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Single-molecule localization microscopy enables three-dimensional
fluorescence imaging at tens-of-nanometer resolution, but requires many

camera frames to reconstruct a super-resolved image. This limits the typical
throughput to tens of cells per day. While frame rates can now be increased
by over an order of magnitude, the large data volumes become limitingin
existing workflows. Here we present an integrated acquisition and analysis
platformleveraging microscopy-specific data compression, distributed
storage and distributed analysis to enable an acquisition and analysis
throughput of10,000 cells per day. The platform facilitates graphically
reconfigurable analyses to be automatically initiated from the microscope
during acquisition and remotely executed, and can even feed back and
queue new acquisition tasks on the microscope. We demonstrate the

utility of this framework by imaging hundreds of cells per well in multi-well
sample formats. Our platform, implemented within the PYthon-Microscopy
Environment (PYME), is easily configurable to control custom microscopes,

andincludes a plugin framework for user-defined extensions.

Super-resolution single-molecule localization microscopy (SMLM)
offers a roughly tenfold improvement in resolution over conven-
tional, diffraction-limited fluorescence microscopy, but it does so at
the expense of acquisition time, data volume and analysis overhead'.
For SMLM techniques such as (d)STORM/(F)PALM (stochastic optical
reconstruction microscopy/photoactivated localization microscopy),
asingle region of interest (ROI) a few tens of micrometers in diameter
usually requires a series 0f 10,000 to 100,000 cameraraw data frames.
These are typically acquired at 50 frames per second (FPS), meaning
that aday of diligent manualimaging yields only a few tens of fields of
view (FOVs) (Fig. 1a).

As aresult, the majority of SMLM applications giving rise to new
biologicalinsight have addressed questions that can be answered with
justahandful of super-resolved images, either because the structure
is obvious from few observations, or because alarge number of struc-
tures are observable in the FOV>°. A notable, and impressive, excep-
tion to typical sample sizes is the study by Boettinger et al. on gene
compaction®, whichmanually imaged over 2,000 eukaryotic cells and
would have required several months of data collection. Efforts to auto-
mate SMLM image acquisition”* have reduced the amount of time the
operator needs to spend in front of the microscope, but have not been
combined with large improvements in acquisition speed.
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Fig.1|High-throughput SMLM. a, Example timelines for SMLM acquisition of
36,000-frame ROIs performed at 50 FPS manually and automated at 800 FPS.
b, Schematic of automated multicolor 3D biplanar-astigmatism SMLM
microscope. Mot.S., motorized sample stage; OBJ, objective; DM1-3, dichroic

mirrors; QBF, quad-band filter; TL, tube lens; CL, cylindrical lens; L1-2, relay
lenses; BM, biplane module; BS, beamsplitter cube; Man. S., manual translation
stage; EF1-2, emission filters. ¢, Diagram of scalable data pipeline for real-time
localization and automated post-localization analysis.

By using sCMOS (scientific complementary metal oxide semicon-
ductor) cameras'® and high laser intensities it is possible to acquire
SMLM dataan order of magnitude faster"*than the typical 50 FPS, with-
out amajor loss in data quality. However, automating SMLM imaging
at these high frame rates generates data at arate of 800 MB s, posing
unique challenges for both datastorage and analysis. The analysis bur-
denisfurther compoundedby the need to account for sSCMOS-specific
noise characteristics (which are more complex than those of EMCCDs
(electron multiplying charge-coupled devices)™) to obtain high-quality
localization data. As a result, fast (>400 FPS) SMLM imaging has been
largely restricted to two dimensions and has entailed a number of
manual steps, in both image acquisition and analysis'>"*. To deliver a
truly high-throughput automated SMLM platform operating at sSCMOS
speeds represents atechnological challenge requiring advances across
microscope hardware, data handling and analysis routines.

Here we present an integrated high-throughput SMLM platform
operating at SCMOS speeds, transforming SMLM from an imaging
technique specialized for small sample sizes into a high-throughput
quantitative tool. We leverage our developments in data compression,
distributed storage and distributed analysis to automatically perform
real-time localization analysis, and additionally present aflexible archi-
tecture for distributed and automatic post-localization analysis and
feedback-based imaging workflows. Our multicolor three-dimensional
(3D) SMLM system is capable of imaging 10,000 mammalian cells a
day, or entire studies configured on multi-well plates. We achieved a
volumetric throughput of approximately 800,000 pm?* h™'in two colors

compared withapproximately 4,000 um? h™! (single-color) for earlier
automated 3D SMLM approaches®, based on 3D ROl sizes, number of
ROIsimaged and total acquisition time. The microscope control, data
storage and analysis pipeline integration is readily accessible to the
community throughthe open-source PYthon-Microscopy Environment
(PYME) (http://python-microscopy.org), which additionally features
advanced visualization'* and plugin extensibility, making it a viable
tool for complete and customized SMLM workflows.

Results

Imaging system

We built a microscope with hardware optimized for automated
high-speed single-molecule imaging. It features an sCMOS camera
capable of capturing a 2,048 x 256-pixel ROl at 800 Hz, high-power
lasers, motorized lateral and axial stages, and a focus stabilization sys-
tem. Custom spectral and focal splitting optics (Fig. 1b, Supplementary
Fig.1and Supplementary Note 1.1) allow us toimage two spectral chan-
nels, each at two different focal planes, simultaneously. By increasing
the offset between focal planes from a typical biplane configuration™®
to 750 nm and adding astigmatism" we can achieve high-quality 3D
localization of single molecules over an extended axial range of about
1.2 pm. This halves the number of axial steps which need to be taken
when performing 3D volumetricimaging, resultingina corresponding
improvementin speed. Using this setup, we can acquire multicolor 3D
super-resolved images in about 10 s, as shown with several examples
inFig. 2 (see also Supplementary Fig. 2).
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Fig.2|3D multicolor acquisition at 800-Hz framerate. a, (colored by label),

b, (colored by z position), Rapid two-color 3D SMLM of microtubules (a-tubulin
immunolabeled with CF568) and endoplasmic reticulum (Sec61f-GFP immuno-
labeled with AF647) in a COS-7 cell. ¢, (colored by label), d, (colored by z position),
Mitochondria (TOM20 immunolabeled with AF647) and nucleoids (dAsSDNA
immunolabeled with CF568ST) ina U-2 OS cell. e, Lamin A/C (immunolabeled

with CF568) and a LAD (Chr13:24405079-24709084, labeled with AF647 via FISH)
inanIMR-90 cell. f, All 27 TADs along chromosome 22 (FISH-labeled with CF568)
and aLAD (Chr5:115508197-115813276, FISH-labeled with AF647) in an IMR-90 cell.
All datasets were acquired at aframe rate of 800 Hz for 8,000 frames (a-d) or
24,000 frames (e,f). FISH, fluorescence in situ hybridization.

Scalable data handling—compression, streaming and
distributed storage
Imaging at the full frame rate of an sCMOS camera generates an enor-
mousamountofdata (800 MB s™) and sustained imaging at this datarate
isnontrivial. Previous high-speed SMLM efforts have saved data directly
to alocal solid-state drive (SSD)', but this limits acquisitions to a few
hoursbefore the SSDis full-even onthe largest SSDs currently available.
Once full, copying the data to slower storage (for example, hard disk
drives (HDDs)) can take substantially longer than the acquisitionitself.
Toaddress the datamovement and storage bottlenecksimposed by our
high data rate, we developed a compression algorithm optimized for
our microscope’s noise model, and distributed storage across a small
computer cluster (Figs. 1c and 3a and Supplementary Note 2).
Standard lossless compression algorithms such as zip offer amod-
est 2-3-fold reductionin file size when applied to SMLM raw data and
are typically not fast enough to allow real-time compression at
800 MB s These algorithms use entropy coding (for example, Huff-
man coding) which looks at the histogram of the data and uses short
codes for frequently encountered values and longer codes for less
frequently encountered values, combined with algorithms which
encode repeated patterns. The poor compression ratios can be
explained by two factors: SMLM raw data contain little repetitive struc-
ture for compression algorithms to exploit, in part due to Poisson noise,
and the data as they come from the camera are very conservatively
quantized with more unique values than necessary to accurately rep-
resent the data; datafrom sCMOS cameras are typically quantized such
that one photoelectron corresponds to ~2.5 analog-to-digital units
(ADUs). Thisis reasonable for low signals (1-2 photoelectrons) where
Poisson noise (which scales as o(N) = V/N) is approximately +1 photo-
electron (or approximately +2.5 ADUs). However, a signal of 100 pho-
toelectrons will have an error of +10 photoelectrons (approximately

+25 ADUs), giving rise to a band of 50 unique values which are not
meaningfully distinct but will nonetheless make the signal harder to
compress. The solutionis simple: rather than using a constant quanti-
zation interval as provided by the camera, we re-quantize our data
before compression such that the interval between quantal unitsisa
constant fraction, Q, of the expected Poisson noise rather than a con-
stant number of ADUs (depicted in Fig. 3b).

We systematically varied Q for simulated SMLM raw data (Fig. 3c
and Supplementary Note 3) and analyzed the resulting relative locali-
zationerror for obtained localizations (Fig. 3d) and the achieved data
compression ratio (Fig. 3e). At Q = g/2, we achieve 6.9-fold compression
at arelative localization error of only 4%. This >5 compression ratio
holds across alarge range of emitter densities (Supplementary Fig. 3).

While this re-quantization is technically lossy, it ensures that
any losses are within the original data noise envelope (Fig. 3b) and
also visually preserves the integrity of blinking emitters, as seen in
Fig.3c.Combined with the low relative localization error, we therefore
deemed this to be an acceptable compromise and used Q = 6/2 in our
further experiments.

Noting that the repeated pattern encoding portion of compression
algorithms is not very helpful for our data, we skip this step entirely,
greatly improving our speed (Supplementary Fig. 4). The resulting
compression is performed in real-time on the microscope computer
and spooled over the network to asmall computer cluster where each
node is running PYME server processes (Fig. 1c and Supplementary
Fig. 6). By sharding the data across multiple nodes onaper-frame basis,
we further decrease the amount of per-disk bandwidth, and can use
HDDs instead of SSDs for a low-cost, high-volume storage solution.
This combination of noise model-aware compression and distributed
storage thereby enables us to stream continuously at the full camera
framerate and alsolays the foundation for analyzing the datain parallel.
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Fig.3|Data volume solutions. a, Sankey diagram showing approximate data
bandwidths as they are transferred from the camera to instrument computer
RAM before being sharded, compressed (lossy), sent across alocal network and
saved locally on HDDs on multiple computer nodes. b, Our lossy compression
algorithmre-scales the ADUs such that the corresponding number of
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photoelectrons represented by each unique value scales with a set fraction of the
shot noise. ¢, A simulated localization ROl shown at various quantization levels.
d, Therelative localization error as a function of quantization for simulated
localizations with an sCMOS noise model. e, The compression ratio achieved at
the same quantizationlevelsasind.

Real-time localization

Waiting for hours or days to do quality control or analysis on localiza-
tionresults largely defeats the purpose ofimaging at high bandwidths.
Although some simplified methods (such as centroiding) have been
shown to yield high localization speed, these entail serious compro-
misesin precision and accuracy'®. Obtaining optimallocalization pre-
cision with sCMOS cameras requires fitting using an sCMOS-specific
noise model and an algorithm such as weighted least squares™ or
maximum likelihood estimation™.

We optimized our previous graphical processing unit (GPU)-based
maximum likelihood estimation code' to achieve about 15-fold
improvement in speed by using one thread per localization ROI pixel
toevaluate the modelfunction, withasingle thread performing param-
eter updates on each iteration, rather than a single thread doing the
entire fit (Supplementary Fig. 7). We also accelerated sliding-window
background estimation and candidate molecule detection by moving
them from the CPU to the GPU, parallelized using one thread per x, y, (¢)
pixel (Supplementary Note 4). Our now entirely GPU-accelerated locali-
zation pipeline performs about tenfold faster than our CPU-only pipe-
line on a single computer (Supplementary Table 1). However, even
parallelized over multiple workers, a single computer was too slow to
keep up with ourimaging.

Leveraging our distributed data storage, we developed a
task-distribution architecture that enables a multiprocessing ‘cluster
of one’onasingle computer as well as multi-computer clusters. Distrib-
uting tasks with a preference to assign jobs to computers where the data
are saved allows us to minimize network overhead within the cluster.
Critically, the performance of our architecture scales approximately
linearly, allowing tuning of localization speed simply by adding more

computers. Our production cluster consists of ten computers made
from affordable consumer-grade componentsin2016, each equipped
witha GPUtorunouraccelerated algorithm (Supplementary Table 2).
This additional factor of ~10 improvement in performance allows us to
localize inreal-time (Supplementary Table 1).

Localizationtasks are automatically posted to the cluster oncom-
pletion of recording or continually posted live during series acquisi-
tion for live visualization. A signal-to-noise-based candidate molecule
detection threshold enables localization to be performed automati-
cally across a wide range of conditions without user attention.

3D multicolor SMLM at 10,000 cells a day

The combination of our hardware and analysis advances enables us
toimage not only individual FOVs at high speed as shown in Fig. 2, but
also10,000 FOVsinasingle day. To test this imaging mode, we plated
U-2 OS cells on a coverslip and immunolabeled their nuclear lamini
(anti-lamin bl, AF647) and nucleoli (anti-NPM1, CF568). Automated
imaging begins by first scanning the coverslip in widefield mode and
stitching together theimages to create a large mosaic image. Thisimage
isthensegmented and processed to generate alist of suitable FOVs for
SMLM imaging. The overview mosaic shownin Fig.4awasacquiredin
52 min, after which automated super-resolutionimaging of the 11,160
detected nuclei commenced. Each detected nucleus was imaged in
9.44 s, with the objective piezo actuator stepping over an axial range
of 4.4 um for an axial localization range of approximately 5 um. The
total imaging time for all 11,160 cells targeted was 1.2 d. Of the target
FOVs, 99.8% were successfully acquired (Methods), resulting in atotal of
3,589,123,170fitted emitters from 75,431,069 raw frames (504,879,862
high-precision localizations after combining molecules present in
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Cell no. 11,160

Fig.4|3D multicolor SMLM imaging 0f10,000 cells aday. a, Overview mosaic
image of U-2 OS cells on a coverslip, from which 11,160 FOVs were automatically
detected forimaging. A magnified view of the dashed box in the overview image
isshowninthelargeinset, with a further magnification shown inside the solid
box. Nuclei that were queued and imaged are highlighted in yellow and their
queue number is displayed in the smaller inset. Each detected nucleus was
automatically imaged, averaging 9.44 s per FOV, or 10,000 cells per 26.2 h.

b, Thefirstand last nucleiimaged. PCA on the SMLM datasets was used to select
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more than one of the biplane views and filtering; Supplementary
Fig.8). Thefirstand last nucleiimaged are shownin Fig.4b. While they
look relatively similar to each other, we also observed oddly shaped
nucleiand nucleithat one could reasonably think were representative
ifonlyimaging a handful of cells (Supplementary Video 1). Todemon-
strate the latter, we performed a principal component analysis (PCA)
onacollection of features extracted from the SMLM localization data
(Supplementary Table 3 and Supplementary Fig. 9). We show the closest
cellto the PCA-space mean position (Fig. 4c), and cellslocated 2 median
absolute deviations (MADs) away along both of the principal axes
(Fig.4d-g).Figure 4h shows the ensemble median-normalized NPM1-
NPMI1 pairwise distances of these selected cells, which vary substantially
outside theinterquartile range depicted by the gray-shaded area.

Flexible analysis and integrated workflows
Analyzing thousands of SMLM localization datasets has to date been
nontrivial, and often relied on patching together multiple existing
packages. The analysis backbone of PYME, ‘recipes’,canbe graphically
reconfigured, can handle hybrid pointcloud/image-data workflows,
and can be quickly built and tested in PYME’s interactive viewers'*.
Recipes can be efficiently batched on asingle computer, or runonthe
cluster using the same analysis distribution we employ for localization
tasks. They can additionally be chained together, allowing automatic
localization and post-localization analyses workflows.

Microscope control solutions for custom systems are often
bespoke, with their control flows hard-coded, making maintenance and

code sharing difficult. Many automated control flows consist of image
analysis steps, particularly for more intelligent automation, which can
quickly compound the amount of special-casing ininstrument control
codeif these become at all sample-specific. PYMEAcquire, used here,
allows intricate and easily reconfigurable workflows by using a priority
queue for acquisition tasks. Acquisition protocols can be quickly writ-
tenas lists of tasks to be executed on specified frames. Analysis chains
canthenbe built graphically and linked to specific protocols, trigger-
ing (remote) execution on the PYME cluster at the beginning or end
of a series acquisition as set by the user (Supplementary Video 2 and
Supplementary Note 5). Finally, server endpoints in PYMEAcquire
allow remote queuing of acquisition tasks, and can be leveraged in
recipe modules to add acquisition tasks to the priority queue based
on analyses of previously acquired series. This establishes a flexible
architecture, fully integrating the instrument with distributed analysis.

High-content screening with localization microscopy

Conducting entire multi-condition studies by SMLM has until now been
impractical. Even in automated workflows, low frame rates coupled
with acidifying glucose-oxidase/-catalase STORM buffers have limited
the total number of ROIs imaged per plate to less than 100 (ref. ). We
leveraged our platformto study the distribution and size of Cajal bodies
(CBs), thesite of small noncoding RNA transcription and processing®-*,
in cells undergoing osmotic shock. Cellular stresses disrupt gene
transcription, and as many nuclear bodies are hypothesized to be
nucleated by transcription of specific genes, we expect the global
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disruption of transcription and RNA synthesis induced by osmotic
shock to produce profound effects on CB integrity*. Because there is
alarge cell-to-cell variability in both the number and size of CBs, this
work requires a substantial number of cellular images per condition
to achieve a statistically robust comparison between osmotic shock
conditions and greatly benefits from a high-throughput approach.

Weimaged Hela cellsimmunolabeled for coilin, a CB marker, with
Cy3b, and lamin bl with CF660C, in an eight-well slide format. These
cells were shocked for 1 h before fixation using media supplemented
with different concentrations of KClin each well. Atile overviewin the
lamin channel was queued for each well, and we chained the overview
protocoltoanucleus detection recipe to queue 45,000-frame 800-Hz
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SMLM series at a maximum of 75 ROIs per well in a path-optimized
manner and at a higher priority than the tile overview tasks such that
large movements across the slide were minimized. We observed a
relatively consistent presence of CBs per cellin the control condition
(median, mean, s.d.=1,1.4, 1.1, N=71; see Supplementary Fig. 10 fora
histogram of number of CBs per ROI). An ROl automatically selected
asrepresentative of eachwellby PCAis showninFig. 5a (Methods). The
CBswereindeed profoundly affected, and were depleted in wells that
had been subjected to substantial osmotic shock, with no CBs detect-
able at concentrations higher than 75 mM KCI. Additionally, the CBs
decreased in size with increasing osmolarity (Fig. 5¢).

Toseeifthis wasanidiosyncrasy of the cell type or amore universal
phenomenon, we repeated the experiment in U-2 OS cells, imaging a
maximum of 100 ROIs in each well for 33,000 frames each (Fig. 5b).
Notably, the CBsinthe U-2 OS control cells are smaller, and their num-
ber more varied (median, mean, s.d. =0, 0.8, 1.4, N = 94; see also histo-
gramsinSupplementary Fig.10), making them generally more difficult
to study at low throughputs. Further, while the osmotic shock still
affects both CB presence and size, these effects are more subtle than
inthe HeLa cells (Fig. 5¢).

While the dissipation of CBs under osmotic shock could be rigor-
ously monitored with our system, the function of most proteins in
membraneless organelles is not limited to these structures, and we
noticed an opportunity to leverage our statistical power to measure
the redistribution of coilin. For each ROI, we fit the lamin localizations
toasphericalharmonicshell to define a nuclear coordinate system for
the coilin localizations. We see coilin enrichment (relative to uniform
distributionsimulated inthe shell) at the nuclear peripheryinstressed
HeLaand U-2 OS cells (Fig. 5d-f).

Discussion

We have shown thatitis possible to carry out large SMLM studies with-
outsacrificing sample population or experimental conditions. Thisis
asubstantial departure from the current state-of-the-art. The software
advances this required are not only enabling of higher-throughput
studies, but should additionally reduce frustrations common with
smaller experiments or even manual exploration. The modular and
plugin-friendly nature of PYME and its interactive data viewers make
itfeasible for users to easily explore and extract user-defined features
from these large datasets. Similarly, PYME is well suited for instrument
developersto easily extend their acquisition or analysis capabilitiesin
acomplete environment.

Automated SMLM at high bandwidths enables users to acquire
vast datasets at raw frame rates faster than they can visually assess,
which warrants consideration of tools to assist them. For example,
localization quality control such as Wasserstein-induced Flux* and
ROl error-mapping methods®* could be helpful in determining if
imaging and localization analysis were performed adequately. PYME
recipes can produce HTML report outputs. Plugins to calculate such
measures of quality control could facilitate automatic checks for each
series or acquisition run, which can be formatted as HTML reports
withinrecipes.

In addition to monitoring image quality, our approach could be
improved by further optimizing automated acquisition, for example,
regulating emitter density by servo-controlled laser intensities, varying
the number of frames acquired at agiven ROl depending on its actual
sampling requirements or correcting sample-induced aberrations
at each ROI. While impressive progress has been made in the area of
intelligent SMLM automation?, there are many unmet challenges to
applythese advances to 3D and/or multicolorimaging, and especially
for high-speed imaging at camera frame rates of 800 Hz.

We expect hardware advances such as higher-bandwidth cam-
eras with reduced amplification noise and larger FOVs to continue to
improve SMLM image quality and capabilities. We additionally note that
per-pixel quantization using noise envelope scaling as demonstrated

in this work could be performed on-board cameras, and could aid in
further bandwidth optimizations. Integrating dense-emitter localiza-
tion algorithms such as 3D-DAOSTORM?® or DECODE® could reduce
the number of raw frames required for a reconstruction. For struc-
tures that are highly stereotypical and easily inferred from sparse
or low-resolution images, structure-prediction methods such as
ANNA-PALM (artificial neural network accelerated PALM)*° could also
beincorporated within our framework to furtherimprove throughput.

With the advances contained in this work, we expect SMLM to
become amuchmoreroutinely and broadly applicable tool. The exam-
pleapplicationsin this work are only asmall sampling of the possibili-
ties that automated high-throughput SMLM offers, but demonstrate
the technicalfeasibility both of obtaining nano-scaleresolutionin every
cell of an extended specimen and of combining this with the systematic
investigation of multiple conditions. Exciting potential applications
of our work include looking at the cell-type-dependent distribution
of protein clustering within tissue sections, the detection of statisti-
cally rare but functionally important configurations (for example,
transient contacts between gene regions) and the use of SMLM as a
screening technique to assess structural responses to a wide range of
interventions. These types of experiments willimprove understanding
of disease in ways that were previously not possible.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01702-1.
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Methods

High-throughput SMLM microscope

The optical setup, shown in Fig. 1b, is detailed in Supplementary
Notel.1and SupplementaryFig.1,and discussed here only briefly. The
microscope hardware differs from conventional SMLM microscopes
in that an sCMOS camera and two high-power (2 W) excitation lasers
(560 nmand 642 nm) are used. A cylindricallens to provide astigmatism
is combined with a biplane module to extend the axial localization
range. The laser lines are coupled into a multimode fiber, which is
vibrated to average out speckle and achieve a uniform intensity pro-
file at the fiber exit which is imaged into the sample. A fast objective
piezo actuator enables axial scanning, and a motorized sample stage
accommodates lateral sample movement on the order of 100 mm.
The microscope additionally has a custom-built focus lock, where a
near-infrared laser is reflected off the coverslip at an angle such that
thereflected beam position can be monitored by an additional camera.
This position indicates the distance between the objective and the
coverslip, and can be servo-controlled.

Theinstrument was originally controlled with a custom LabView
program (Phase 1), which was used for imaging in Figs. 2 and 4, and
would save DCIMG-formatted image files to aRAM disk where a PYME
script would open them and spool them to the computer cluster, addi-
tionally launchinglocalization analysis. We then converted instrument
controlto PYMEAcquire for further integration of the system (Phase 2),
after which we no longer saved frames to disk on the instrument com-
puter as we could compress and spool them directly.

SMLMimaging
Alexa Fluor 647 (AF647) and CF660C are suitable for high-speed
SMLM"", CF660C being particularly robust. We additionally found
CF568tobe capable of fast switching, enabling high-speed multicolor
SMLM in standard STORM buffers using the glucose-oxidase/-catalase
oxygen scavenging system (‘glox’ buffer). Not allimaging formats are
easily sealed, and we find sulfite-based oxygen scavenging in aqueous
buffer® performs well at high speeds, and is compatible with Cy3B and
CF660C, again enabling sustained high-speed multicolor imaging.
The glox buffer used in this work consisted of 0.49 kU ml™ glucose
oxidase, 0.98 kU mlI™ glucose catalase, 0.14 M 2-mercaptoethanol,
2.5mM Tris at pH 8, 2.5 mM NaCl and 0.28 M glucose in milli-q water.
Theaqueous sulfite buffer used in this work consisted of 20 mM Na,SO,
and 0.14 M 2-mercaptoethanolin1 x PBS.

Sealed glox bufferimaging. Allsamplesin Figs. 2 and 4 wereimaged
inthe glox STORM buffer. These samples were mounted and imaged in
Bioptechs FCS2 flow chambers with the microaqueduct slide flipped
upside down such thatthe flow input/output tubes were sealed. Before
mounting the sample, the edges were scraped with ascalpel to remove
cells that would interfere with ideal sealing. We used 0.5-mm-thick
circular gaskets, overfilled the chamber with 500 pl of STORM buffer
andrinsed the coverslip in 200 pl of STORM buffer before mounting.
Oncethecoverslipwasinplace, it was flattened (and excess buffer was
removed) by pressing a wipe against it using a flat plastic dish.

AlISMLM imaging showninFigs.2to 4 was performed atacamera
frame rate of 800 Hz. The 560-nm and 642-nm laser intensities deliv-
ered to the samples were approximately 71kW cm™2and 51 kW cm™
for thelamin Bland NPM1samples, 41 kW cm™and 51 kW cm™for the
lamin A/C and lamin-associated chromatin domain (LAD) pool 2 sam-
ples, 61 kW cm™and 51 kW cmfor the a-tubulin and Sec61f samples,
38 kW cm™and 51 kW cm?for the double-stranded DNA (dsDNA) and
TOM20 samples, and 41 kW cm2and 61 kW cm™for the chromosome
22topologically associating chromatin domains (TADs) and LAD pool
1, respectively. The 405-nmactivation light was not used during SMLM
data acquisition of these samples.

The 3D images of the a-tubulin and Sec61p samples, and the
TOM20 and dsDNA samples, were acquired without ‘z-stepping’ during

recording. The remaining samplesin Figs. 2 and 4 wereimaged with two
orsix cycles of seveninterwoven ‘up then down’ z-stepsto obtain even
axial localization distribution over the thicker volumes.

Sulfite buffer imaging. The HeLa and U-2 OS samples in Fig. 5 were
imaged in anaqueous sulfite STORM buffer, which enables flexible sam-
ple formats such as small petri dishes, eight-well slides and multi-well
plates. For these samples, N, was additionally perfused into a stagetop
incubator chamber (OKO K-Frame) atarate of 0.2 1 min™. Stage leveling
was checked before imaging, and the offsets measured by the leveling
routine were stored to bootstrap automatically finding the coverslip
should the focuslock ever be lost.

All SMLM imaging with the sulfite buffer (the coilin and lamin
samples in Fig. 5) was performed at 783 Hz. The 560-nm and 642-nm
intensities delivered to the samples were approximately 49 kW cmand
53 kW cm Imaging began on each ROl only with 642-nm illumination,
turning on the 560-nm laser after a full z-stack cycle (18,000 frames
for the 45,000-frame HelLa series, and 11,000 frames for the 33,000
U-2 OS series). Additionally, <0.08 kW cm™ of 405-nm illumination
was applied nearer the end of each series. The U-2 OS series of 33,000
frames were acquired in about 44 s each.

Compression

Before spooling the data from the instrument computer RAM to the
computer cluster, we minimize the data volume viacompression. This
compressionincludesthree steps: offset subtraction, re-quantization
such that the quantization intervals scale with the square root of the
number of photons and then Huffman coding®. The re-quantization
step serves to decrease the number of discrete levels within the data,
dramatically increasing the efficiency of Huffman coding. This step at
eachjpixel canbe expressed as

n
d; = [(—] D; - o), @

where D is the intensity counts in a single frame, o is the camera off-
set map, d is the resulting quantized intensity bin, 7 is the number of
photoelectrons per ADU and g is the desired scale factor in Poisson
noise units (that is, 0.5 for 0/2 quantization). |x] denotes a rounding
operation onxto the nearestinteger.

Our approachachieves a 5-8-fold reductionin data volume. While
the quantization step is lossy, we choose the quantization intervals
suchthat the additional quantization noise introduced isless than the
Poisson noise we would expect from photon detection and therefore
hasanegligible influence on subsequent processing and localization.
Our approach is similar to one developed separately and reported in
ref.*. Our optimized C code leverages the AVX SIMD (single instruction
multiple data) instruction set when available and allows the compres-
sion to run at -1 GB s™ without the need for specialized hardware (for
example, GPUs) on the acquisition machine (Supplementary Fig. 4).

Lamin and nucleophosmin PCA

Ofthe 11,160 series imaged, 11,136 were spooled and localized during
the same time, with analysis being run post-facto on an additional 9
series for atotal of 11,145 SMLM images. Spooling failed for 15 images.
Additionally, pointclouds with fewer than 5,000 localizations were
ignored. For each of the remaining 11,117 lamin and nucleophosmin
SMLM pointclouds, 13 metrics were calculated and used to create a
feature vector. These metrics are calculated directly from the localiza-
tions and are described in Supplementary Table 3. The feature vector
was normalized by the interquartile range along each metric, and this
11,117 x 13 array was then reduced to size 11,117 x 2 using PCA limited
to two components. The features for each of these 11,117 pointclouds
were projected onto theresulting principal components O and 1 (PCO,
PC1) two-dimensional (2D) basis and are plotted in Supplementary
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Fig.9.The MAD was calculated along PCO and PC1, as was the mean of
the ensemble. AKDTree of PCO/PC1Euclidean distance was generated
and the cells nearest to the mean and the mean + 2 MAD along each
axis were selected as shownin Supplementary Fig. 9, and as displayed
inFig.4c.

CB measurements and coilin distribution analysis

CBswere segmented from coilinlocalizations using aBayesian informa-
tion criterion (BIC)-optimized Gaussian mixture, and lamin localiza-
tions were fitted to an expansion of spherical harmonics to create a
radial reference frame for each coilin localization.

First,agenerous 2D binary mask of the nucleus was used toisolate
signal localization for all further analyses. This mask was generated
from the lamin localizations by rendering a 2D o = 30-nm Gaussian
image with 40-nm pixels, and applying a15 x 15-pixel maximum filter,
followed by an Otsu threshold. Regions other than the largest were
discarded, and the nucleus mask was dilated by 1 pixel 10 times.

Radial coilin distribution analysis. The laminlocalizations were least
squares fitted to an expansion of 16 spherical harmonic functions
(thele€1{0,1,2,3} modes) centered at the lamin localization center of
mass, producing an analytic shell representation of the nuclear enve-
lope. Coilin localizations were converted from Cartesian to spherical
coordinates, again relative to the lamin center of mass, and the shell
radius at their zenith and azimuth coordinate was used to normalize
their radial coordinate. This shell-normalized coilin distribution was
histogrammed into 50 bins and sum-normalized. To compare the coilin
distribution with a uniform distribution, this process was repeated
for a uniform-density pointcloud simulation bounded by the same
shell (5 iterations targeting a density of 1 point per isotropic 200-nm
voxel). Finally, a per-nucleus coilin-enrichment histogram was created
by dividing the shell-normalized coilin radius histogram by that of the
uniform-density simulation and subtracting 1. The per-well average of
this coilin-enrichment histogramis showninFig. 5d,e. The per-nucleus
edge enrichment (Fig. 5f) was calculated by taking the average value
ofthe coilin enrichment in radial bins above 0.85.

CB measurements. A Gaussian mixture model (GMM) was fitted to
the coilinlocalizations. For each ROI, the number of components was
stepped by 1from1to 50, and the BIC was calculated for each. Metrics
were calculated for each candidate CB as shown in Supplementary
Table 4. These candidate CBs were then filtered, rejecting candidates
with fewer than 20 localizations, greater than 711-nm MAD (correspond-
ing to a Gaussian FWHM of -2.5 pm) and an approximate density of at
least 5x107° nm™ (with volume calculated as v = %nr; where r is
the gyrationradius).

The ROIs shown in Fig. 5a,b were selected using PCAs of these
per-CB features by well. For each well, if there were CBs in less than 5% of
the ROIs, the feature vector (Supplementary Table 4) was constructed
from the raw BIC-optimized GMM results (candidate CBs) rather than
thefiltered (CBs), as was otherwise used. After that decision, the feature
vector was scaled by centering on the feature medians and normalizing
by their interquartile ranges before performing a three-component
PCA. Thefeature vector was then projected onto these principal com-
ponents, and the median value along each component was used to
query aKDTree of PCO/PC1/PC2 Euclidean distances. Each ROl shown
in Fig. 5 contains either the closest or second closest CB candidate to
that point.

The GMM implementation used isin Scikit-Learn**,and each com-
ponent was fitted with its own general covariance matrix.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The 3D localizations, calibration files and raw blinking videos for all
seriesinFig.2,and Cellno.1,no.2,504, no. 5,735, no. 8,041, n0.9,577 and
no.11,160 from the lamin-NPM1 dataset in Fig. 4 (and 3D localizations
for the remainingcells), are publicly available through the 4D Nucleome
data portal at https://data.4dnucleome.org/publications/7d9fad19-
54c4-419e-8d99-8157f5c1904b/. Any additional data from this work
can be obtained through the authors upon request.

Code availability

The code for automated acquisition, distributed data storage and
analysis is released under the GNU General Public License v.3 as part
of the python-microscopy project and is available at github.com/
python-microscopy/python-microscopy. The quantized compres-
sion software can be installed independently, with instructions for
use with third-party software additionally available at github.com/
python-microscopy/pymecompress. Code for GPU acceleration of
single-moleculefittingis available under anacademic use license from
github.com/barentine/pyme-warp-drive. The LabVIEW acquisition
software used in phase 1 can be obtained from the authors; however,
itisnotactively maintained. Please contact the authors for alternative
licensing arrangements.
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Data collection  Data collection was performed using custom LabView(TM) and Python code.

The code for automated acquisition, distributed data storage and analysis is released under the GNU General Public License v3 as part of the
python-microscopy project and is available at github.com/python-microscopy/python-microscopy.

The quantized compression software can be installed independently, with instructions for use with third-party software available at
github.com/python-microscopy/pymecompress.

Code for GPU acceleration of single-molecule fitting is available under an academic use license from github.com/barentine/pyme-warp-drive.

Though the course of the project we used multiple versions of python (2.7, 3.6, 3.7, 3.8). The code in it's current state is well tested on Python
3.7and 3.8.

The LabVIEW acquisition software used in phase 1 can be obtained on request from the authors, but is no longer actively maintained.
Please contact the authors for alternative licensing arrangements.
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OligoArray 2.1 and BLASTN 2.2.30 were used for designing LAD fish sequences.

Data analysis Data analysis was performed using the same custom python packages as above (python, python-microscopy, pymecompress, pyme-warp-
drive).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Due to data volume it was not possible to store all out experimental data on public repositories. A representative subset, namely the 3D localizations, calibration
files, and raw blinking movies for all series in Figure 2, and Cell #1, #2504, #5735, #8041, #9577, and #11,160 from the lamin-NPM1 dataset in Figure 4 (and 3D
localizations for the remaining cells) are publicly available through the 4D Nucleome data portal at https://data.4dnucleome.org/
publications/7d9fad19-54c4-419e-8d99-8157f5c1904b/. Any additional data from this work can be obtained through the authors upon reasonable request.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the Lamin-Nucleophosmin dataset, sample size (11,160 cells) was chosen to demonstrate that we could image a large population of cells
within a single experiment - sufficient to explore population effects and to detect rare configurations.

For the Coilin-Lamin data sets, sample size (100 cells /condition)

Data exclusions  Of the 11,160 fields of view comprising the Lamin B1 and NPM1 dataset, 23 fields of view were excluded due to failed spooling or automatic
quality control, as described in the Methods.

For the Coilin-Lamin data set in U20S, we excluded 24 of 795 fields of view on the basis of automatic quality control, as described in Methods.

For the Coilin-Lamin data set in Hela, we manually excluded 70 fields of view which were inadvertently imaged twice, and an additional 44
fields of view on the basis of automatic quality control, from a total of 673 acquisitions.

Replication As the focus of this paper is on a technical demonstration, no replicates were performed for the Lamin and Nuecleophosmin dataset.
No technical replicates were performed for the Coilin-lamin data set, although we did repeat the experiment in Hela cells to show that the
effect is not limited to U20S.

Randomization  The Lamin-nucleophosmin data consisted of only one group, so randomization was not applicable.
Within the Coilin-Lamin sets, all osmotic shock concentrations (groups) were imaged in one experimental run and were interleaved in the
imaging order to ensure that imaging time did not correlate with osmotic shock. This mitigated the potential for any buffer-rundown effects

on image quality to effect results.

Blinding The Lamin-nucleophosmin dataset did not have allocated groups, making blinding not applicable.
For Coilin-Lamin data sets, analysis parameters (clustering thresholds) were determined using a couple of randomly selected cells in the
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control (no osmotic shock) group, and the same parameters applied automatically to the analysis of all other cells, removing the opportunity
for bias in the analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Animals and other organisms

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
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Antibodies

Antibodies used mouse anti-tubulin (T5168, Sigma-Aldrich)
rabbit anti-GFP (A-11122, Invitrogen)
mouse anti-nucleophosmin (NB600-1030, Novus Biologicals)
rabbit anti-lamin b1 (ab16048, Abcam)
mouse anti-dsDNA (ab27156, Abcam)
rabbit anti-TOM20 (ab78547, Abcam)
mouse anti-lamin A/C (4C11, Cell Signaling Technology)

goat anti-rabbit CF568 (20099, Biotium)

goat anti-mouse CF568 (20109, Biotium)

goat anti-mouse CF568ST (20800, Biotium)

goat anti-rabbit AF647 (A21245, Invitrogen)

goat anti-mouse AF647 (A21237, Invitrogen)

goat anti-mouse Biotin (115-065-003, Jackson ImmunoResearch Laboratories)

Validation The results of all primary antibodies are consistent with information provided by the manufacturer. Beyond their manufacturer
validation measures, we verified sub-cellular localisation was as expected in immunofluoresecence:

Mouse anti-tubulin (T5168, Sigma-Aldrich), validated by manufacturer with immunofluoresence and immunoblot

Rabbit anti-GFP (A-11122, Invitrogen), validated by manufacturer using immunofluorescence and western blotting of multiple GFP-
conjugated expressed proteins.

Mouse anti-nucleophosmin (NB600-1030, Novus Biologicals), validated by manufacturer using western blot, immunofluorescence,
and immunoblot

Rabbit anti-lamin b1 (ab16048, Abcam), validated by manufacturer using western blot, immunofluorescence, and
immunohistochemistry

Mouse anti-dsDNA (ab27156, Abcam), validated by manufacturer using immunohistochemistry and dot blots

Rabbit anti-TOM20 (ab78547, Abcam), validated by manufacturer using immunohistochemistry, immunofluoresence, western blot
and immuno-precipitation.

Mouse anti-lamin A/C (4C11, Cell Signaling Technology), validated by manufacturer using western blotting, immunohistochemistry,
and immunofluorescence

Mouse anti-coilin (ab87913, Abcam), validated by manufacturer using western blotting, immunohistochemistry,
immunofluorescence, immunoprecipitation, and flow cytometry.

All secondary antibodies are validated by immunofluorescence in this work.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) IMR-90 ATCC CCL-186
U-2 OS ATCC HTB-96
COS-7 ATCC batch #63624240
Hela-Kyoto, Neugebauer Lab RRID:CVCL_1922

Authentication IMR-90: purchased directly from ATCC, no further authentication was performed
U-2 OS: purchased directly from ATCC, no further authentication was performed
COS-7: purchased directly from ATCC, no further authenticationwas performed
Hela-Kyoto: no specific authentication was performed

>
Q
]
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Mycoplasma contamination Cell lines were not tested for Mycoplasma contamination

Commonly misidentified lines  n/a
(See ICLAC register)
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