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Abstract Mechanical properties are obtainable from atomic
force microscopy (AFM) indentation force—depth curves,
which are calculated from relationships between tip deflec-
tion and cantilever position, i.e. deflection curves. Indentation
depth is the difference between tip deflections on a rigid and
a soft material for the same amount of cantilever advance-
ment, after contact is made. Since the contact point cannot
be unequivocally identified from experimental data, there
is some uncertainty in estimating material properties. Us-
ing simulations, this study examines some important issues
related to the influence of contact point identification on esti-
mated material properties. Simulations for linear materials
using a typical stiffness for an AFM cantilever demonstrate
that certain portions of the post-contact region of deflection
curves for soft and very stiff materials can be approximated by
quadratic and linear functions, respectively. Based on these
findings, we first develop and verify an objective, automatic
method to identify the contact point for materials with linear
properties. We then assess the effect of misidentifying the
contact point, with and without noise. If the contact point
is missed by < 50 nm, material properties for small inden-
tations are erroneous but the error decreases asymptotically
beyond 200nm of indentation and the correct estimate of
material stiffness is obtained. If the contact point is missed
by > 100nm, however, the true material properties cannot
be estimated accurately. Noise adds to uncertainty in mate-
rial properties at small indentations but the combined effect
of missing the contact point and noise is dominated by the
former. Even though the algorithm was developed for linear
materials, it is also suitable for certain nonlinear materials
making it more generally applicable.
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1 Introduction

An atomic force microscope (AFM) can be used as an inden-
ter to probe the nanomechanical properties of small regions
of materials — including living cells (Lal and John 1994;
Hofmann et al. 1997; Wu et al. 1998; Sato et al. 2000; Tao
et al. 1992; Burnham and Colton 1989; Bowen et al. 2000;
Heinz and Hoh 1998,1999; Radmacher 1997; Mathur et al.
2001; Shroff et al. 1995). AFM indentation is simple to apply,
but analyzing and correctly interpreting the results is fraught
with pitfalls. This is because the mechanical properties of
the material being examined can only be obtained indirectly
from the indentation force—depth relationship, which, in turn,
has to be inferred from the relationship between the deflec-
tion of the tip and the vertical position of the cantilever as it
is moved toward and then touches the specimen. This latter
relationship is usually called a deflection curve. The inden-
tation depth, at a given cantilever position after contact with
a material, is the difference between the tip deflection on a
rigid and the soft material. Indentation depth, and hence the
estimated mechanical property, is therefore dependent on the
identification of the contact point.

The importance of identifying the contact point is well
known but has not been subjected to careful study. For a
rigid material, the contact point is rather easily discerned as
it demarcates the transition from the approach of the canti-
lever where there is no deflection to a line with a slope of
about unity (since for a given amount of cantilever advance,
the tip deflects the same amount). For a material that can be
indented, however, the contact point can never be identified
with certainty, but rather must be inferred from the deflection
curve. Several factors make this identification difficult. First,
unless the cantilever tip is flat, once contact has occurred, the
relationship between cantilever position and tip deflection is
no longer linear. Second, after contact, the tip deflection is not
a perfect quadratic function of cantilever position but rather a
complicated nonlinear function that depends upon the relative
stiffnesses of the cantilever and material. The softer the mate-
rial and/or the stiffer the cantilever the less tip deflection there
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will be. This complicated nonlinear effect precludes using a
simple function to fit the post-contact portion of all displace-
ment curves. The two factors are exacerbated by the inherent
electrical and mechanically-induced noise in the cantilever
deflection signal. After initial contact is made, as tip deflec-
tion increases with increasing indentation, the signal is easier
to discern from the noise. Hence, the initial small indenta-
tions, including the contact point, are the most difficult to
clearly identify. In fact, this difficulty in identifying the con-
tact point led to an analysis method that attempted to cir-
cumvent this problem (A-Hassan et al. 1998). This method
provides, however, only relative comparisons between differ-
ent samples and does not specifically quantify properties of a
given material. Therefore, before indentation with AFM can
be used reliably to investigate the mechanical properties of a
sample, the interrelated effects of misidentifying the contact
point and noise in the signal must be elucidated.

Even assuming one has accurately identified the con-
tact point and obtained a force—depth relationship, analytical
difficulties remain. For example, the pyramidal or conical
geometry of most AFM tips results in an inherently nonlin-
ear force—depth relationship. (Briscoe et al. 1994; Dimitriadis
etal. 2002) This tip effect dominates the force—depth relation-
ship, and may obscure subtle differences from the quadratic
behavior that characterizes materials with linear stress—strain
properties. Several studies indicate that not correctly account-
ing for tip geometry and hence the resulting mechanics can
result in erroneous estimates of material properties, whereas
correctly accounting for tip geometry and employing proper
mechanical principles, may even enable one to discriminate
between different types of materials. (Briscoe et al. 1994;
Dimitriadis et al. 2002; Costa and Yin 1999) Additionally,
the cantilever deflection must be converted into force using
an appropriate calibration scheme. Calibration of AFM canti-
levers has also been the subject of many reports, but no clear,
widely-accepted method has resulted (Cleveland et al. 1993;
D’Costa and Hoh 2005; Hutter and Bechhoefer 1993; Jensen
1993; Scholl et al. 1994; Smith and Howard 1994; Sader et al.
1995; Cumpson et al. 2003; Gibson et al. 2003). For all of the
above reasons, the absolute values of the reported mechan-
ical properties are, to some extent, uncertain. Although the
issues of tip geometry and calibration are important to accu-
rately assess mechanical properties of cells, addressing them
is beyond the scope of the present study. Rather, we focus on
issues related to identification of the contact point and how
this affects the subsequent determination of the mechanical
properties.

The purpose of this study is to carefully examine the
above issues. We use simulated data for materials with
linear stress—strain relationships covering a wide range of
stiffnesses and for some types of materials with nonlinear
stress—strain relationships to develop guidelines and an algo-
rithm to semi-automatically identify the contact point. We
also use experimental data for an endothelial cell to illustrate
the approach. Based on detailed analysis of the post-contact
region of simulated deflection curves for the linear materials
we propose an objective method to automatically identify the

contact point. This method presumes that the contact point
is the transition from the linear to the nonlinear region of
the deflection curves. The algorithm not only can identify
accurately the contact point for linear materials but it also
can do so for some nonlinear materials. We next assess the
effect on the mechanical property estimations of misiden-
tifying the contact point, with and without simulated noise,
for both linear and nonlinear materials. For linear materials if
the contact point is misidentified by 50 nm, there are large er-
rors in the estimated apparent point-by-point modulus (Epp,
Costa and Yin 1999) for indentations less than 200nm. At
indentations greater than 200 nm, however, the value asymp-
totically approaches the correct value. If the contact point is
misidentified by ~100nm or more, however, Ep, cannot be
accurately estimated. As expected, the effect of noise is also
manifested as uncertainties in material properties at small
indentations. Surprisingly, however, for indentations larger
than 200 nm the combined effect of misidentifying the con-
tact point and noise is dominated by the former. For non-
linear materials with polynomial stress—strain relationships
the effects of misidentifying the contact points are generally
similar to those for linear materials. Specifically, misiden-
tifying the contact point by up to five data points produces
a nonlinear dependence of Ep, on indentation depth. The
error in Ejp, is bounded to less than a factor of two at low
indentation depths and decreases with increasing indentation
depth. For materials with exponential type stress—strain laws,
however, opposite results are observed. The same amount of
misidentification results in errors of less than a factor of two
at indentation depths less than 200 nm. However, the error
bounds increase with increasing indentation depth reaching
more than an order of magnitude at indentation depths greater
than about 400 nm. The highly nonlinear deflection curves of
materials with exponential stress—strain behavior appear to
render accurate analysis of force-indentation data problem-
atic for this type of material.

The results of this study should serve as a foundation for
future studies of AFM indentation in soft materials, including
biological tissues and cells.

2 Methods
2.1 Deflection curves

To address the issues of interest requires some deflection
curves for which we know the precise contact point. We
convert known force—depth relationships into simulated
deflection curves. Note that for any tip that is not flat, the
conversion of a force—depth relationship into a deflection
curve is not simple because the complex tip geometry must
be taken into account. Specifically, even for a perfect cone
with a quadratic relationship between indentation force and
depth, the tip deflection after contact is not a simple qua-
dratic function of cantilever position. For more complicated,
but also more realistic tip geometries, the displacement curve
can only be obtained by numerical simulation. In addition to
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the effects of tip geometry, the type of material also affects
the displacement curve. For a given cantilever stiffness, two
factors affect the shape of a deflection curve: material type
(i.e. linear vs. nonlinear stress—strain behavior) and the spe-
cific values of the material parameters. For materials with
linear stress—strain behavior we first calculated the force ex-
erted by a blunt-tip conical indenter on an elastic half-space
(Fig. 1), as a function of indentation depth and then converted
these force—depth data into deflection curves. To develop the
algorithm and assess the effect of different stiffnesses, we
compared a range of values of elastic moduli (0.1, 1, 10, 50
and 100kPa). This wide range of stiffnesses should encom-
pass most biological materials, including cells and their con-
stituents which are thought to be in the 10-50kPa range.

The simulation first requires the relationship between
indentation force and depth and can be expressed in terms of
Epp as previously described (Costa and Yin 1999). The fol-
lowing two-part equation (adopted from Briscoe et al. 1994)
is used for calculating the point-by-point modulus for an in-
denter with the cantilever tip approximated as a cone merging
smoothly with a spherical tip (see Fig. 1).
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In this formulation » = R cos(f) enforces the smooth-
ness constraint and rather than subsuming the Poisson’s ratio
v into a modified modulus (as suggested by Briscoe et al.
1994; Costa et al. 2006), we use the value of 0.5 which is that
for an incompressible, linear, elastic and isotropic material.

The simulated deflection curves for materials with linear
stress—strain laws were obtained using an equation solver that
allowed simultaneously changing the deflection and contact
radius a (see Fig. 1) subject to the constraints that, when
indentation was greater than the height of the spherical tip,
the elastic modulus remained constant and that the deriva-
tive of the overall force on the tip as a function of contact
radius was zero. This latter constraint leads to Eq. 3. When
the indentation depth was less than the height of the spheri-
cal tip, the only constraint was that the elastic modulus was
constant.

The cantilever stiffness used in the simulations was
0.0186 N/m. This value is at the softer end of the stiffness
spectrum of the Park, Inc. gold-coated, silicon-nitride canti-
levers, but is representative of the values used in our studies
on cells. The simulated deflection curves for the different

values of the elastic moduli are shown in Fig. 2a. Even for
a linear material, the shape of the deflection curve varies,
depending upon the stiffness of the material relative to the
stiffness of the cantilever.

For materials with nonlinear stress—strain laws, i.e. nearly
linear Mooney—Rivlin (MR), polynomial (POLY) or expo-
nential (EXP) types, we used the force—depth curves pre-
viously obtained with a finite-element model of indentation
(Costa and Yin 1999). The parameter values chosen for these
materials were not necessarily meant to represent any specific
material, but rather to give a range of stress—strain behavior
from nearly linear to highly nonlinear. The deflection curves
from those force—depth curves were obtained by essentially
the same procedure as for the linear materials described above
and are shown in Fig. 2b.

The simulations indicate that the post-contact deflection
curves for all soft materials are nonlinear. The degree of non-
linearity is dependent upon both the stiffness of the linear
materials and the specific type of nonlinear material. Restrict-
ing attention to linear materials, to see if a single function
could adequately describe post-contact deflection curves for
this range of stiffnesses, we fit varying percentages of the data
with a three-term polynomial (constant, a linear term and a
higher order term) letting the exponent of the higher order
term be a free parameter. The results are shown in Fig. 3.
Though there is no single function that fits all deflection
curves, a quadratic function fits well for stiffnesses less than
10kPa — if more than 30% of the post-contact data are used.
For intermediate stiffness, i.e. 10kPa, a quadratic fit is also
reasonable but only if 30% of the initial post-contact data
are used. For stiffnesses of 100kPa or more, a linear fitis a
reasonable approximation — but only if more than 75% of the
data are used for fitting.

[¥]

Substrate

Fig.1 Schematic of a cone with a spherical tip indenting an elastic half-
space (redrawn from Briscoe et al. 1994) with the following parameters:
a = radius of contact between material and axisymmetric indenter; b =
radius of beginning of cone R = radius of curvature of spherical tip & =
indentation depth 4 * = height of spherical tip 6 = semi-included angle
of equivalent cone
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Fig. 2 a Normalized, simulated deflection curves for linear materials of different elastic moduli. All curves were normalized such that the max-
imum deflection was equal to one. b Normalized, simulated deflection curves for materials with Mooney—Rivlin, polynomial and exponential
stress—strain laws. All curves have the same contact point located where the cantilever z-position equals

2.2 Identifying the contact point

Based on the above findings, we propose a method to auto-
matically and objectively determine the contact point from
deflection curves by assuming that: (1) prior to contact with
the sample, the relationship between cantilever position and
deflection is linear (with slope close to zero) and changes
either to an approximately quadratic one after contact — if the
material is not too stiff — or to a linear relationship (with slope
much greater than zero) for stiffnesses of 100 kPa and greater.
(2) The contact point is the transition between the initial
linear and the susbsequent quadratic or linear relationships.

The flow chart in Fig. 4 outlines the major features of this
algorithm — each of which is summarized below:

e One first needs to determine the noise level of the data. A
reasonable assumption is that the fluctuations in the deflec-
tion signal prior to contact are due to noise, which can be
quantified by the standard deviation of the signal where
contact has clearly not occurred. The algorithm is not sen-
sitive to the specific amount of data encompassed — as long
as one is certain to include only data where contact has not
occurred. A representative deflection curve obtained on an
endothelial cell is shown in Fig. 5. While any of a number
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Fig. 3 Exponents of the best-fit polynomial for the post-contact region for linear materials with different elastic moduli as a function of the amount
of data used in the fitting. The simulated deflection versus z-position curves from which these results were obtained are those shown in Fig. 2

of different approaches can be used to ascertain the noise

level, we have found the following empirical scheme to be Determine noise level of
workable. To avoid possible initial artifacts that can some- the signal.

times occur during an experiment, to ensure sufficient data

for robust statistics, and to enable automatic quantification l

of a number of deflection curves, we calculate the standard Set the boundaries for the region
deviation of the signal in the initial 12.5 to 37.5% of the containing the contact point.
data (box A in Fig. 5a).

e After contact, as the cantilever is advanced, the tip deflec-
tion becomes progressively greater than the noise. Hence,
the contact point must be between a lower and an upper
bound of the cantilever position. We use the following pro-
cedure to find these initial bounds. Beginning with the data
used to define the noise level, we examine moving subsets
containing 25% of all of the data. When the difference in Construct a pair of best-fit curves corresponding
cantilever deflection between the beginning and the end of to each point within the contact region.
the subset is more than eight times the noise level, we pre-
sume that contact has occurred. We define the beginning
and end of this data subset as the initial lower and upper
bound, respectively. Box B in Fig. 5a demonstrates one of
these data subsets defining the lower and upper bound.

e The data within the bounds likely contain the contact point.
To identify it, we need to make two different fits to the data

h 4

Estimate stiffness based on secant method
and adjust boundaries accordingly.

A 4

Y

Calculate and scale the fit parameters.
Compute the sum of scaled parameters.

A 4

— one using data before and one after the contact point The contact point is the first point of the
(see below). As indicated in Fig. 3, depending upon the post-contact portion of the pair of curves that
stiffness, differing amounts of data should be used for fit- has minimum sum of parameters.

ting. Hence, if the putative contact point is too close to
either bound there may be insufficient data to obtain rea-
sonable fits. For example, the contact point for a very stiff
material may be very close to the upper bound and vice
versa for a very soft material. Hence, the bounds may need we only need to distinguish very stiff materials i.e. those
some adjusting, depending upon an estimate of the stift- of >100kPa from softer ones, a crude estimate of stiffness
ness, to provide sufficient data for an accurate fit. Since should suffice. Such an estimate can be obtained from the

Fig. 4 Flowchart of the contact point identification algorithm
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slope of the secant (Ay/Ax) of the post-contact data, from
the initial upper bound to the maximum deflection, as illus-
trated in Fig. 6a. As shown in the inset to Fig. 6a, the slope

<

Fig. 5 a A typical deflection curve for a human aortic endothelial cell.
Box A denotes the region used to ascertain the noise level of the signal.
Box B denotes the bounds (the region most likely to contain the actual
contact point). The solid curve corresponds to the pair of best-fit curves
that determines the contact point. Note that the curve only fits well 30%
of the post-contact data well. Data were obtained with a Digital Instru-
ments Bioscope operated in a 4 x 4 force—volume mode covering 5.24
x 5.24 um at a frequency of 1 Hz with a z-piezo travel of 2000 nm. The
cantilever was from Park Instruments, Inc. and was V-shaped with a
length of 220 pm with a stiffness of 0.0197 nN/nm as estimated from
its natural frequency in air b An expanded view of the region contain-
ing the contact point and best-fit curves (solid line and curve) of the
data shown in (a). The asterisk denotes the calculated contact point.
The high level of noise is clearly evident in this region. The dashed
line and curve illustrate how the parameters A and § are defined. The
discontinuity, 8, is the difference between the end of the linear fit and
the beginning of the quadratic fit. A is the difference between the nadir
and the beginning of the quadratic portion. In this example, there is
large discontinuity, §, but A is zero. The dashed curve better fits the
post-contact data in an RMS sense than the post-contact curve of the
best-fit pair, but clearly this curve does not correspond to the contact
point. ¢ The same data and nomenclature as (b) except that the dotted
line and curve illustrate another pair of A and § obtained from fitting a
different portion of the data. In this fit § is approximately zero, but A
is non-zero

also distinguishes the very stiff material from the others.
Hence, the bounds are adjusted based on this value of the
slope.

e Empirically, the following scheme to adjust the bounds
greatly speeds the subsequent fitting and slightly improves
the accuracy of the algorithm. For values of the slope of
the secant between 0.01 and 0.1, 0.1 to 0.5 and >0.5, the
lower bound is moved in the cantilever advancing direc-
tion to truncate the amount of data within the bounds to 15,
10 and 5%, respectively. By removing data where contact
has likely not yet occurred, this truncation simply elimi-
nates the number of putative contact points that need to be
examined. If the slope of the secant is <0.01, i.e. a very
soft material, however, rather than truncating the dataset,
the upper bound and lower bounds are both moved 5%
opposite the cantilever advancing direction so as to retain
25% of the data.

e Once the bounds are adjusted, each datum in the subset is
tested as a putative contact point by using a pair of best-
fit curves as follows. A line is fit to the data beginning at
the lower bound and ending one point prior to the candi-
date contact point. A quadratic or linear fit is made to the
data starting at the candidate point and ending somewhere
above the upper bound. How many points above the upper
bound to include is also determined by the value of the
slope of the secant. If the slope is greater than 0.5 (a very
stiff material) we use a linear approximation and fit 75%
of the data beyond the putative contact point. If the slope
of the secant is between 0.01 and 0.5 we fit 30% of the
post-contact data with a quadratic function. If the slope of
the secant is less than 0.01 we use 75% of the post-contact
data for the quadratic fit. This is because the maximum
deflection of very soft materials is very small and using
75% rather than only 30% of the data helps ensure that we
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incorporate some deflections greater than the noise level.
These empirical guidelines have been found to provide
sufficient data for robust estimates of the contact point
while still keeping computational time reasonable.

e For each pair of best-fit curves three measures are cal-
culated: (1) the RMS value to provide an estimate of the
goodness of fit; (2) the discontinuity between the end of the
linear fit and the beginning of the quadratic fit (§in Fig. 5b,
¢); (3) the difference between the end of the linear fit and
the nadir of the quadratic fit (Ain Fig. 5b,c, Table 1).

e RMS, § and A for all of the regression pairs are then scaled
so that each measure has a mean value between 1 and 10.
The scaling is done to help ensure that the sum is not overly
weighted by extreme values of one of the measures. The
three scaled measures are added and the first post-contact
point in the pair of regressions with the lowest sum is des-
ignated to be the contact point.

The algorithm for this scheme is implemented in Mat-
lab. Additionally, once the contact point is determined, each
deflection curve is plotted, with the contact point clearly iden-
tified, to allow visual assessment (as shown in Fig. 5a).

All of the above guidelines for implementing the algo-
rithm were based on materials with linear stress—strain laws.
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Fig. 6 a. Illustration of how an initial estimate of material stiffness is
estimated by the slope of the secant. This estimated stiffness is only
used to adjust the bounds of the data within which the contact point is
likely to be found. b. The results of adjusting the bounds based on the
slope of the secant value obtained as described in Fig. 6a is illustrated
for a 1 kPa material. The contact point is shown by the asterisk

Since, in practice, one does not know a priori the type of
material being examined, it is important to see how well the
algorithm identifies the contact point for nonlinear materials.
Therefore, we applied the same guidelines and approach to
identify the contact point for the simulated deflections curves
for the three types of nonlinear materials.

Another method for identifying the contact point using
a two-parameter Monte Carlo optimization to fit a section
of the post-contact portion of the deflection curve with the
free parameters being the contact point and the elastic mod-
ulus was proposed (Rotsch et al. 1999). This method identi-
fied the contact point and the elastic modulus simultaneously.
It should be noted that this method assumes that the tip is
an ideal cone and that the material has a constant elastic
modulus. For all the simulated data for linear and nonlinear
materials, the contact points identified by this method were
compared to ours.

2.3 Mechanical properties

Once the contact point is identified, the deflection curve is
converted back to a force-indentation curve from which we
determined the mechanical properties of the material as previ-
ously described (Costa and Yin 1999). Specifically, we com-
puted an apparent point-by-point elastic modulus (E,p) as a
function of indentation depth using Eqns. 1,2 and 3. To further
ascertain how well the algorithm works for the three types of
nonlinear materials, we generated indentation force—depth
curves, based on the contact point identified by the algo-
rithm, and compared the indentation depth dependence of Ep,
obtained from those curves with the previously obtained finite
element simulation force—depth relationship. If the contact
point was identified correctly, the same relationships should
be obtained.

2.4 Effects of misidentifying the contact point

To assess the effect of misidentifying the contact point on the
simulated £, —indentation depth relationship, we purposely
misidentified the contact point of the simulated deflection
curves for the linear material with a modulus value of 10kPa
and for the MR, polynomial, and exponential materials. We
examined the effects of missing the contact point by up to

Table 1 Summary of the suggested search parameters for identifying
the contact point for linear materials of various stiffnesses

Slope of the secant Amount of Post-contact Post-contact
value (stiffness deflection data fit type data fit (%)
characterization) in revised
bounds(%)
0.5-1.0 (Very stiff) 5 Linear 75
0.1-0.5 (Moderately Stiff) 10 Quadratic 30
0.01-0.1 (Moderately Soft) 15 Quadratic 30
< 0.01 (Very Soft) 25 Quadratic 75
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Table 2 Results of our approach to identifying the contact point with and without simulated noise equivalent to 0.25 nm of deflection

Modulus of linear material (kPa) Material type

0.1 1 10 50 100 MR POLY EXP
No noise 0 0 0 0 0 +3 +2 > =25
Noise +2 -1 -1 -1 -1 -2 +1 > =25
Rotsch algorithm > =25 +4 +4 0 +4 0 -10 > +25
Calculated Ep, (kPa) 0.094 1.02 10.22 51.67 103.83 NA NA NA

The results for the same noisy data using the algorithm proposed by Rotsch et al. are also shown. The number listed is the number of data points
by which the contact point was misidentified. The sign (4-/—), indicates the direction (prior/after) in which the contact point was missed. One data
point for the linear materials equals 10nm and for nonlinear materials equals approximately 5 nm. The asymptotic values of the elastic modulus
obtained from the force-depth relationships, based on the identified contact point, for the linear materials are also shown

ten data points (100nm), before and after the actual contact
point for the linear material and up to five data points for the
nonlinear materials. For each of these misidentified indenta-
tion force—depth curves, we calculated the depth dependence
of Epp as described above.

2.5 Effects of noisy data

To realistically account for the effects of noise in the simula-
tions, we first determined the standard deviation of the noise
in the region spanning 400 nm of piezo travel in the pre-con-
tact region of several typical deflection curves obtained from
cells. The standard deviation of the noise averaged approxi-
mately 0.25 nm. Thus, noise with standard deviations of 0.15,
0.25 and 0.35nm was randomly added to the raw simulated
data using the randn function to attain simulated, “noisy”
deflection curves. The resulting “noisy” force—depth curves
were then analyzed as above.

Finally, to assess the combined effects of both noise and
misidentifying the contact point, we generated force—depth
curves with the contact point misidentified over the same
range as above for the linear material but with random noise
with a standard deviation of 0.25 nm added.

3 Results
3.1 Identifying the contact point

The accuracy of identification of the contact points predicted
by our algorithm, as well as the alternative one by Rotsch
et al, for all of the simulated deflection curves are summa-
rized in Table 2. Even though our algorithm was developed
for linear materials, it is able to correctly identify the con-
tact point within three data points for the nonlinear MR and
POLY materials. Additionally, even in the presence of noise,
for all the linear materials and for all but the material with an
exponential stress—strain law, the predicted contact point is
within two points of its actual value. For the softest material,
the algorithm performs remarkably well considering that the
maximum deflection of that curve is only approximately ten
times the noise level. The asymptotic values of Ep;, obtained

from the force—depth relationships for the linear materials,
based on the automatically identified contact point in the pres-
ence of noise, are also shown in Table 2. It is clear that the
contact point is identified sufficiently closely to obtain values
of the elastic modulus that, at worst, are within about 3% of
the correct value.

The algorithm proposed by Rotsch et al. performed more
poorly than ours for all but the MR material. The fact that it
performs very poorly for the softest material suggests thatitis
also more sensitive to the signal-to-noise ratio than our algo-
rithm. Also, one can see that the algorithm performs much
more poorly as materials get more non-linear. This is not at
all unexpected since that algorithm assumes that the material
being indented has a constant elastic modulus.

3.2 Effects of misidentifying the contact point

The effects of misidentifying the contact point, assessed in
terms of the Ep, — indentation depth curves, are shown in
the panels of Fig. 7. The results for a linear material are
shown in Fig. 7a. The E},, values for the initial 200nm of
indentation may be incorrect by more than an order of mag-
nitude if the contact point is missed by five points (50 nm)
or more but they asymptotically approach the correct value
at sufficiently high indentation depths. The amount of inden-
tation necessary to approach the correct value increases the
more the contact point is missed. Figure 7b illustrates the
effect of misidentifying the contact point for a MR mate-
rial. As with the linear material there is a similar asymptotic
approach to the correct value with increasing indentation —
even though Ej,; is no longer constant with indentation depth.
Figures 7c, d illustrates the effects for the POLY and EXP
materials, respectively. For both types of materials an error
in identifying the contact point does not change the overall
depth-dependence of Ep, but, like the linear materials, the
greater the misestimation of contact point, the larger is the
range of uncertainty for £, at any depth. For the POLY mate-
rial, as indentation depth increases the error bounds decrease
such that at depths greater than 200 nm the estimated values
of Epp, are well within a factor of two of being correct. For
the EXP material, however, a different trend is observed. For
indentation depths of about 100 up to 200 nm the estimates
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Fig. 7 Semi-logarithmic plots of apparent, point-by-point elastic modulus as a function of indentation depth showing the effect of misidenti-
fying the contact point for a a linear material with an elastic modulus of 10kPa; b a material with nearly linear (Mooney—Rivlin) stress—strain
law — results obtained from the finite-element model (FEM) are also shown.; ¢ a material with a polynomial stress—strain law; d a material with an
exponential stress—strain law. The data are normalized so that the Ep, of the correctly identified contact point is 1. The + and — signs associated
with each symbol indicate misidentification prior to or after the actual contact point

of E,, are within a factor of 2 but rather than decreasing as
indentation increases, the error bounds increase to an order
of magnitude or more beyond 400 nm. Note, that the effects
on the error bounds for both linear and nonlinear materials
are not symmetric — identifying contact incorrectly “before”
results in greater error than “after” the true contact point.

3.3 Effects of noisy data

The effects of varying levels of noise on the resulting
Epp —indentation depth curves for linear materials are shown
in Fig. 8. As with misidentifying the contact point, the ef-
fects of noise are most severe at indentations less than about
100nm. The predictions asymptotically approach the true
value at larger indentation depths. Unlike missing the contact
point, however, higher noise levels do not cause further devi-

ations of the asymptotic value from the actual value. In fact,
for larger indentations, the results seem to be independent of
the noise level.

The combined results of noise and misidentifying the con-
tact point by differing amounts are shown in Fig. 9a. Com-
pared with Fig. 7a, it appears that there is not a large additional
effect of noise on the estimation of Ep,. This is explicitly
demonstrated in Fig. 9b which is a plot of the differences in
Epp between Figs. 7a and 9a. The limited influence of noise
confirms the impressions of Fig. 8.

4 Discussion

Our results demonstrate the ability of the algorithm to accu-
rately identify the contact point, even in the presence of noise
of the level typically observed in AFM studies. Additionally,
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Fig. 8 Similar to Fig. 7 except illustrating the effect of random noise
on the apparent, point-by-point elastic modulus of a linear material. For
comparison, the results with no noise are also shown. Sample deflec-
tion curves on cells have a noise level with a standard deviation of
approximately 0.25nm

even though the algorithm was developed based on behav-
ior of linear materials, the contact point can be identified
accurately for certain nonlinear materials, namely MR and
POLY material types. However, as shown in Table 2, the con-
tact point for materials with exponential stress—strain laws
of the type we examined could not be identified reliably —
likely due to the extremely wide range of stiffnesses of this
type of material. This, in addition to the fact that the er-
ror bounds for the apparent modulus increase as indentation
depth increases, are potential limitations one needs to keep
in mind when determining mechanical properties for mate-
rials with this type of stress—strain law. These results high-
light the importance of knowing the type of material that is
being examined but this is not usually known a priori. For-
tunately this conundrum can be easily resolved because, as
previously reported, the depth dependence of the apparent
modulus is distinctly different among the linear and non-
linear material types (Costa and Yin 1999). This is because
materials with nonlinear properties had subtle, but clearly evi-
dent, deviations from the quadratic force—depth relationship
characterizing a linear material. Properly accounting for tip
geometry and calculating an apparent, point-by-point elastic
modulus not only enable quantification of mechanical prop-
erties without the limitations of the Hertzian contact method
(discussed in more detail below), but also does not require
a priori knowledge or assumptions about the type of mate-
rial. This is because the point-by-point method is the ultimate
piecewise linear approximation to a nonlinear function.
One important additional finding of the current study is
that the basic shapes of the Ej,,—depth relationships are pre-
served for all types of materials, regardless of whether the
contact point is accurately determined — at least within the
range of values we examined. For linear, MR and POLY mate-
rials misidentifying the contact point results in an uncertainty
for Ep, that is bounded. The uncertainty depends upon both
the material type and the amount of misidentification of the
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Fig.9 aSimilar to Figs. 7 and 8 except illustrating the combined effects
of misidentifying the contact point (10 points prior to and after the actual
contact) and noise (0.25 nm) on the elastic modulus of a linear material.
b Pointwise differences between the normalized elastic modulus curves
shown in Fig. 9a and those shown in Fig. 7 to highlight the effects of
noise

contact point. Therefore, if one is not confident that the algo-
rithm has accurately identified a contact point and the result-
ing estimations of apparent modulus, one can employ the
following alternative procedure. Select a group of potential
contact points thereby resulting in a range of possible values
of the apparent modulus. This estimation might suffice for
some applications. Alternatively, if one can identify contact
points that are clearly before and after the unknown actual
contact point, one will obtain an upper and lower bound for
the apparent modulus. Progressively moving these putative
contact points closer together should enable more precise
estimations of the apparent modulus.

Our approach was developed for linear materials with a
certain range of stiffnesses and a specific value for the cantile-
ver stiffness. This does not mean that data for softer or harder
materials or other cantilever stiffnesses cannot be analyzed.
Rather the results should be viewed as guidelines suitable
for relative cantilever to material stiffnesses in the range we



Contact point and micromechanical properties by AFM

209

examined. Of course, in practice one does not know a priori
how stiff the material is. Thus, it is clear that some empiri-
cism and insight need to be utilized to obtain accurate results.
Nevertheless, since the algorithm performed well over sev-
eral orders of magnitude of material stiffnesses, we expect it
to be widely applicable.

A general guideline for choosing a cantilever stiffness to
match the material being indented would be to select a can-
tilever that yields, on average, deflection curves that appear
much like the 1-10kPa curves presented here. Specifically,
the cantilever is sufficiently soft, relative to the material being
indented, to provide substantial deflection relative to the noise
level of the signal, but stiff enough to still allow substantial
indentation. Moreover, there must be sufficient pre-contact
data to allow estimation of the noise level, there must be suffi-
cient deflection to allow accurate fitting of data beyond the
upper bound, and there should not be large pre-contact anom-
alies such as jumps or “snap-to” effects. It should be pointed
out that the approach described herein for the algorithm, i.e.
the amount of data to include to estimate noise, the initial
estimate of the material stiffness and the bounds and amount
of data to use for the fitting, etc. are simply guidelines based
on our experience and are validated by our simulations. In
other situations, slightly different guidelines might pertain.
Clearly some judgment is still required to analyze compli-
cated AFM data, but the approach outlined herein should
both facilitate data analysis and also provide considerably
more confidence in the interpretations than the approaches
currently being used. As long as one is cognizant of these con-
straints when the AFM indentation data are being acquired,
the proposed approach and the estimated material properties
are likely to be reasonably close to the real values.

The results for linear materials indicate that the elastic
modulus asymptotically approaches the correct value at suffi-
ciently large indentation depths — even if one misidentifies the
contact point by a few data points. Similar results for analy-
sis of indentation of polymer gels were also recently reported
(Dimitriadis et al. 2002). While the asymptote provides the
most accurate assessment of the stiffness of linear materials,
one must recognize that the equations on which the point-
by-point modulus is based, assume an infinite half-space.
This implicitly presumes that there is no effect of the sub-
strate — no matter how large the indentation. Clearly this is
not the case. Depending upon the thickness of the material,
once a certain amount of indentation is exceeded, the mechan-
ical properties of the substrate will affect the data. We previ-
ously reported an analysis of this effect for flat indenters and
suggested guidelines to minimize substrate effects (Karduna
et al. 1997). Similar analyses for more complex tip geom-
etries have also been reported (Costa and Yin 1999; Jaffar
1995). These studies provide a basis for deciding in other
situations whether this important assumption is reasonable.

There are several other aspects of the approach that
deserve further discussion. First, the tip geometry-dependent
equations presented earlier are used only to obtain the sim-
ulated deflection curves for the various materials. Identifi-
cation of the contact point does not require any implicit

assumptions about the shape of the cantilever tip. Second,
while the value of 0.5 used for Poisson’s ratio is not correct
for nonlinear materials, the point-by-point modulus is effec-
tively a pointwise linear approximation for nonlinear materi-
als. Therefore, using that value is defensible and, moreover,
will not affect any of the interpretations with respect to the
influence of contact point identification on the estimated Ej,
since the same factor is used regardless of the contact point.
Third,it is important to emphasize that the initial, crude esti-
mate of stiffness based on the slope of the secant is only used
to restrict the number of possible contact points to test and to
inform the amount of data to include in the fitting portion of
the algorithm to identify the contact point. Once the contact
point is identified, the subsequent analysis to estimate mate-
rial properties is not affected or limited by the amount of
data used in the fitting. Using these restrictions to search for
the contact point may be why the algorithm performs fairly
well, even for materials with nonlinear stress—strain laws. In
contrast, the algorithm proposed by Rotsch et al. cannot be
used to analyze nonlinear materials because their approach
explicitly assumes a linear material. Finally, not only does the
present algorithm appear to accurately identify the contact
point, but restricting the search range also reduces consider-
ably the computational time. For example, a complete anal-
ysis of 64 indentations, each containing 256 data points, was
completed in less than 20s on a Dell OptiPlex GX260 with a
2.4 GHz Pentium 4 processor and 256 MB of RAM. This is
many times faster than multi-parameter optimizations, espe-
cially of the Monte-Carlo type. This can be important when
many curves are being analyzed, such as in force mapping.
Although the proposed method is automatic, it is still desir-
able to visually inspect the data to ascertain that the estimated
contact point is reasonable. Based on the quality of the data,
the type of material being examined, and the experimental
conditions, i.e. indenting in air or under fluid, one can then
decide whether this automatic approach is justified.

The most common approach to assessing mechanical
properties from AFM indentation data is to fit the entire tip
deflection (force) — indentation depth relationship to a qua-
dratic function from which a Young’s modulus is estimated
based on Hertzian contact mechanics. This contact mechan-
ics approach implicitly assumes three things: (1) the tip is a
smooth curved surface; (2) the deformations under the tip are
infinitesimally small; and (3) the material has a linear stress—
strain law and, as shown herein, is relatively soft. As our
results indicate, in general indentations greater than about
100nm are necessary to distinguish signal from noise and
indentations greater than 200 nm may be needed to accurately
estimate material properties — depending on how much one
misidentifies the contact point. This need for indentations of
this amount must be viewed in the context that most AFM
cantilever tips are spherical caps of approximately 30 nm in
diameter merging into a pyramid. Indentations sufficiently
large to allow one to confidently estimate material properties
clearly violate the assumption of infinitesimally small defor-
mations under the tip that are needed for contact mechanics
to pertain. Moreover, since the force — depth relationship
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beyond the initial spherical cap region is dominated by the
pyramidal geometry of the tip, assuming a spherical geom-
etry for all indentation depths is also not valid. All of these
considerations render using analyses based on Hertzian con-
tact mechanics problematic. This issue has been addressed
in more detail in recent publications (Costa and Yin 1999;
Costa, et al. 2006).
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