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An integrated platform for high-throughput 
nanoscopy

Andrew E. S. Barentine1,2,9, Yu Lin1,2,9, Edward M. Courvan1,3, Phylicia Kidd    1, 
Miao Liu4, Leonhard Balduf    1,5, Timy Phan1,5, Felix Rivera-Molina1, 
Michael R. Grace1, Zach Marin    1,2,6, Mark Lessard    1, Juliana Rios Chen1, 
Siyuan Wang    1,4, Karla M. Neugebauer    1,3, Joerg Bewersdorf    1,2,7,8    
& David Baddeley    1,6,8 

Single-molecule localization microscopy enables three-dimensional 
fluorescence imaging at tens-of-nanometer resolution, but requires many 
camera frames to reconstruct a super-resolved image. This limits the typical 
throughput to tens of cells per day. While frame rates can now be increased 
by over an order of magnitude, the large data volumes become limiting in 
existing workflows. Here we present an integrated acquisition and analysis 
platform leveraging microscopy-specific data compression, distributed 
storage and distributed analysis to enable an acquisition and analysis 
throughput of 10,000 cells per day. The platform facilitates graphically 
reconfigurable analyses to be automatically initiated from the microscope 
during acquisition and remotely executed, and can even feed back and 
queue new acquisition tasks on the microscope. We demonstrate the 
utility of this framework by imaging hundreds of cells per well in multi-well 
sample formats. Our platform, implemented within the PYthon-Microscopy 
Environment (PYME), is easily configurable to control custom microscopes, 
and includes a plugin framework for user-defined extensions.

Super-resolution single-molecule localization microscopy (SMLM) 
offers a roughly tenfold improvement in resolution over conven-
tional, diffraction-limited fluorescence microscopy, but it does so at 
the expense of acquisition time, data volume and analysis overhead1. 
For SMLM techniques such as (d)STORM/(F)PALM (stochastic optical 
reconstruction microscopy/photoactivated localization microscopy), 
a single region of interest (ROI) a few tens of micrometers in diameter 
usually requires a series of 10,000 to 100,000 camera raw data frames. 
These are typically acquired at 50 frames per second (FPS), meaning 
that a day of diligent manual imaging yields only a few tens of fields of 
view (FOVs) (Fig. 1a).

As a result, the majority of SMLM applications giving rise to new 
biological insight have addressed questions that can be answered with 
just a handful of super-resolved images, either because the structure 
is obvious from few observations, or because a large number of struc-
tures are observable in the FOV2–5. A notable, and impressive, excep-
tion to typical sample sizes is the study by Boettinger et al. on gene 
compaction6, which manually imaged over 2,000 eukaryotic cells and 
would have required several months of data collection. Efforts to auto-
mate SMLM image acquisition7–9 have reduced the amount of time the 
operator needs to spend in front of the microscope, but have not been  
combined with large improvements in acquisition speed.
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compared with approximately 4,000 μm3 h−1 (single-color) for earlier 
automated 3D SMLM approaches8, based on 3D ROI sizes, number of 
ROIs imaged and total acquisition time. The microscope control, data 
storage and analysis pipeline integration is readily accessible to the 
community through the open-source PYthon-Microscopy Environment 
(PYME) (http://python-microscopy.org), which additionally features 
advanced visualization14 and plugin extensibility, making it a viable 
tool for complete and customized SMLM workflows.

Results
Imaging system
We built a microscope with hardware optimized for automated 
high-speed single-molecule imaging. It features an sCMOS camera 
capable of capturing a 2,048 × 256-pixel ROI at 800 Hz, high-power 
lasers, motorized lateral and axial stages, and a focus stabilization sys-
tem. Custom spectral and focal splitting optics (Fig. 1b, Supplementary 
Fig. 1 and Supplementary Note 1.1) allow us to image two spectral chan-
nels, each at two different focal planes, simultaneously. By increasing 
the offset between focal planes from a typical biplane configuration15,16 
to 750 nm and adding astigmatism17 we can achieve high-quality 3D 
localization of single molecules over an extended axial range of about 
1.2 μm. This halves the number of axial steps which need to be taken 
when performing 3D volumetric imaging, resulting in a corresponding 
improvement in speed. Using this setup, we can acquire multicolor 3D 
super-resolved images in about 10 s, as shown with several examples 
in Fig. 2 (see also Supplementary Fig. 2).

By using sCMOS (scientific complementary metal oxide semicon-
ductor) cameras10 and high laser intensities it is possible to acquire 
SMLM data an order of magnitude faster11,12 than the typical 50 FPS, with-
out a major loss in data quality. However, automating SMLM imaging 
at these high frame rates generates data at a rate of 800 MB s−1, posing 
unique challenges for both data storage and analysis. The analysis bur-
den is further compounded by the need to account for sCMOS-specific 
noise characteristics (which are more complex than those of EMCCDs 
(electron multiplying charge-coupled devices)10) to obtain high-quality 
localization data. As a result, fast (>400 FPS) SMLM imaging has been 
largely restricted to two dimensions and has entailed a number of 
manual steps, in both image acquisition and analysis10,11,13. To deliver a 
truly high-throughput automated SMLM platform operating at sCMOS 
speeds represents a technological challenge requiring advances across 
microscope hardware, data handling and analysis routines.

Here we present an integrated high-throughput SMLM platform 
operating at sCMOS speeds, transforming SMLM from an imaging 
technique specialized for small sample sizes into a high-throughput 
quantitative tool. We leverage our developments in data compression, 
distributed storage and distributed analysis to automatically perform 
real-time localization analysis, and additionally present a flexible archi-
tecture for distributed and automatic post-localization analysis and 
feedback-based imaging workflows. Our multicolor three-dimensional 
(3D) SMLM system is capable of imaging 10,000 mammalian cells a 
day, or entire studies configured on multi-well plates. We achieved a 
volumetric throughput of approximately 800,000 μm3 h−1 in two colors 
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Fig. 1 | High-throughput SMLM. a, Example timelines for SMLM acquisition of 
36,000-frame ROIs performed at 50 FPS manually and automated at 800 FPS.  
b, Schematic of automated multicolor 3D biplanar-astigmatism SMLM 
microscope. Mot. S., motorized sample stage; OBJ, objective; DM1–3, dichroic 
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stage; EF1–2, emission filters. c, Diagram of scalable data pipeline for real-time 
localization and automated post-localization analysis.
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Scalable data handling—compression, streaming and 
distributed storage
Imaging at the full frame rate of an sCMOS camera generates an enor-
mous amount of data (800 MB s−1) and sustained imaging at this data rate 
is nontrivial. Previous high-speed SMLM efforts have saved data directly 
to a local solid-state drive (SSD)10, but this limits acquisitions to a few 
hours before the SSD is full—even on the largest SSDs currently available. 
Once full, copying the data to slower storage (for example, hard disk 
drives (HDDs)) can take substantially longer than the acquisition itself. 
To address the data movement and storage bottlenecks imposed by our 
high data rate, we developed a compression algorithm optimized for 
our microscope’s noise model, and distributed storage across a small 
computer cluster (Figs. 1c and 3a and Supplementary Note 2).

Standard lossless compression algorithms such as zip offer a mod-
est 2–3-fold reduction in file size when applied to SMLM raw data and 
are typically not fast enough to allow real-time compression at 
800 MB s−1. These algorithms use entropy coding (for example, Huff-
man coding) which looks at the histogram of the data and uses short 
codes for frequently encountered values and longer codes for less 
frequently encountered values, combined with algorithms which 
encode repeated patterns. The poor compression ratios can be 
explained by two factors: SMLM raw data contain little repetitive struc-
ture for compression algorithms to exploit, in part due to Poisson noise, 
and the data as they come from the camera are very conservatively 
quantized with more unique values than necessary to accurately rep-
resent the data; data from sCMOS cameras are typically quantized such 
that one photoelectron corresponds to ~2.5 analog-to-digital units 
(ADUs). This is reasonable for low signals (1–2 photoelectrons) where 
Poisson noise (which scales as σ(N) = √N) is approximately ±1 photo-
electron (or approximately ±2.5 ADUs). However, a signal of 100 pho-
toelectrons will have an error of ±10 photoelectrons (approximately 

±25 ADUs), giving rise to a band of 50 unique values which are not 
meaningfully distinct but will nonetheless make the signal harder to 
compress. The solution is simple: rather than using a constant quanti-
zation interval as provided by the camera, we re-quantize our data 
before compression such that the interval between quantal units is a 
constant fraction, Q, of the expected Poisson noise rather than a con-
stant number of ADUs (depicted in Fig. 3b).

We systematically varied Q for simulated SMLM raw data (Fig. 3c 
and Supplementary Note 3) and analyzed the resulting relative locali-
zation error for obtained localizations (Fig. 3d) and the achieved data 
compression ratio (Fig. 3e). At Q = σ/2, we achieve 6.9-fold compression 
at a relative localization error of only 4%. This >5 compression ratio 
holds across a large range of emitter densities (Supplementary Fig. 3).

While this re-quantization is technically lossy, it ensures that 
any losses are within the original data noise envelope (Fig. 3b) and 
also visually preserves the integrity of blinking emitters, as seen in  
Fig. 3c. Combined with the low relative localization error, we therefore 
deemed this to be an acceptable compromise and used Q = σ/2 in our 
further experiments.

Noting that the repeated pattern encoding portion of compression 
algorithms is not very helpful for our data, we skip this step entirely, 
greatly improving our speed (Supplementary Fig. 4). The resulting 
compression is performed in real-time on the microscope computer 
and spooled over the network to a small computer cluster where each 
node is running PYME server processes (Fig. 1c and Supplementary  
Fig. 6). By sharding the data across multiple nodes on a per-frame basis, 
we further decrease the amount of per-disk bandwidth, and can use 
HDDs instead of SSDs for a low-cost, high-volume storage solution. 
This combination of noise model-aware compression and distributed 
storage thereby enables us to stream continuously at the full camera 
frame rate and also lays the foundation for analyzing the data in parallel.
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Fig. 2 | 3D multicolor acquisition at 800-Hz frame rate. a, (colored by label),  
b, (colored by z position), Rapid two-color 3D SMLM of microtubules (α-tubulin  
immunolabeled with CF568) and endoplasmic reticulum (Sec61β-GFP immuno
labeled with AF647) in a COS-7 cell. c, (colored by label), d, (colored by z position), 
Mitochondria (TOM20 immunolabeled with AF647) and nucleoids (dsDNA 
immunolabeled with CF568ST) in a U-2 OS cell. e, Lamin A/C (immunolabeled 

with CF568) and a LAD (Chr13: 24405079-24709084, labeled with AF647 via FISH) 
in an IMR-90 cell. f, All 27 TADs along chromosome 22 (FISH-labeled with CF568) 
and a LAD (Chr5:115508197-115813276, FISH-labeled with AF647) in an IMR-90 cell. 
All datasets were acquired at a frame rate of 800 Hz for 8,000 frames (a–d) or 
24,000 frames (e,f). FISH, fluorescence in situ hybridization.
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Real-time localization
Waiting for hours or days to do quality control or analysis on localiza-
tion results largely defeats the purpose of imaging at high bandwidths. 
Although some simplified methods (such as centroiding) have been 
shown to yield high localization speed, these entail serious compro-
mises in precision and accuracy18. Obtaining optimal localization pre-
cision with sCMOS cameras requires fitting using an sCMOS-specific 
noise model10 and an algorithm such as weighted least squares19 or 
maximum likelihood estimation20.

We optimized our previous graphical processing unit (GPU)-based 
maximum likelihood estimation code10 to achieve about 15-fold 
improvement in speed by using one thread per localization ROI pixel 
to evaluate the model function, with a single thread performing param-
eter updates on each iteration, rather than a single thread doing the 
entire fit (Supplementary Fig. 7). We also accelerated sliding-window 
background estimation and candidate molecule detection by moving 
them from the CPU to the GPU, parallelized using one thread per x, y, (t) 
pixel (Supplementary Note 4). Our now entirely GPU-accelerated locali-
zation pipeline performs about tenfold faster than our CPU-only pipe-
line on a single computer (Supplementary Table 1). However, even 
parallelized over multiple workers, a single computer was too slow to 
keep up with our imaging.

Leveraging our distributed data storage, we developed a 
task-distribution architecture that enables a multiprocessing ‘cluster 
of one’ on a single computer as well as multi-computer clusters. Distrib-
uting tasks with a preference to assign jobs to computers where the data 
are saved allows us to minimize network overhead within the cluster. 
Critically, the performance of our architecture scales approximately 
linearly, allowing tuning of localization speed simply by adding more 

computers. Our production cluster consists of ten computers made 
from affordable consumer-grade components in 2016, each equipped 
with a GPU to run our accelerated algorithm (Supplementary Table 2). 
This additional factor of ~10 improvement in performance allows us to 
localize in real-time (Supplementary Table 1).

Localization tasks are automatically posted to the cluster on com-
pletion of recording or continually posted live during series acquisi-
tion for live visualization. A signal-to-noise-based candidate molecule 
detection threshold enables localization to be performed automati-
cally across a wide range of conditions without user attention.

3D multicolor SMLM at 10,000 cells a day
The combination of our hardware and analysis advances enables us 
to image not only individual FOVs at high speed as shown in Fig. 2, but 
also 10,000 FOVs in a single day. To test this imaging mode, we plated 
U-2 OS cells on a coverslip and immunolabeled their nuclear lamini 
(anti-lamin b1, AF647) and nucleoli (anti-NPM1, CF568). Automated 
imaging begins by first scanning the coverslip in widefield mode and 
stitching together the images to create a large mosaic image. This image 
is then segmented and processed to generate a list of suitable FOVs for 
SMLM imaging. The overview mosaic shown in Fig. 4a was acquired in 
52 min, after which automated super-resolution imaging of the 11,160 
detected nuclei commenced. Each detected nucleus was imaged in 
9.44 s, with the objective piezo actuator stepping over an axial range 
of 4.4 μm for an axial localization range of approximately 5 μm. The 
total imaging time for all 11,160 cells targeted was 1.2 d. Of the target 
FOVs, 99.8% were successfully acquired (Methods), resulting in a total of 
3,589,123,170 fitted emitters from 75,431,069 raw frames (504,879,862 
high-precision localizations after combining molecules present in 
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more than one of the biplane views and filtering; Supplementary  
Fig. 8). The first and last nuclei imaged are shown in Fig. 4b. While they 
look relatively similar to each other, we also observed oddly shaped 
nuclei and nuclei that one could reasonably think were representative 
if only imaging a handful of cells (Supplementary Video 1). To demon-
strate the latter, we performed a principal component analysis (PCA) 
on a collection of features extracted from the SMLM localization data 
(Supplementary Table 3 and Supplementary Fig. 9). We show the closest 
cell to the PCA-space mean position (Fig. 4c), and cells located 2 median 
absolute deviations (MADs) away along both of the principal axes  
(Fig. 4d–g). Figure 4h shows the ensemble median-normalized NPM1–
NPM1 pairwise distances of these selected cells, which vary substantially 
outside the interquartile range depicted by the gray-shaded area.

Flexible analysis and integrated workflows
Analyzing thousands of SMLM localization datasets has to date been 
nontrivial, and often relied on patching together multiple existing 
packages. The analysis backbone of PYME, ‘recipes’, can be graphically 
reconfigured, can handle hybrid pointcloud/image-data workflows, 
and can be quickly built and tested in PYME’s interactive viewers14. 
Recipes can be efficiently batched on a single computer, or run on the 
cluster using the same analysis distribution we employ for localization 
tasks. They can additionally be chained together, allowing automatic 
localization and post-localization analyses workflows.

Microscope control solutions for custom systems are often 
bespoke, with their control flows hard-coded, making maintenance and 

code sharing difficult. Many automated control flows consist of image 
analysis steps, particularly for more intelligent automation, which can 
quickly compound the amount of special-casing in instrument control 
code if these become at all sample-specific. PYMEAcquire, used here, 
allows intricate and easily reconfigurable workflows by using a priority 
queue for acquisition tasks. Acquisition protocols can be quickly writ-
ten as lists of tasks to be executed on specified frames. Analysis chains 
can then be built graphically and linked to specific protocols, trigger-
ing (remote) execution on the PYME cluster at the beginning or end 
of a series acquisition as set by the user (Supplementary Video 2 and 
Supplementary Note 5). Finally, server endpoints in PYMEAcquire 
allow remote queuing of acquisition tasks, and can be leveraged in 
recipe modules to add acquisition tasks to the priority queue based 
on analyses of previously acquired series. This establishes a flexible 
architecture, fully integrating the instrument with distributed analysis.

High-content screening with localization microscopy
Conducting entire multi-condition studies by SMLM has until now been 
impractical. Even in automated workflows, low frame rates coupled 
with acidifying glucose-oxidase/-catalase STORM buffers have limited 
the total number of ROIs imaged per plate to less than 100 (ref. 8). We 
leveraged our platform to study the distribution and size of Cajal bodies 
(CBs), the site of small noncoding RNA transcription and processing21,22,  
in cells undergoing osmotic shock. Cellular stresses disrupt gene  
transcription, and as many nuclear bodies are hypothesized to be 
nucleated by transcription of specific genes, we expect the global 
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disruption of transcription and RNA synthesis induced by osmotic 
shock to produce profound effects on CB integrity23. Because there is 
a large cell-to-cell variability in both the number and size of CBs, this 
work requires a substantial number of cellular images per condition 
to achieve a statistically robust comparison between osmotic shock 
conditions and greatly benefits from a high-throughput approach.

We imaged HeLa cells immunolabeled for coilin, a CB marker, with 
Cy3b, and lamin b1 with CF660C, in an eight-well slide format. These 
cells were shocked for 1 h before fixation using media supplemented 
with different concentrations of KCl in each well. A tile overview in the 
lamin channel was queued for each well, and we chained the overview 
protocol to a nucleus detection recipe to queue 45,000-frame 800-Hz 
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(b) in automatically imaged eight-well slides. The concentration of KCl, number 
of ROIs containing a segmented CB (NCB+) and number of ROIs successfully 
imaged and analyzed (N) are annotated on the example ROI for each condition. 

c, Size of CBs at each concentration. d,e, Coilin enrichment relative to a uniform 
random distribution within a fitted nucleus model for HeLa cells (d) and U-2 OS 
cells (e). f, Coilin edge enrichment for each ROI, calculated as the average coilin 
enrichment relative to a uniform random distribution at normalized radii larger 
than 0.85.
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SMLM series at a maximum of 75 ROIs per well in a path-optimized 
manner and at a higher priority than the tile overview tasks such that 
large movements across the slide were minimized. We observed a 
relatively consistent presence of CBs per cell in the control condition 
(median, mean, s.d. = 1, 1.4, 1.1, N = 71; see Supplementary Fig. 10 for a 
histogram of number of CBs per ROI). An ROI automatically selected 
as representative of each well by PCA is shown in Fig. 5a (Methods). The 
CBs were indeed profoundly affected, and were depleted in wells that 
had been subjected to substantial osmotic shock, with no CBs detect-
able at concentrations higher than 75 mM KCl. Additionally, the CBs 
decreased in size with increasing osmolarity (Fig. 5c).

To see if this was an idiosyncrasy of the cell type or a more universal 
phenomenon, we repeated the experiment in U-2 OS cells, imaging a 
maximum of 100 ROIs in each well for 33,000 frames each (Fig. 5b).  
Notably, the CBs in the U-2 OS control cells are smaller, and their num-
ber more varied (median, mean, s.d. = 0, 0.8, 1.4, N = 94; see also histo-
grams in Supplementary Fig. 10), making them generally more difficult 
to study at low throughputs. Further, while the osmotic shock still 
affects both CB presence and size, these effects are more subtle than 
in the HeLa cells (Fig. 5c).

While the dissipation of CBs under osmotic shock could be rigor-
ously monitored with our system, the function of most proteins in 
membraneless organelles is not limited to these structures, and we 
noticed an opportunity to leverage our statistical power to measure 
the redistribution of coilin. For each ROI, we fit the lamin localizations 
to a spherical harmonic shell to define a nuclear coordinate system for 
the coilin localizations. We see coilin enrichment (relative to uniform 
distribution simulated in the shell) at the nuclear periphery in stressed 
HeLa and U-2 OS cells (Fig. 5d–f).

Discussion
We have shown that it is possible to carry out large SMLM studies with-
out sacrificing sample population or experimental conditions. This is 
a substantial departure from the current state-of-the-art. The software 
advances this required are not only enabling of higher-throughput 
studies, but should additionally reduce frustrations common with 
smaller experiments or even manual exploration. The modular and 
plugin-friendly nature of PYME and its interactive data viewers make 
it feasible for users to easily explore and extract user-defined features 
from these large datasets. Similarly, PYME is well suited for instrument 
developers to easily extend their acquisition or analysis capabilities in 
a complete environment.

Automated SMLM at high bandwidths enables users to acquire 
vast datasets at raw frame rates faster than they can visually assess, 
which warrants consideration of tools to assist them. For example, 
localization quality control such as Wasserstein-induced Flux24 and 
ROI error-mapping methods25,26 could be helpful in determining if 
imaging and localization analysis were performed adequately. PYME 
recipes can produce HTML report outputs. Plugins to calculate such 
measures of quality control could facilitate automatic checks for each 
series or acquisition run, which can be formatted as HTML reports 
within recipes.

In addition to monitoring image quality, our approach could be 
improved by further optimizing automated acquisition, for example, 
regulating emitter density by servo-controlled laser intensities, varying 
the number of frames acquired at a given ROI depending on its actual 
sampling requirements or correcting sample-induced aberrations 
at each ROI. While impressive progress has been made in the area of 
intelligent SMLM automation27, there are many unmet challenges to 
apply these advances to 3D and/or multicolor imaging, and especially 
for high-speed imaging at camera frame rates of 800 Hz.

We expect hardware advances such as higher-bandwidth cam-
eras with reduced amplification noise and larger FOVs to continue to 
improve SMLM image quality and capabilities. We additionally note that 
per-pixel quantization using noise envelope scaling as demonstrated 

in this work could be performed on-board cameras, and could aid in 
further bandwidth optimizations. Integrating dense-emitter localiza-
tion algorithms such as 3D-DAOSTORM28 or DECODE29 could reduce 
the number of raw frames required for a reconstruction. For struc-
tures that are highly stereotypical and easily inferred from sparse 
or low-resolution images, structure-prediction methods such as 
ANNA-PALM (artificial neural network accelerated PALM)30 could also 
be incorporated within our framework to further improve throughput.

With the advances contained in this work, we expect SMLM to 
become a much more routinely and broadly applicable tool. The exam-
ple applications in this work are only a small sampling of the possibili-
ties that automated high-throughput SMLM offers, but demonstrate 
the technical feasibility both of obtaining nano-scale resolution in every 
cell of an extended specimen and of combining this with the systematic 
investigation of multiple conditions. Exciting potential applications 
of our work include looking at the cell-type-dependent distribution 
of protein clustering within tissue sections, the detection of statisti-
cally rare but functionally important configurations (for example, 
transient contacts between gene regions) and the use of SMLM as a 
screening technique to assess structural responses to a wide range of 
interventions. These types of experiments will improve understanding 
of disease in ways that were previously not possible.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41587-023-01702-1.
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Methods
High-throughput SMLM microscope
The optical setup, shown in Fig. 1b, is detailed in Supplementary  
Note 1.1 and Supplementary Fig. 1, and discussed here only briefly. The 
microscope hardware differs from conventional SMLM microscopes 
in that an sCMOS camera and two high-power (2 W) excitation lasers 
(560 nm and 642 nm) are used. A cylindrical lens to provide astigmatism 
is combined with a biplane module to extend the axial localization 
range. The laser lines are coupled into a multimode fiber, which is 
vibrated to average out speckle and achieve a uniform intensity pro-
file at the fiber exit which is imaged into the sample. A fast objective 
piezo actuator enables axial scanning, and a motorized sample stage 
accommodates lateral sample movement on the order of 100 mm. 
The microscope additionally has a custom-built focus lock, where a 
near-infrared laser is reflected off the coverslip at an angle such that 
the reflected beam position can be monitored by an additional camera. 
This position indicates the distance between the objective and the 
coverslip, and can be servo-controlled.

The instrument was originally controlled with a custom LabView 
program (Phase 1), which was used for imaging in Figs. 2 and 4, and 
would save DCIMG-formatted image files to a RAM disk where a PYME 
script would open them and spool them to the computer cluster, addi-
tionally launching localization analysis. We then converted instrument 
control to PYMEAcquire for further integration of the system (Phase 2),  
after which we no longer saved frames to disk on the instrument com-
puter as we could compress and spool them directly.

SMLM imaging
Alexa Fluor 647 (AF647) and CF660C are suitable for high-speed 
SMLM11,12, CF660C being particularly robust. We additionally found 
CF568 to be capable of fast switching, enabling high-speed multicolor 
SMLM in standard STORM buffers using the glucose-oxidase/-catalase 
oxygen scavenging system (‘glox’ buffer). Not all imaging formats are 
easily sealed, and we find sulfite-based oxygen scavenging in aqueous 
buffer31 performs well at high speeds, and is compatible with Cy3B and 
CF660C, again enabling sustained high-speed multicolor imaging.

The glox buffer used in this work consisted of 0.49 kU ml−1 glucose 
oxidase, 0.98 kU ml−1 glucose catalase, 0.14 M 2-mercaptoethanol, 
2.5 mM Tris at pH 8, 2.5 mM NaCl and 0.28 M glucose in milli-q water. 
The aqueous sulfite buffer used in this work consisted of 20 mM Na2SO3 
and 0.14 M 2-mercaptoethanol in 1 × PBS.

Sealed glox buffer imaging. All samples in Figs. 2 and 4 were imaged 
in the glox STORM buffer. These samples were mounted and imaged in 
Bioptechs FCS2 flow chambers with the microaqueduct slide flipped 
upside down such that the flow input/output tubes were sealed. Before 
mounting the sample, the edges were scraped with a scalpel to remove 
cells that would interfere with ideal sealing. We used 0.5-mm-thick 
circular gaskets, overfilled the chamber with 500 μl of STORM buffer 
and rinsed the coverslip in 200 μl of STORM buffer before mounting. 
Once the coverslip was in place, it was flattened (and excess buffer was 
removed) by pressing a wipe against it using a flat plastic dish.

All SMLM imaging shown in Figs. 2 to 4 was performed at a camera 
frame rate of 800 Hz. The 560-nm and 642-nm laser intensities deliv-
ered to the samples were approximately 71 kW cm−2 and 51 kW cm−2 
for the lamin B1 and NPM1 samples, 41 kW cm−2 and 51 kW cm−2 for the 
lamin A/C and lamin-associated chromatin domain (LAD) pool 2 sam-
ples, 61 kW cm−2 and 51 kW cm−2 for the α-tubulin and Sec61β samples, 
38 kW cm−2 and 51 kW cm−2 for the double-stranded DNA (dsDNA) and 
TOM20 samples, and 41 kW cm−2 and 61 kW cm−2 for the chromosome 
22 topologically associating chromatin domains (TADs) and LAD pool 
1, respectively. The 405-nm activation light was not used during SMLM 
data acquisition of these samples.

The 3D images of the α-tubulin and Sec61β samples, and the 
TOM20 and dsDNA samples, were acquired without ‘z-stepping’ during 

recording. The remaining samples in Figs. 2 and 4 were imaged with two 
or six cycles of seven interwoven ‘up then down’ z-steps to obtain even 
axial localization distribution over the thicker volumes.

Sulfite buffer imaging. The HeLa and U-2 OS samples in Fig. 5 were 
imaged in an aqueous sulfite STORM buffer, which enables flexible sam-
ple formats such as small petri dishes, eight-well slides and multi-well 
plates. For these samples, N2 was additionally perfused into a stagetop 
incubator chamber (OKO K-Frame) at a rate of 0.2 l min−1. Stage leveling 
was checked before imaging, and the offsets measured by the leveling 
routine were stored to bootstrap automatically finding the coverslip 
should the focus lock ever be lost.

All SMLM imaging with the sulfite buffer (the coilin and lamin 
samples in Fig. 5) was performed at 783 Hz. The 560-nm and 642-nm 
intensities delivered to the samples were approximately 49 kW cm−2 and 
53 kW cm−2. Imaging began on each ROI only with 642-nm illumination, 
turning on the 560-nm laser after a full z-stack cycle (18,000 frames 
for the 45,000-frame HeLa series, and 11,000 frames for the 33,000 
U-2 OS series). Additionally, <0.08 kW cm−2 of 405-nm illumination 
was applied nearer the end of each series. The U-2 OS series of 33,000 
frames were acquired in about 44 s each.

Compression
Before spooling the data from the instrument computer RAM to the 
computer cluster, we minimize the data volume via compression. This 
compression includes three steps: offset subtraction, re-quantization 
such that the quantization intervals scale with the square root of the 
number of photons and then Huffman coding32. The re-quantization 
step serves to decrease the number of discrete levels within the data, 
dramatically increasing the efficiency of Huffman coding. This step at 
each j pixel can be expressed as

dj = ⌊ηq√Dj − oj⌉, (1)

where D is the intensity counts in a single frame, o is the camera off-
set map, d is the resulting quantized intensity bin, η is the number of 
photoelectrons per ADU and q is the desired scale factor in Poisson 
noise units (that is, 0.5 for σ/2 quantization). ⌊x⌉ denotes a rounding 
operation on x to the nearest integer.

Our approach achieves a 5–8-fold reduction in data volume. While 
the quantization step is lossy, we choose the quantization intervals 
such that the additional quantization noise introduced is less than the 
Poisson noise we would expect from photon detection and therefore 
has a negligible influence on subsequent processing and localization. 
Our approach is similar to one developed separately and reported in 
ref. 33. Our optimized C code leverages the AVX SIMD (single instruction 
multiple data) instruction set when available and allows the compres-
sion to run at ~1 GB s−1 without the need for specialized hardware (for 
example, GPUs) on the acquisition machine (Supplementary Fig. 4).

Lamin and nucleophosmin PCA
Of the 11,160 series imaged, 11,136 were spooled and localized during 
the same time, with analysis being run post-facto on an additional 9 
series for a total of 11,145 SMLM images. Spooling failed for 15 images. 
Additionally, pointclouds with fewer than 5,000 localizations were 
ignored. For each of the remaining 11,117 lamin and nucleophosmin 
SMLM pointclouds, 13 metrics were calculated and used to create a 
feature vector. These metrics are calculated directly from the localiza-
tions and are described in Supplementary Table 3. The feature vector 
was normalized by the interquartile range along each metric, and this 
11,117 × 13 array was then reduced to size 11,117 × 2 using PCA limited 
to two components. The features for each of these 11,117 pointclouds 
were projected onto the resulting principal components 0 and 1 (PC0, 
PC1) two-dimensional (2D) basis and are plotted in Supplementary  
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Fig. 9. The MAD was calculated along PC0 and PC1, as was the mean of 
the ensemble. A KDTree of PC0/PC1 Euclidean distance was generated 
and the cells nearest to the mean and the mean ± 2 MAD along each 
axis were selected as shown in Supplementary Fig. 9, and as displayed 
in Fig. 4c.

CB measurements and coilin distribution analysis
CBs were segmented from coilin localizations using a Bayesian informa-
tion criterion (BIC)-optimized Gaussian mixture, and lamin localiza-
tions were fitted to an expansion of spherical harmonics to create a 
radial reference frame for each coilin localization.

First, a generous 2D binary mask of the nucleus was used to isolate 
signal localization for all further analyses. This mask was generated 
from the lamin localizations by rendering a 2D σ = 30-nm Gaussian 
image with 40-nm pixels, and applying a 15 × 15-pixel maximum filter, 
followed by an Otsu threshold. Regions other than the largest were 
discarded, and the nucleus mask was dilated by 1 pixel 10 times.

Radial coilin distribution analysis. The lamin localizations were least 
squares fitted to an expansion of 16 spherical harmonic functions 
(the l ∈ {0, 1, 2, 3} modes) centered at the lamin localization center of 
mass, producing an analytic shell representation of the nuclear enve-
lope. Coilin localizations were converted from Cartesian to spherical 
coordinates, again relative to the lamin center of mass, and the shell 
radius at their zenith and azimuth coordinate was used to normalize 
their radial coordinate. This shell-normalized coilin distribution was 
histogrammed into 50 bins and sum-normalized. To compare the coilin 
distribution with a uniform distribution, this process was repeated 
for a uniform-density pointcloud simulation bounded by the same 
shell (5 iterations targeting a density of 1 point per isotropic 200-nm 
voxel). Finally, a per-nucleus coilin-enrichment histogram was created 
by dividing the shell-normalized coilin radius histogram by that of the 
uniform-density simulation and subtracting 1. The per-well average of 
this coilin-enrichment histogram is shown in Fig. 5d,e. The per-nucleus 
edge enrichment (Fig. 5f) was calculated by taking the average value 
of the coilin enrichment in radial bins above 0.85.

CB measurements. A Gaussian mixture model (GMM) was fitted to 
the coilin localizations. For each ROI, the number of components was 
stepped by 1 from 1 to 50, and the BIC was calculated for each. Metrics 
were calculated for each candidate CB as shown in Supplementary 
Table 4. These candidate CBs were then filtered, rejecting candidates 
with fewer than 20 localizations, greater than 711-nm MAD (correspond-
ing to a Gaussian FWHM of ~2.5 μm) and an approximate density of at 
least 5 × 10−6 nm−3 (with volume calculated as v = 4

3
πr3g, where rg is  

the gyration radius).
The ROIs shown in Fig. 5a,b were selected using PCAs of these 

per-CB features by well. For each well, if there were CBs in less than 5% of 
the ROIs, the feature vector (Supplementary Table 4) was constructed 
from the raw BIC-optimized GMM results (candidate CBs) rather than 
the filtered (CBs), as was otherwise used. After that decision, the feature 
vector was scaled by centering on the feature medians and normalizing 
by their interquartile ranges before performing a three-component 
PCA. The feature vector was then projected onto these principal com-
ponents, and the median value along each component was used to 
query a KDTree of PC0/PC1/PC2 Euclidean distances. Each ROI shown 
in Fig. 5 contains either the closest or second closest CB candidate to 
that point.

The GMM implementation used is in Scikit-Learn34, and each com-
ponent was fitted with its own general covariance matrix.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The 3D localizations, calibration files and raw blinking videos for all 
series in Fig. 2, and Cell no. 1, no. 2,504, no. 5,735, no. 8,041, no. 9,577 and 
no. 11,160 from the lamin-NPM1 dataset in Fig. 4 (and 3D localizations 
for the remaining cells), are publicly available through the 4D Nucleome 
data portal at https://data.4dnucleome.org/publications/7d9fad19-
54c4-419e-8d99-8157f5c1904b/. Any additional data from this work 
can be obtained through the authors upon request.

Code availability
The code for automated acquisition, distributed data storage and 
analysis is released under the GNU General Public License v.3 as part 
of the python-microscopy project and is available at github.com/
python-microscopy/python-microscopy. The quantized compres-
sion software can be installed independently, with instructions for 
use with third-party software additionally available at github.com/
python-microscopy/pymecompress. Code for GPU acceleration of 
single-molecule fitting is available under an academic use license from 
github.com/barentine/pyme-warp-drive. The LabVIEW acquisition 
software used in phase 1 can be obtained from the authors; however, 
it is not actively maintained. Please contact the authors for alternative 
licensing arrangements.
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