a linear
feedback register which will allow this value to be cyclically output bit by bit to the QR
cells.

The first stage in developing the control for the QR array is to look at the generic
processor array which gives the control needed for the linear array. From this, the control
signals may be folded and manipulated into the required sequence for the sparse linear
arrays. The control for the rectangular versions may be generated quite simply from the
control for the linear architectures.

11.8.1 Generic Input Control for Linear and Sparse Linear Arrays

A new external x-input is fed into a cell of the linear array on each clock cycle, start-
ing from the leftmost cell, reaching the leftmost cell and then folding back until all the
2m + p + 1 inputs are fed into the array for that specific QR update. This is highlighted
for one set of QR inputs in Figure 11.43. The next set of inputs follow the same pattern
but start after TQR cycles. The result is a segment of control signals that repeat every
TQR cycles (which is 7 for the linear array example and 14 for the sparse linear array

CycleInput InputLinear array Sparse linear array

1 E

E

E

E

E

E

E

E

E

E

I I I I I

I I

I

E

II

I I

I I I

I I I I

I I I

I I I I

I I

I I

I I I

I I

I I

I I

II

I

I

I

I

I

I

I

I

I

I

I

I I I

I

I

I

II

I

I

I

I I I

I

I

I

I

I

I I I

I I E

E

E

E

E

E

I I I

I

I

I

I

E

E

E

E

E

E

E

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

E

E

E

E

E

E

2

3

4

5

6

7

8

9

10

11

12

13

14

C1 C2 C3 C4 C1 C2 C3 C4C5 C6 C7

X1(1), X8(0)

X3(1), X8(0)

X4(1)

X5(1)

X1(1)

X8(1), X1(2)

X9(1), X2(2)

X2(1), X9(0)

X3(1), X10(0)

X4(1)

X5(1)

X6(1)

X7(1)

X10(1), X3(2)

X4(2)

X5(2)

X6(2)

X7(2)

X6(0)

X2(1)

X7(0)

X9(0)

X10(0)

I

I

I

I

I

I

I

I

I

I I

I

Figure . Control for the external inputs for the linear QR arrays

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

m + p + 1

 p – m

m2m + 1

2m + 1

2m + 1

If p is more than m:

2m + 1
m + p + 1

m

If p is less than m:

m + p + 1

m

If p = m:

2m + 1

series one

series two

Figure . External inputs

example). The aim is to automatically generate vectors, containing TQR bits, which rep-
resent the repeating sections for each of the control signals, C1 to C7. The key point
is to determine when the next set of QR inputs starts in relation to the previous set.
This can be determined mathematically from the dimensions of the original QR array
and the resulting processor array from which the QR architectures are derived, i.e. a QR
array with 2m + 1 auxiliary inputs and p primary inputs leads to a processor array with
2m + 1 rows and m + p + 1 columns. This relationship is depicted by Figure 11.44. The
heavy lines indicate the series of inputs for one QR update, and relate to the highlighted
control for the external inputs for the linear array example in Figure 11.43.

Software code can be written to generate the control signals for the external inputs
for the linear and sparse linear array. The inputs are broken down into two series (see
Figure 11.44), one dealing with the inputs going from left to right, and the other dealing
with the inputs from right to left (the change in direction being caused by the fold).

The code generates the position of the control signals within the control vector for
each input into each processor. If the vector number is larger than the vector, then the
vector size is subtracted from this value, leaving the modulus as the position. However,
after initializing the operation of the QR array, it is necessary to delay this control signal
by an appropriate value.

11.8.2 Generic Input Control for Rectangular and Sparse Rectangular Arrays

The control from the rectangular versions is then derived from these control vectors
by dividing the signals vectors into parts relating to the partitions within the processor
array. For example, if the control seed vectors for the linear array are eight bits wide and
the rectangular array for the same system consists of two rows, then each control vector
seeds would be divided into two vectors each four bits wide, one for the first rectangular
array and the other for the second. The control seed for the sparse rectangular array is
derived in the same manner from the control of the sparse linear array with the same
value of NIC. The same code may be edited to include the dummy operations that may
be required for the sparse versions. Figure 11.45(a) shows an example sparse linear array
mapping with m = 4, p = 3 and NIC = 2. The control in Figure 11.45(b) can be divided

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Figure . Partitioning of control seed

into two sections for implementing a sparse rectangular array consisting of two rows of
the sparse linear array.

11.8.3 Effect of Latency on the Control Seeds

The next stage is to determine the effect that latency has on the control vectors. As
discussed in this section, the sparse array needs delay values D1, D2 and D3, to account
for assigning multiple columns, NIC, of operations to each IC processor. For a system
with a single cycle latency, D1 = NIC − 1, D2 = NIC and D3 = NIC + 1. However, in the
real system the processors have multiple latency. It is assumed that the latency of the
IC, LIC, will be greater than these delays, so the delays are added onto the latency such
that the appropriate delays become D1 = LIC, D2 = LIC + 1 and D3 = LIC + 2. For the
linear array the values D1, D2 and D3 are all set to LIC. Then the code may be used to
generate the control vectors. The only difference is when the position of the control value
exceeds the width of the vector. With the single latency version, this was accounted for
by subtracting the value TQR from the value (where the width of the vector seed is TQR).

When latency is included within the calculations, it is not sufficient to reduce the value
to within the bounds of the vector width. Alternatively, the position of the control value
within the vector is found by taking the modulus of TQR. An analysis of the effect of
latency on the control vectors is shown through an example linear array where m = 3,
p = 5 and TQR = 2m + 1 = 7.

One point to highlight is the fact that there may be several cycles of the control vector
before the required input is present. For example, the vector in the above example for C4
is [I I E I I I I], but the first required input is at time 10, not 3. Therefore it is necessary
to delay the start of this control signal by 7 cycles. The technique relies on the use of
initialization control signals to start the cycling of the more complicated control vectors
for the processors. However, the method discussed offers a parametric way of dealing
with control and allows the majority of the control to be localized. In addition, the same

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

2m+1=45 p=4

2m+1=45

1 boundary cell, m+p=26 internal cells,

2m+1=45

Triangular QR array
Processor array

Figure . Example QR architecture derivation, m = 22, p = 4

principles used to develop the control signals for the timing of the external inputs may
be applied for the rest of the control signals, i.e. the fold, internal input, and row control.

. Beamformer Design Example

For a typical beamforming application in radar, the values of m would range from 20
to over 100. The number of primary inputs, p, would typically be from 1 to 5 for the
same application. An example specification is given in Figure 11.46. One approach is to
use the QR array. Assuming the fastest possible clock rate, fCLK, the fundamental loop
will dictate the performance and result in a design with 25% utilization. Thus the major
challenge is now to select the best architecture, mostly closely matching the throughput
rate with the best use of hardware. For the example here, a desired input sample rate of
15 MSPS with a maximum possible clock rate of 100 MHz is assumed.

The value for TQR can be calculated using the desired sample rate, SQR, and the max-
imum clock rate, fCLK:

TQR =
fCLK
SQR

= 100 × 106

15 × 106 = 6.67.

This value is the maximum number of cycles allowed between the start of successive
QR updates, therefore, it needs to be rounded down to the nearest integer. The ratio
Nrows∕NIC can be obtained by substituting for the known parameters into the relation-
ship below:

Nrows
NIC

= 2m + 1
TQR

= 45
6

= 7.5,

where 1 ≤ Nrows ≤ 2m + 1 (i.e. 45) and 1 ≤ NIC ≤ m + p (i.e. 26). Using these guidelines,
an efficient architecture can be derived by setting NIC = 2, and hence Nrows = 15. The
operations are distributed over 15 sparse linear architectures, each with 1 BC and 13
ICs, as shown in Figure 11.47.

Also note that the circuit critical path within the circuit must be considered to ensure
that the core can be clocked fast enough to support the desired QR operation. Here,
additional pipeline stages may be added to reduce the critical path and therefore improve
the clock rate. However, this has the effect of increasing the latencies and these must
then be included in the architecture analysis.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Performs 3
rows of the

processor array

…
…
…
…
…

…
…
…

1

2

3

4

13

14

15

13 internal cellsrows

Figure . Example architecture

Each row of processors is responsible for three rows of operations within the processor
array, therefore, TQR = 6, resulting in an input sample rate of 16.67 MSPS, which exceeds
the required performance. The details of some example architectures for the same QR
array are given in Table 11.8.

The value for TQR for the full QR array implementation is determined by the latency
in the recursive loop of the QR cells (consisting of a floating- point addition and a shift
subtract function). For the example shown, the QR array needs to wait four clock cycles
for the calculation of the value in the recursive loop, which therefore determines the
sample rate of the system. This example emphasizes the poor return of performance of
the full QR implementation at such a high cost of hardware. The same performance can
be achieved by using the first rectangular array example with only about one quarter the
number of processors.

Table . Selected architectures (clock speed = 100 MHz)

Number of processors
Data rate

Arch. Details BC IC total TQR MSPS

Full QR Processor for each QR
cell

45 1530 1575 4 25

Rectangular 1 Processor array assigned
onto 12 linear arrays,
each responsible for
4 rows

12 408 420 4 25

Rectangular 2 Processor array assigned
onto 3 linear arrays,
each responsible for
45∕3 = 15 rows

3 102 105 (2m + 1)∕3
(15)

6.67

Sparse
rectangular

3 columns of ICs to each
IC processor of
3 linear arrays

3 51 54 2(2m + 1)∕3
(30)

3.33

Linear 1 BC and 34 ICs 1 34 35 2m + 1
(45)

2.22

Sparse linear 2 columns of ICs
assigned to each IC
processor of a linear
array

1 17 18 2(2m + 1)
(90)

1.11

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Adaptive Beamformer Example 

. Summary

The goal of this chapter was to document each of the stages of development for an IP
core for adaptive beamforming. The main aspects covered were the design choices made
with regard to:
� the decision to use design-for-reuse strategies to develop an IP core;
� determination of the algorithm;
� determination of a suitable component to design as an IP core;
� specifying the generic parameters;
� algorithm to architecture development;
� scalable architectures;
� scalable scheduling of operations and control.

Each stage listed above was detailed for the adaptive beamforming example. Background
information was supplied regarding the RLS choice of algorithm decided upon for the
adaptive weight calculations. The key issue with the algorithm used is its computational
complexity. Techniques and background research were summarized showing the deriva-
tion of the simplified QR-RLS algorithm suitable for implementation on a triangular sys-
tolic array. Even with such reduction in the complexity there may still be a need to map
the full QR array down onto a reduced architecture set.

This formed a key component of the chapter, giving a step-by-step overview of how
such a process can be achieved while maintaining a generic design. Consideration was
given to architecture scalability and the effects of this on operation scheduling. Further
detail was given of the effects of processor latency and retiming on the overall scheduling
problem, showing how such factors could be accounted for upfront. Finally, examples
were given on how control circuitry could be developed so as to scale with the architec-
ture, while maintaining performance criteria. It is envisaged that the principles covered
by this chapter should be expandable to other IP core developments.

Bibliography

Athanasiadis T, Lin K, Hussain Z 2005 Space-time OFDM with adaptive beamforming for
wireless multimedia applications. In Proc. 3rd Int. Conf. on Information Technology and
Applications, pp. 381–386.

Baxter P, McWhirter J 2003 Blind signal separation of convolutive mixtures. In Proc. IEEE
Asilomar Conf. on Signals, Systems and Computers, pp. 124–128.

Choi S, Shim D 2000 A novel adaptive beamforming algorithm for a smart antenna system
in a CDMA mobile communication environment. IEEE Trans. on Vehicular Technology,
49(5), 1793–1806.

de Lathauwer L, de Moor B, Vandewalle J 2000 Fetal electrocardiogram extraction by blind
source subspace separation. IEEE Trans. on Biomedical Engineering, 47(5), 567–572.

Gentleman W, Kung H 1982 Matrix triangularization by systolic arrays. In Proc. SPIE, 298,
19–26.

Hamill R 1995 VLSI algorithms and architectures for DSP arithmetic computations. PhD
thesis, Queen’s University Belfast.

Haykin S 2002 Adaptive Filter Theory, 4th edn. Prentice Hall, Upper Saddle River, NJ.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Hudson J 1981 Adaptive Array Principles. IET, Stevenage.
Kung S 1988 VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ.
Lightbody G 1999 High performance VLSI architectures for recursive least squares

adaptive filtering. PhD thesis, Queen’s University Belfast.
Lightbody G, Woods R, Walke R 2003 Design of a parameterizable silicon intellectual

property core for QR-based RLS filtering. IEEE Trans. on VLSI Systems, 11(4), 659–678.
McCanny J, Ridge D, Hu Y, Hunter J 1997 Hierarchical VHDL libraries for DSP ASIC

design. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 675–678.
McWhirter J 1983 Recursive least-squares minimization using a systolic array. In Proc.

SPIE, 431, 105–109.
Northeastern University 2007 Variable precision floating point modules. http://www.coe

.neu.edu/Research/rcl/projects/floatingpoint/index.htmlprojects (accessed November 7,
2016).

Rader C 1992 MUSE –a systolic array for adaptive nulling with 64 degrees of freedom,
using Givens transfomations and wafer scale integration. In Proc. Int. Conf. on
Application Specific Array Processors, pp. 277–291.

Rader C 1996 VLSI systolic arrays for adaptive nulling. IEEE Signal Processing Magazine,
13(4), 29–49.

Shan T, Kailath T 1985 Adaptive beamforming for coherent signals and interference. IEEE
Trans. on Acoustics, Speech and Signal Processing, 33(3), 527–536.

Shepherd TJ, McWhirter JG 1993 Systolic adaptive beamforming. In Haykin S, Litva J,
Shepherd TJ (eds) Array Signal Processing, pp. 153–243. Springer, Berlin.

Tamer O, Ozkurt A 2007 Folded systolic array based MVDR beamformer. In Proc. Int.
Symp. on Signal Processing and its Applications, pp. 1–4.

Trainor D, Woods R, McCanny J 1997 Architectural synthesis of digital signal processing
algorithms using IRIS. J. of VLSI Signal Processing, 16(1), 41–55.

Walke R 1997 High sample rate Givens rotations for recursive least squares. PhD thesis,
University of Warwick.

Wiltgen T 2007 Adaptive beamforming using ICA for target identification in noisy
environments. Master’s thesis, Virginia Tech.

 10.1002/9781119079231.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch11 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.coe.neu.edu/Research/rcl/projects/floatingpoint/index.html#projects
http://www.coe.neu.edu/Research/rcl/projects/floatingpoint/index.html#projects

