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Preface

Objective of the Book

In today’s world where technology is applied at every application, there has been a
huge demand of implementation of signal-, image- or video-processing algorithms.
These real-time systems consist of both analog and digital sub-systems. The analog
part ismainly responsible for signal acquisition step and the processing part ismajorly
achieved by digital sub-systems. An optimized implementation of a digital system
is very crucial to improve the performance of the overall integrated circuit (IC).

Digital system design is not a new thing to the researchers or to the engineers in
the field of VLSI system design. The field of digital system design is divided into
two zones, viz., transistor-level design and gate-level architecture design. Over the
past few decades many research works, books or online tutorials on both the topics of
digital system design are published. In this book, gate-level design of digital systems
using Verilog HDL is discussed. The major objective of this book is to cover all the
topics which are very important for a gate-level digital system designer.

This book covers some basic topics from digital logic design like basic combina-
tional circuits and sequential circuits. Also covers some advanced topics from digital
arithmetic like fast circuit design for addition,multiplication, division and square root
operation. Realization of circuits using Verilog HDL is also discussed in this book.
Overview on the digital system implementation on Field Programmable Gate Array
(FPGA) platform and for Application-Specific Integrated Circuit (ASIC) is covered
in this book. Timing and power consumption analysis are two most important things
that must be performed to make successful implementation. Thus this book covered
these two areas to give readers an overview on timing and power analyses. At the
end, few design examples are given in this book which can help readers directly or
indirectly. Thus this book can be a perfect manual to the researchers in the field of
digital system design.
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Organization of the Book

Chapter 1 focusses on the representation of binary numbers. This chapter discusses
the representation of binary numbers in One’s complement, Two’s complement and
Signed magnitude number system. Basics of floating point data representation and
fixed point data representation is discussed in this chapter. Signed binary number
system which is frequently used for performing fast arithmetic operations is also
discussed.

Chapter 2 discusses the Verilog HDL which is a very powerful programming
language to model the digital systems. In this chapter, concepts about the Verilog
HDL are discussed with suitable examples. All the different programming styles
are discussed with the help of simple Multiplexer design. The test bench writing
technique is also discussed in this chapter.

Basic concepts of combinational circuits are discussed in Chap. 3. All the major
combinational circuits are covered in this chapter. Some of the basic circuits are
Adder/Subtractor, Multiplexer, De-multiplexer, Encoder and Decoders. In addition
to these circuits, designof 16-bit comparator, constantmultipliers and code converters
is also discussed.

Basic concepts of sequential circuits are discussed inChap. 4. This chapter initially
covers the concepts of different clockedflip-flops and then discusses about the various
shift registers.Counter is a very important sequential circuit and this chapter discusses
design of a simple synchronous up counter. Then this up counter is converted to a
loadable up counter. In addition to the counter design, designof pseudonoise sequence
generator and clock division circuits is also discussed.

In Chap. 5, memory design problem is discussed. This chapter mainly focusses
on realization of memory elements using Verilog HDL. Behavioural HDL coding
style is used to model the memory elements. Verilog codes for ROM and RAM are
provided in this chapter. In addition to the single port memory elements, dual port
ROM and dual port RAM are also modelled in this chapter.

Design of Finite State Machines is very important in designing digital systems.
Thus a detailed discussion on the FSM design is given in Chap. 6. Design of Mealy
and Moore machine is explained with the help of ‘1010’ sequence detector. Then
some of the applications are discussed where FSM design style is used. Various
FSM state minimization techniques are also discussed in this chapter using a design
problem.

Various architectures for addition operation are discussed in Chap. 7. This chapter
mainly focusses on fast addition techniques but also discusses some other addition
techniques. The different techniqueswhich are discussed here areCarryLook-Ahead,
Carry Skip, Conditional Sum, Carry Increment and Carry Bypass. Multi-operand
addition techniques like Carry Save Adders are also discussed here.

Chapter 8 focusses on various architectures for multiplication operation and these
architectures can be sequential or parallel. The array multipliers for both signed and
unsigned operands are discussed. Like previous chapter, this chapter also focusses
mainly on fast multiplication techniques like Booth multiplier. But, other important
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multiplier design aspects like VEDIC multiplication techniques are also discussed
here. Along with the multiplication, techniques to efficiently compute square of a
number are also discussed in this chapter.

Chapter 9 discusses various division algorithms like restoring and non-restoring
algorithmwith proper example. Implementationof these algorithms is discussedhere.
Basic principle of SRT division algorithm is also given here with some examples.
Some iterative algorithms for division operation are also explained here. Along with
the division operation, computation of modulus operation without division operation
is discussed in this chapter.

Square root and square root reciprocal are also very important arithmetic opera-
tions in implementing digital systems. Thus in Chap. 10, various algorithms and
architectures to compute square root and square root reciprocal are discussed.
Sequential algorithms, restoring and non-restoring algorithm also can be applied
to compute square root. Likewise SRT algorithm is also applicable for square root
with minor modifications. Some iterative algorithms are also explained to compute
square root and square root reciprocal.

CORDIC algorithm is a very promising algorithm to compute various arithmetic
operations and some other functions. Thus in Chap. 11, CORDIC theory and its
architectures are explained. Two architectures for CORDIC are possible, serial and
parallel. Both the architectures are discussed in detail. This chapter also provides
a brief survey on different CORDIC architectures which are reported in recent
publications.

Till this chapter fixed point data point is used to implement the digital systems.
But floating point representation is another technique to represent the real numbers.
Floating point data format is useful if high accuracy is desired. Thus in Chap. 12
floating point architectures are discussed to compute addition/subtraction, multipli-
cation, division and square root with proper examples.

Timing analysis or more specifically static timing analysis is an important step to
verify that a digital IC will work satisfactorily after fabrication or not. Thus Chap. 13
focusses on explaining different timing definitions and important concepts of static
timing analysis. These topics are discussed here so that readers can carefully plan
their design for desired maximum frequency at strict area constraint.

Digital systems can be implemented on FPGA platform or can be designed for
ASIC as an IC. Chapter 14 covers a detailed discussion on the FPGA and ASIC
implementation steps. First a detailed theory on the FPGA device is discussed and
then the FPGA implementation steps are explained using XILINX EDA tool. A brief
theory on the ASIC implementation using the standard cells with help of CADENCE
EDA tool is covered.

Power consumption is a very important designmetric to analyse the design perfor-
mance. ThusChap. 15 focusses on various techniques to achieve lowpower consump-
tion. Dynamic power consumption can be reduced at every level of abstraction.
Dynamic power consumption reduction using both algorithmic and architectural
techniques is discussed here.

Example of some digital systems is given inChap. 16 to give the readers idea about
designing their own systems. First, implementation of digital filters (FIR and IIR) is
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described using various topologies. Comparative study of the performances of the
different FIR and IIR filter structures is also given. Two algorithms are implemented
on FPGA which are K-means algorithm and spatial Median filtering algorithm. In
addition to this, various sorting structures and architectures for matrix multiplication
are discussed. At last, Verilog codes are provided to interface SPI protocol-based
external ICs (DAC, ADC) or computers and micro-controllers using UART protocol
with the FPGA device.

Verilog HDL is very popular in modelling the digital systems but has some limita-
tions when verification of such systems comes into the picture. Thus system Verilog
develops. Nowadays, system Verilog is mostly used and industry standard, which
combines the features of C++ and Verilog. Basics of system Verilog is discussed
in Chap. 17. This chapter highlights the major features of system Verilog and the
differences from Verilog HDL.

Many advanced technologies are established to program the FPGAs. One such
advancement is the idea to integrate the whole system on a single chip. In order
to do this, many modern FPGAs are accommodating a dedicated processor. Partial
re-configuration is another advanced feature of modern FPGAs. Thus in Chap. 18,
these modern techniques of FPGA implementation are discussed.

Bengaluru, India Shirshendu Roy
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Chapter 1
Binary Number System

1.1 Introduction

Representation of numbers is very important in digital systems for efficient perfor-
mance. Binary number system (BNS) is a common way to represent any number
in digital systems. In this conventional system, number representation should be
valid for both positive and negative numbers. Also, representation technique should
produce maximum accuracy in representing a real number. In addition to this con-
ventional BNS, some computers adopted unconventional number systems to achieve
faster speed for performing addition, multiplication or division. These unconven-
tional number systems may have higher base compared to base 2 of binary system.
This chapter will discuss basics of BNS and its representation techniques.

1.2 Binary Number System

Integers are represented usingBNS in the digital systems implemented on computers,
micro-controllers or on FPGAs. Any number is represented by two symbols which
are ‘0’ and ‘1’ in BNS. A number X of length n is represented in BNS as

X = {xn−1, xn−2, ..., x1, x0} (1.1)

Here, each digit or bit (xi ) takes value from the set {0, 1} and an integer is represented
using n-bits. The value of n is important in correct representation of an integer. This
decides the accuracy of a digital system. The value of the integer can be evaluated
from the binary representation as

X = xn−12
n−1 + xn−22

n−2 + .... + x12
1 + x02

0 =
n−1∑

i=0

xi2
i (1.2)
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2 1 Binary Number System

1.3 Representation of Numbers

In the implementation of a digital system, an integer can be positive or negative. The
representation of integers should be done in a way that it can represent both negative
and positive numbers. There are three major ways to represent the integers which are

1. Signed Magnitude Representation.
2. One’s Complement Representation.
3. Two’s Complement Representation.

1.3.1 Signed Magnitude Representation

In the signed magnitude representation, sign and magnitude of a number are repre-
sented separately. Sign is represented by a sign bit. For an n-bit binary number, 1-bit
is reserved for sign and (n − 1) bits are reserved for magnitude. In general BNS,
MSB is used for sign bit and logic 1 on this bit represents the negative numbers. This
format is shown in Fig. 1.1. The maximum number that can be represented in this
number system is

Xmax = 2n−1 − 1 (1.3)

This number can be both negative and positive depending upon theMSB bit. If n = 8
then Xmax = 127. In this representation, zero does not have unique representation.
Signed magnitude representation has a symmetric range of numbers. This means
that every positive number has its negative counterpart. The integer X = −9 can be
represented in signed magnitude representation as X = 10001001. Here, 7 bits are
used to represent the integer and the MSB is 1 as the integer is negative.

Example

Addition of two numbers X1 = −9 and X2 = 8 can be done in the following way:

1 0 0 0 1 0 0 1 X1
– 0 0 0 0 1 0 0 0 X2

0 0 0 0 0 0 0 1 Y

In the above example, X1 is a negative number and X2 is a positive number. Thus
the X2 is subtracted from X1 that results Y . In signed magnitude representation, sign

MSB
(Sign)

(n-1)-bits
(Magnitude)

Fig. 1.1 Signed magnitude representation
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Table 1.1 Addition of two signed magnitude numbers

MSB (X1) MSB (X2) Operation MSB (Y )

X1 < X2 X1 > X2

0 0 Addition 0

0 1 Subtraction 1 0

1 0 Subtraction 0 1

1 1 Addition 1

bits of the operands decide the operation to be performed on the operands. Table 1.1
shows the addition/subtraction operation depending on the MSB bit of the operands.

If the sign of the two operands are same then the sign of the output is also same.
In other case, comparison of the two operands is required.

1.3.2 One’s Complement Representation

In one’s complement representation, positive numbers are represented in the same
way as they are represented in the signed magnitude representation. The negative
numbers are represented by performing the bit-wise inversion on the number as
shown below:

1. Obtain binary value of the magnitude of the number. For example, X = 9 binary
of the magnitude is 9 = 01001.

2. If the number is negative then invert the number bit wise. For example, −9 in
one’s complement representation is X = 10110.

3. If the number is positive then the binary value is the one’s complement represen-
tation of that number.

The range of the one’s complement representation is

− 2n−1 + 1 ≥ X ≥ 2n−1 − 1 (1.4)

In this representation, zero does not have unique representation as in case of signed
magnitude representation. This representation also has the symmetric range. The
MSB differentiates the positive and negative numbers. The range of one’s comple-
ment representation for n = 8 is −127 ≥ X ≥ 127. When adding a positive number
X and a negative number −Y represented in one’s complement. The result is

X + (2n − ulp) − Y = (2n − ulp) + (X − Y ) (1.5)

where ulp = 20 = 1. This can be explained below with the value of n = 8

X + (256 − 1) − Y = 255 + (X − Y ) (1.6)
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Example

Addition of two numbers X1 = −9 and X2 = 8 represented in one’s complement
can be done in the following way:

1 1 1 1 0 1 1 0 X1
+ 0 0 0 0 1 0 0 0 X2

1 1 1 1 1 1 1 0 Y

One’s complement equivalent of the output is −1. In one’s complement number
system, a carry out is indication of a correction step. This is shown in the following
example:

1 1 1 1 0 1 1 0 X1
+ 0 0 0 0 1 0 1 0 X2

cout = 1 0 0 0 0 0 0 0 0 Y

Here, the result must be 1 but we get 0 instead. The correction is done by adding the
cout with the result.

1.3.3 Two’s Complement Representation

Two’s complement representation is very popular in implementing practical digital
systems. Two’s complement representation of a number can be obtained by first
taking the one’s complement representation and then by adding ulp. The steps for
obtaining two’s complement representation are

1. Obtain binary value of the magnitude of the number. For X = −9 binary of the
magnitude is 9 = 01001.

2. If the number is negative then take one’s complement and then add ulp to it. After
complementing X = 10110 and the final value is 10110 + 00001 = 10111 = X .

3. If the number is positive then the binary value is the two’s complement represen-
tation of that number.

In two’s complement representation, positive and the negative numbers are differ-
entiated by the status of the MSB bit. If the MSB is 1 then the number is treated as
negative. Here the zero has unique representation. The range of numbers in two’s
complement number system is

− 2n−1 ≥ X ≥ 2n−1 − 1 (1.7)

The range is asymmetric as the number−2n−1 (100...000) does not have the positive
counterpart. If a complement operation is attempted on 2n−1 (100...000) then the
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result will be same. Thus in a design with fixed word length, this value is ignored and
symmetric range is used. The usable range of two’s complement representation for
n = 8 is same as that of one’s complement representation. The subtraction operation
in two’s complement representation can be expressed as

X + 2n − Y = 2n + (X − Y ) (1.8)

Example

Addition of two numbers X1 = −9 and X2 = 8 represented in two’s complement
can be done in the following way:

1 1 1 1 0 1 1 1 X1
+ 0 0 0 0 1 0 0 0 X2

1 1 1 1 1 1 1 1 Y

Here two’s complement equivalent of the Y is −1. In two’s complement number
system all the digits participate in the addition or subtraction process. In addition
process, there may be chance of generating carry out and the overflow. If the sign
of the operands are opposite, then overflow will not occur but carry out can occur.
If the result is positive then the carry out occurs. Another example where carry is
generated is shown below:

1 1 1 1 0 1 1 1 X1
+ 0 0 0 0 1 0 1 0 X2

cout = 1 0 0 0 0 0 0 0 1 Y

In this example, result is +1 and carry out (cout ) is generated. The addition and
subtraction process should be done in such a way that the overflow never occur
otherwise wrong result will be produced. Consider the following example:

1 1 0 0 1 −7
+ 1 0 1 1 0 −10

0 1 1 1 1 15

The actual result is −17 but here 15 is produced. Thus it should be taken care that
the final result should not exceed the maximum number that can be represented in
two’s complement representation.
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1.4 Binary Representation of Real Numbers

In the above section, how to represent positive or negative numbers is discussed
considering that the integers do not have the fractional part. But practical integers
can be fractional also. The digital platforms use a specific data format to represent
such fractional integers. There are two types of data formats which are used in any
digital design and these are

1. Fixed Point Data Format.
2. Floating Point Data Format.

1.4.1 Fixed Point Data Format

In the fixed point data format base architectures, the data width to represent the
numbers is fixed. Thus the number of bits that are reserved to represent fractional
part and integer part are also fixed. The fixed point data format is shown in Fig. 1.2.
The decimal equivalent of a binary number in this format is computed as

X = xm−12
m−1 + ... + x12

1 + x02
0 · x−12

−1 + x−22
−2 + ... + x−(n−m)2

−(n−m)

=
m−1∑

i=0

xi2
i +

(n−m)∑

i=1

x−i2
−i (1.9)

Here, m-bits are reserved to represent the integer part and (n − m)-bits are reserved
for fractional part. For example, if the data length is 16 bit and value of m is 6 then 6
bits are reserved for the integer part and rest of the bits are reserved for the fractional
part.

Majority of practical digital systems implemented on any digital platform use this
data format to represent fractional numbers. Now, to represent signed or unsigned
numbers, any of the above techniques (signed magnitude representation, one’s com-
plement representation, and two’s complement representation) can be used. But
mostly the two’s complement representation and signed magnitude representation
are used. In the integer field, (m − 1)-bits are usable as the sign of the number is
represented using the MSB bit. An example to represent a fractional number in fixed
point data format using two’s complement representation is shown below:

m-bits
(Integer Part)

(n-m)-bits
(Fractional Part)

Fig. 1.2 Fixed point representation of real numbers
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1. Let the number be X = −9.875, n = 16 and m = 6.
2. Binary representation of the integer part using 6 bits is 9 = 001001.
3. Binary representation of the fractional part using 10 bits is 0.875 = 2−1 + 2−2 +

2−3 = 1110000000.
4. The magnitude of the number in fixed point format is 001001_1110000000.
5. Perform two’s complement as the number is negative. Thus X = 1_10110_

0010000000.

If 6 bits are reserved for integer part for n = 16, then maximum value of positive
integer that can be represented is 2m−1 − 1 = 31. Maximum representable negative
number is 2m−1 = 32. But to avoid confusion, the range of negative and positive
numbers must be kept same. The maximum representable real number with this
format is

011111_1111111111 = 31.999023438 (1.10)

Any number beyond this maximum number cannot be represented with n = 16 and
m = 6. If the value of m decreases then the resolution of the number increases and
range of representable numbers reduces. This means the gap between two consec-
utive numbers decreases. But if the value of m increases then range increases but
resolution decreases. Designers have to carefully select the value of n and m. All
the architectures discussed in the book are based on the fixed point data format as it
provides an easy means to represent the fractional numbers. But this representation
has some limitations due to its lower range.

1.5 Floating Point Data Format

Floating point data format is another technique to represent the fractional numbers.
Floating point data format increases the range of the numbers that can be repre-
sented. Many dedicated processors or micro-controllers use this format to represent
the fractional numbers. Floating point data format covers a wide range of numbers
to achieve better accuracy compared to the accuracy achieved in case of fixed point
representation. The concept of floating point data format comes from the representa-
tion of real fractional numbers. For example, the fractional number −9.875 can also
be represented as

− 9.875 = −1 × 9875 × 10−3 (1.11)

Other representations are also possible. Thus floating point representation is not
unique. The general format of the floating point representation is

X = S.M.r Eb (1.12)

So, afloatingpoint number has threefields, viz., Sign (S),Mantissa (M) andExponent
(E). Here, r represents the radix and its value is 10 for decimal numbers. Similarly,
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1-bit
(Sign Bit)

4-bit
(Biased Exponent)

11-bits
(Mantissa)

Fig. 1.3 Floating point representation of real numbers

the binary numbers also can be represented in this format where r = 2. Sign of a
number is identified by a single digit. If the Sign bit is 1 then the number is negative
else it is a positive number. In the mantissa part all the digits of the number are
present. Number of bits reserved for mantissa part defines the accuracy.

The floating point data format according to IEEE 754 standard is shown in Fig. 1.3
for 16-bit word length. Here, 11 bits are reserved for mantissa part and 4 bits are
reserved for exponent field. Mantissa part is represented as unsigned version. In
the exponent field, unique representation must be adopted to differentiate positive
and negative exponents. If the two’s complement representation is used, then the
negative exponent will be greater than the positive exponent. Thus a bias is added to
the exponent to generate biased exponent (Eb). For example, if 4 bits are allocated
for exponent field then the bias value is 7 (23 − 1). In general, for p bits the bias
is 2(p−1) − 1. The value of Eb is obtained as Eb = bias + E . In this way, the value
of E = 0 is represented as Eb = bias. Exponent value of E = −1 is represented as
Eb = 6 and the exponent value of E = 1 is represented as Eb = 8. In this way the
negative and positive exponents are distinguished.

Example

Represent the fractional number X = −9.875 in floating point data format for 16-bit
word length.

1. Represent the magnitude of the fractional number in binary. abs(x) = 9.875 =
1001_111.

2. First decide the sign bit. The sign bit is 1 as X is negative.
3. In themantissa part 11 bits are reserved. Thefirst step to represent themantissa part

is to normalize the binary representation. After normalization and adding zeros
the result is 1_00111100000. The normalization is done to restrict the mantissa
part between 1 and 2. Here, the number is shifted 3 bits in the left side. The MSB
may not be included in the final version of the mantissa. The MSB is called as
hidden bit and this bit is ignored in the mantissa representation according to the
IEEE 754 standard.

4. As the mantissa part is 3 bits left shifted then the value of exponent is E = +3
and the value of the biased exponent is Eb = 1010 = 10102.

5. The floating point representation is 1_1010_00111100000.

A detailed discussion on the floating point numbers and floating point architectures
is given in Chap.12.
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1.6 Signed Number System

In the above sections, the conventional methods of BNS are discussed. There exists
some unconventional number systems which are very useful in developing very fast
algorithms for addition, square root or division. One such number system is signed
digit number system. In all the number systems discussed above, the digit set has
been restricted to {0, 1}. However, the following digit set also can be allowed

xi ∈ {r − 1, r − 2, ..., 1, 0, 1, ..., (r − 2), (r − 1)} (1.13)

Here, r − 1 = −(r − 1) and thus each bit is either positive or negative. There is no
need of using separate sign bit. This establishes the concept of signed digit (SD)
number system. Here the binary SD representation will be discussed where the value
of r is 2.

1.6.1 Binary SD Number System

In case of binary SD number system, the digits can take the values from the set

xi ∈ {1, 0, 1} (1.14)

Integers are represented in SD number system in similar way as in the BNS. Only
thing is that in SD number system there are three states compared to two states in
BNS. The number X = 9 is represented in SD number system as

X = 9 = 00001011 = 23 + 21 − 20 (1.15)

Representation of an integer in binary SD number system is not unique. There can
be other representations also. The range of representable numbers (R) in binary SD
number system is

1̄1̄1̄...1̄1̄ to 111...11 (1.16)

If there are n bits used to represent a SD number then R = 3n number of combi-
nations are possible. Among these combinations, many are equivalent. Thus actual
representable integers (Ract ) are Ract = 2n+1 − 1. Thus total redundancy in binary
SD number system is

%Redundancy = R − Ract

R
× 100 (1.17)

The redundancy value is for n = 8 is almost 93%. Binary SD numbers are different
from the conventional binary numbers due to the presence of negative bit 1̄. In order
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Table 1.2 Encoding binary
SD numbers

x Coding 1 Coding 2

0 00 00

1 01 01

1̄ 10 11

Table 1.3 Negative numbers
in binary SD number system

SD form After coding

1̄111 11010101

01̄11 00110101

001̄1 00001101

to simplify the circuits, encoding of the SD digits is very useful. Two such coding
methods are shown in Table1.2.

Representation of negative numbers in binary SD number system is critical as
the MSB no longer decides the sign of an integer. Here, more number of bits from
the MSB are to be analysed to detect that the number is negative. Representation
of −1 using 4 bits is shown in Table1.3 using second coding technique. Avoiding
the leading zeros if two consecutive 1′s are found from MSB then the number is
negative.

Binary SD number system is used to develop fast algorithms for complex arith-
metic operations. In addition or subtraction operation, this number system eliminates
carry propagation chains and thus results in a faster implementation. Consider the
addition operation between two numbers X and Y . Both these numbers are repre-
sented with n-bits. This addition operation generates the sum s and a carry. The carry
chain is eliminated by making si depends only on xi , yi , xi−1 and yi−1. This way the
addition time becomes independent of operand length. The addition algorithm that
can achieve this independence is

1. Compute the intermediate sum (ui ) and carry (ci ) digits as

ui = xi + yi − 2ci (1.18)

where

ci =

⎧
⎪⎨

⎪⎩

1, if xi + yi ≥ 1

1, if xi + yi ≤ 1

0, if xi + yi = 0

(1.19)

2. Calculate the final sum as
si = ui + ci−1 (1.20)

The rules for addition of binary SD numbers are shown in Table1.4. This table does
not include the combinations xi yi = 10 xi yi = 10 and xi yi = 11. This is because
the addition xi + yi is a commutative operation.
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Table 1.4 Rules for adding binary SD numbers

xi yi 00 01 01 11 11 11

ci 0 1 1 1 1 0

ui 0 1 1 0 0 0

Here, two cases are tested. In the first case, consider that the operands do not have
the digit 1. It is shown in the following example of addition. In the conventional
binary representation, there will be carry chain that will propagate from the LSB to
the MSB. But in this case there is no carry chain exists.

1 1 ... 1 1 yi
+ 0 0 ... 0 1 xi

1 1 1 ... 1 ci
1 1 ... 1 0 ui

1 0 0 ... 0 0 si

In the second case, if the operands have the digit 1 then the carry chain may exist.
For example, if xi−1yi−1 = 01, then ci−1 = 1 and if xi yi = 01, then ui = 1 resulting
si = ui + ci−1 = 1 + 1. Thus a new carry is generated. This is explained in the
following example:

0 1 1 1 1 1 yi
+ 1 0 0 1 0 1 xi

1 1 1 1 1 1 ci
1 1 1 0 1 0 ui
* * * 1 0 0 si

At the ∗ marked positions carry signals are generated and propagated.
In Table1.4, the combination ci−1 = ui = 1 occurs when xi yi = 01 and xi−1yi−1

equals to either 11 or 01. The setting ui = 1 can be avoided in this case by selecting
ci = 0 and therefore making ui equal to 1. We should not, however, change the entry
for xi yi = 01 in Table1.4 to read ci = 1 and ui = 1. This is because if xi−1yi−1 = 11
then ci−1 = 1. But we still have to set ci = 1 and ui = 1. Similarly, the combination
ci−1 = ui = 1 occurs when xi yi = 01 and xi−1yi−1 equals to either 11 or 01.We can
avoid setting ui = 1 by selecting in these cases (and in these cases only) ci = 0 and
therefore ui = 1. In summary, we can ensure that no new carries will be generated
by examining the 2 bits to the right xi−1yi−1 when determining ui and ci , arriving
at the rules shown in Table 1.5. Observe that we can still calculate ci and ui for all
bit positions in parallel. The above example of adding two numbers in binary SD
number system is repeated in the following example. Here the carry chain from the
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Table 1.5 Modified rules for adding binary SD numbers

xi yi 00 01 01 01 01 11 11

xi−1yi−1 – Neither is
1

At least
one is 1

Neither is
1

At least
one is 1

– –

ci 0 1 0 0 1 1 1

ui 0 1 1 1 1 0 0

Table 1.6 Different
representations of X= 7 in
binary SD number
representation

8 4 2 1

0 1 1 1

1 1 1 1

1 0 1 1

1 0 0 1

LSB to the MSB is avoided. The result of the summation of the two operands is
111100. In both cases, the result is same which is 010100 = 2010.

0 1 1 1 1 1 yi
+ 1 0 0 1 0 1 xi

0 0 0 1 1 1 ci
1 1 1 0 1 0 ui
1 1 0 1 0 0 si

The binary SD number system is useful in developing the fast algorithms for multi-
plication, square root or division. As discussed earlier that the SD representation has
some redundancy so that an integer has multiple representations. But to develop an
efficient implementation of the fast algorithms, it is required that the representation
should have the minimum number of nonzero digits. This representation is called
minimal SD representation. This minimal representation will result in less number
of addition and subtraction operation. For example, the number X = 7 can be repre-
sented by different ways as shown in Table1.6. Here, the SD representation 1001 is
minimal representation as it has minimum number of nonzero digits.

1.6.2 SD Representation to Two’s Complement
Representation

If an architecture is implemented using the binary SD representation, then it is also
required to convert the result to the conventional binary representations. Two’s com-
plement is the mostly used representation in the practical implementation of the digi-
tal systems. Thus conversion from the binary SD representation to two’s complement
representation is important. One way to achieve this conversion is by encoding the
digits of SD representations by binary equivalent. A simple way to achieve this con-
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Table 1.7 Rules for
converting a binary SD
number to two’s complement
number

yi ci zi ci+1

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

1 0 1 1

1 1 0 1

version is shown here. Binary SD representation to two’s complement representation
conversion is achieved by satisfying the following relation. Here, yi is the i th digit in
the binary SD representation, zi is the i th bit corresponding to the two’s complement
representation, ci is the previous borrow and the ci+1 is the next borrow.

zi + ci = yi + 2ci+1 (1.21)

The rules for converting a number in SD form to its two’s complement equivalent
are shown in Table1.7. An example of this conversion is shown below to convert
−1010 represented in SD representation to its two’s complement form.

yi 0 1 0 1 0
ci 1 1 1 1 0 0
zi 1 0 1 1 0

The range of representable numbers in the SD method is almost double that of the
two’s complement representation. (n + 1) bits are required to represent an n-digit
SD number in two’s complement representation as illustrated below:

yi 0 1 0 1 0 1
ci 0 0 0 0 1 1 0
zi 0 1 0 0 1 1

The number 19 would be converted to −13 without the use of extra bit.

1.7 Conclusion

In this chapter, we have discussed about BNS. BNS has base of 2 and it has three
ways to represent numbers which are Signed number system, One’s complement and
Two’s complement number system. This chapter also discusses how to perform basic
addition/subtraction operation using these representation techniques. The real num-
bers are represented using either fixed point number system or floating point number
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system. Floating point number system can produce better accuracy but implemen-
tation using floating point numbers is costly. Fixed point number representation is
mostly used in system design and its accuracy depends on data width. Some comput-
ers use binary SD numbers to achieve faster execution speed. Throughout the book
we will discuss architectures using fixed point representations and floating point
architectures will be discussed in a separate chapter.



Chapter 2
Basics of Verilog HDL

2.1 Introduction

Verilog is a very popular Hardware Description language (HDL) that is used to
model the digital systems. The Verilog HDL can be used at different abstraction
levels like from gate level to system design level. This means that a digital circuit
can be described by the hardware connectivity or by writing only the behaviour of the
circuit. It may be the timing model or the behaviour of the circuit, Verilog provides
an easy platform to realize the digital circuits. Thus Verilog HDL provides an easy
platform for rapid modelling of the digital circuits.

There are many online tutorials or books available to learn this language. Here,
a brief overview of the Verilog HDL is given so that the reader finds a smooth
reading process. The major features of this language are discussed in this chapter. In
Verilog HDL, a module is written for a digital circuit and in that model the hardware
description of that circuit is mentioned. The basic syntax of Verilog module is

’ t imescale 1ns /100ps
module( p o r t _ l i s t )

Declarations :
Inputs , Outputs ,
Wire , Reg , Parameter

Statements :
I n i t i a l Statement
Always Statement
Continuous Statement
Module Instant iat ion

endmodule

The Verilog description is written under a module. First stage of the module is
declaration where all the inputs, outputs, intermediate nets or constants are defined.
Then the statements or expressions are written. The module is ended with an end-
module statement. All delays are specified in terms of time units. The ’timescale
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directive specified before the module defines the time unit and time precision. Here
time unit is 1ns and precision is 100ps. Thus all delays must be rounded to multiple
of 0.1ns.

2.2 Verilog Expressions

Before proceeding towards learning Verilog HDL, it is better to know about the
different operators and different operands. In these sections, all different types of
operators and operands are summarized in Tables2.1 and 2.2. These expressions
will help the readers to understand complex Verilog codes.

2.2.1 Verilog Operands

The Operands in Verilog can be categorized in the following categories:

1. Constants.
2. Parameters.
3. Nets.
4. Registers.

5. Bit-select.

6. Part-select.

7. Memory Element.

These various operands are summarized in Table2.1.

2.2.2 Verilog Operators

The various operators in the Verilog HDL are classified in the following categories:

1. Arithmetic operators.
2. Bit-wise operators.
3. Reduction operators.
4. Shift operators.

5. Relational operators.
6. Logical operators.
7. Conditional operators.
8. Equality operators.

These operators are summarized in Table2.2.

2.2.3 Concatenation and Replication

Concatenation is an important operation in Verilog HDL. Concatenation operation
can be used to form a bigger expression from smaller expressions. The syntax of this
operation is
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Table 2.1 Various operands in Verilog HDL

Operands Syntax

Constants

256 // Unsized Decimal Constants
4 ’ b0101 // Integer Constants
’ b0 , ’ d8 , ’hFB // Unsized Integer Constants
50.5 // Real Constants
"STRONG" // String Constants

Parameter
parameter a1 = 4 ’ b1010 ;//a1 i s 4−b i t constant

Net
wire a1 ; // a1 i s a scalar net .
wire [ 3 : 0 ] a1 ; // a1 i s a 4−b i t vec tor net

Reg
reg a1 ; // a1 i s 1−b i t r e g i s t e r .
reg [ 3 : 0 ] a1 ; // a1 i s 4−b i t r e g i s t e r .

Bit-select
wire [ 3 : 0 ] a1 ;
a1 [ 1 ] ; //One b i t i s s e l e c t ed from a1

Part-select
wire [ 3 : 0 ] a1 ;
a1 [ 2 : 1 ] ; //Two b i t s are s e l e c t ed from a1

Memory element
reg [ 3 : 0 ] mem [7 : 0 ]//4−b i t data , 3−b i t

address

wire [ 2 : 0 ] a ;
wire b ;
wire [ 3 : 0 ] y ;
assign { y [ 3 ] , y [ 2 : 0 ] } = { a [ 2 : 0 ] , b } ;

Replication is performed by specifying a repetition number. An example of repetition
operation is

assign y = {3 (1 ’ b1 ) } ; // This i s equivalent to 3 ’ b111 .

In Verilog HDL, there are four type of modelling styles to realize the logic circuits
and they are
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Table 2.2 Various operators in Verilog HDL

Operators Operation

+ Addition

− Subtraction

∗ Multiplication

/ Division

+ Addition

% Modulus

| Bit-wise or reduction OR

& Bit-wise or reduction AND

∼ Bit-wise negation

∼ | Bit-wise or reduction NOR

<< Left shift and fill with zeros

>> Right shift and fill with zeros

<<< Left shift but keep sign

>>> Right shift and fill with MSB

? : Conditional

< Greater than

> Less than

< = Less than or equal to

> = Greater than or equal to

|| Logical OR

& & Logical AND

! Logical negation

== Logical equality

! = Logical inequality

=== Case equality

!== Case inequality

1. Data Flow Modelling.
2. Behavioural Modelling.

3. Structural Modelling.
4. Mixed Modelling.

2.3 Data Flow Modelling

In data flowmodelling, a design is described using continuous assignment. In contin-
uous assignment a value is assigned to a net. The syntax for continuous assignment
is

assign [ delay ] net = expression ;
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Here the delay is optional. Data Flow Modelling can be understood using design of
a simple 2:1 MUX. Boolean expression of a simple 2:1 MUX is

y = as̄ + bs (2.1)

Here, if the control signal s is zero then a is passed to y otherwise b is passed. In
data flow modelling, the Boolean expression can be directly modelled. A simple 2:1
MUX designed using the data flow modelling is shown below:

module mux_df (
input a , b , s ,
output y
) ;

wire sbar ;
assign y = ( a & sbar ) |( s & b ) ;
assign sbar = ∼s ;
endmodule

Here in the design of the MUX, sbar is an intermediate net and thus it is called as
wire. A wire can be a single bit or can be a vector also. An 8-bit wire is defined as

wire [ 7 : 0 ] a ;

Many software tools consider a wire as 1 bit when undefined. The same code of the
MUX can be written in the following format also: .

module mux_df ( a , b , s , y ) ;
input a , b , s ;
output y ;
wire sbar ;
assign y = ( a & sbar ) |( s & b ) ;
assign sbar = ∼s ;
endmodule

In defining a module, it must be taken care of that all the inputs, outputs and the wires
are defined. Another way of designing the 2:1MUXusing the continuous assignment
is using the conditional assignment operator.

module mux_cs (
input a , b , s ,
output y
) ;

wire s ;
assign y = ( s == 0) ? a : b ;
endmodule

Multiple assignments can be written in a single continuous assignment as

assign y = ( s == 0) ? a : ’ bz ,
y = ( s == 1) ? c : ’ bz ;

This is equivalent to the assignment of multiple assignments as

assign y = ( s == 0) ? a : ’ bz ;
assign y = ( s == 0) ? c : ’ bz ;
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Fig. 2.1 Example of net
delay

a

b

y
8

Assignment can be done during the net declaration also. This is shown below:

wire reset = 1 ’ b0 ;

This is equivalent to the following:

wire reset ;
assign reset = 1 ’ b0 ;

The delay also can be introduced during net declaration. But net delay and assignment
delay are different. It is explained by the following example:

wire #5 y ; \\ net delay
assign #3 y = a & b ; \\ assignment delay

The result is assigned to y after total delay of net delay plus assignment delay. This
delay is of 8 units. This example is shown in Fig. 2.1.

2.4 Behavioural Modelling

In behavioural modelling, a digital circuit is modelled by knowing the behaviour.
The behavioural model is described using the procedural constructs and these are

1. Initial Statement. 2. Always Statement.

2.4.1 Initial Statement

The initial statement is used to initialize a variable. This statement is executed only
once. The syntax for Initial statement is

init ial
[ Timing Control ] Procedural Statements

An example of Initial statement is

init ial begin x = 1 ’b0 ; y = 1 ’b0 ; end

Here, the variables x and y are initialized by 0.
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2.4.2 Always Statement

The always statement executes in a loop repeatedly. Its syntax is

always
[ Timing Control ] procedural statements

An example of the always statement is

always #5 clk = ∼clk ;

Here, the always statement is used to create the clock. Repeatedly value of the right-
side net is updated to the left-side expression after each 5 units delay.

Note that only a register data type can be assigned in the above two statements.
Initial statements are used to initialize input vectors or scalars whereas the always
statement is used to execute statements repeatedly. In a module, many initial or
always statements can be used. These statements are executed concurrently. But the
expressions inside the initial or always statement are executed sequentially.

2.4.3 Timing Control

Timing control is of two types which are

1. Delay Control. 2. Event Control.

Delay Control

The delay control specifies the delay after which the statement is executed. An
example of this delay control is

always
begin
#5
clk = 0;
#5
clk = 1;
end

In the above example, the signal clk gets value 0 after 5 unit delay and again the clk
signal get value 1 after another 5 unit of delay.
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Event Control

There are two types of event controls which are

1. Edge-Triggered Event Control: In case of edge triggering-based event control,
the procedural statement is executed when a low-to-high or high-to-low event has
occurred. An example of this control is

always @(posedge clk )
q = d ;

In the above example, the value of d is assigned to q whenever there is a low-
to-high transition in the clock signal. Similarly, negedge specifies high-to-low
transition.

2. Level-Triggered Event Control: In level triggering-based event control, execution
of a statement depends on change of value or change of level of the control signal.
An example of this level control is

wait ( en )
q = d ;

Here, the value of d is assigned to q whenever the value of en is equal to logic 1.

An example of behavioural coding to implement the same 2:1MUX is shown below:

module mux_bh( input a , b , s ,output y ) ;
reg y ;
always @( s or a or b )
begin

i f ( s == 0)
y = a ;

else
y = b ;

end
endmodule

Here, an if-else loop is used to describe the behaviour of the MUX. Notice that
the output is a register data type. Similarly, other type of loops can also be used to
describe the behaviour of circuit. Their format is shown in Table2.3 with examples.

If combinational circuit is to be implemented using the behavioural modelling
then sensitivity list can be ignored by placing the operator after always statement.
The always statement automatically considers the inputs as the sensitivity list. This
is written as

module mux_bh1( input a , b , s ,output y ) ;
reg y ;
always @( ∗ )
begin

i f ( s == 0) y = a ;
else y = b ;

end
endmodule
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Table 2.3 Various loops in behavioural modelling

Loop Operation Example

Forever
In a Forever-loop statements are exeu-
cuted continously

init ial begin
c lock = 0;
#5 forever
#10 clock = $\sim$clock ;
end

Repeat
In a Repeat-loop statements are exe-
cuted repeatedly for specified number
of times

repeat ( count )
sum = sum + 5;

While
In While-loop statements are exe-
cuted untill a condition is satified

while ( count > 5)
begin
sum = sum + 5;
end

For
In a For-loop statements are executed
for a certain number of times

integer k ;
for (k = 0; k < 5; k = k +

1)
begin
sum = sum + 5;
end

Another way of describing the behaviour of a circuit is using the case statement. The
case statement covers several output combinations of the output depending on the
inputs. The 2:1 MUX using the case statement is shown below:

module mux_case (
input a , b , s ,
output y
) ;

reg y ;
always @( s or a or b )
begin

case ( s )
0 : y = a ;
1 : y = b ;

endcase
end
endmodule
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2.4.4 Procedural Assignment

2.4.4.1 Blocking Procedural Statement

In the procedural assignment statementwhere the operator ‘= ’ is used is called block-
ing procedural statement. In case of the blocking procedural statements, a blocking
procedural statement is executed completely before the next statement is executed.
An example is shown below:

begin
x = #5 1 ’b1 ;
x = #6 1 ’b0 ;
x = #7 1 ’b1 ;
end

Here, three blocking procedural statements are defined inside the always loop. Here,
the first statement is executed completely before the second statement and 1 is
assigned to the x after 5 time units. Then after 6 time units x is again updated with
value 0. This way the statements are evaluated sequentially. Simulation diagram is
shown in Fig. 2.2 for this example.

2.4.4.2 Non-blocking Procedural Statement

In the procedural assignment statement where the operator ‘< =’ is used is called
non-blocking procedural statement. A procedural statement has two steps, viz., exe-
cution and assignment. The execution of the non-blocking procedural statements is
started at the same time but assignment to the targets is not blocked due to delays.
Assignment to the targets is scheduled based on the delay associate to the execution
of respective statements plus the intra-statement delay. The same example is taken
here to illustrate the non-blocking assignment.

begin
x <= #5 1 ’b1 ;
x <= #6 1 ’b0 ;
x <= #7 1 ’b1 ;
end

Consider that execution of the three statements is started at time 0. Assignment of
first statement took place after 5 unit time, assignment of the second statement took
place after 6 unit time and the assignment of the third statement took place after 7

Fig. 2.2 Output for the
blocking procedural
statement

50 11 18
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Fig. 2.3 Output for the
non-blocking procedural
statement

50 6 7

time unit. This situation is shown in Fig. 2.3. Understanding the difference between
these two assignment techniques is important. Here for the above example, if the
intra-statement delays are not mentioned then output for both the cases is same. In
this case, the assignment for the non-blocking statements depends on the execution
delays.

The difference between the blocking and non-blocking statement can be under-
stood by another important example where a three-input adder is modelled using
behavioural statement. The Verilog code for three-input adder using non-blocking
statement is shown below:

module mac(
input clk , input [ 3 : 0 ] a , b , c , output reg [ 3 : 0 ] s ) ;
reg [ 3 : 0 ] d ;
always @(posedge clk )
begin
d <= a + b ;
s <= c + d ;
end

endmodule

The hardware which is modelled by this code is shown in Fig. 2.4a. Here, one register
is placed after addition of a and b and one register is placed at the last. The same
three-input adder is modelled using the blocking statement in the following code:

module mac(
input clk , input [ 3 : 0 ] a , b , c , output reg [ 3 : 0 ] s ) ;
reg [ 3 : 0 ] d ;
always @(posedge clk )
begin
d = a + b ;
s = c + d ;
end

endmodule

The hardware which is modelled by this code is shown in Fig. 2.4b. Here, register
is placed only at the output. Thus blocking and non-blocking statements result in
different hardware. This is why Verilog modelling of hardware is sometimes called
as register transfer logic (RTL) as placing of registers can be controlled using blocking
and non-blocking statements.



26 2 Basics of Verilog HDL
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(a) 3-input adder modelled using
non-blocking statement.
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(b) 3-input adder modelled using blocking
statement.

Fig. 2.4 Three-input adder modelled using non-blocking and blocking statement

2.5 Structural Modelling

In the structural modelling, a digital circuit is realized using smaller sub-blocks.
These sub-blocks can be pre-defined gates or any smaller sub-blocks. Structural
modelling is of two types which are

1. Gate-Level modelling. 2. Hierarchical modelling.

2.5.1 Gate-Level Modelling

In the gate-level modelling, a design is realized using pre-defined gates which are
already known to compiler. These basic gates can be a NOT gate, an OR gate or can
be an AND gate. A two input OR gate defined in Verilog as

or o1 ( op , I1 , I2 ) ;

there output is defined first and then the inputs. Similarly the other gates are defined.
The gate-level schematic of the 2:1 MUX is shown in Fig. 2.5. Here two AND gates,
one NOT gate and one OR gate are used. The 2:1 MUX can be designed using the
gate-level modelling as

module mux_gl (
input a , b , s ,
output y
) ;

wire q1 , q2 , sbar ;
not n1 ( sbar , s ) ;
and a1 ( q1 , sbar , a ) ;
and a2 ( q2 , s , b ) ;
or o1 ( y , q1 , q2 ) ;
endmodule
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Fig. 2.5 Gate-level
schematic of the 2:1 MUX
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2.5.2 Hierarchical Modelling

In hierarchical modelling, a digital circuit is realized by exploring the hierarchy of
that design. Initially the smaller sub-blocks present in the hierarchy are designed
and then the main design is realized using the smaller sub-blocks. This modelling
technique is calledmodule instantiation.Here themain design is called as topmodule.
An example of hierarchical modelling is given below for a 4:1 MUX. The 4:1 MUX
using the 2:1 MUX is shown in Fig. 2.6. A 4:1 MUX for 1-bit data uses three 2:1
MUXes. A 2:1 MUX is designed in the previous sections. Any of the designs can be
used here to realize a 4:1 MUX.

module mux_4_1 (
input a1 , a2 , a3 , a4 ,
input [ 1 : 0 ] s ,
output y
) ;

wire t1 , t2 ;
mux_df m1( a1 , a2 , s [ 0 ] , t1 ) ;
mux_df m2( a3 , a4 , s [ 0 ] , t2 ) ;
mux_df m3( t1 , t2 , s [ 1 ] , y ) ;
endmodule

In the above Verilog code three 2:1 MUXes are used which are previously modelled
in data flowmodelling. There are two techniques of calling the sub-blocks which are

Fig. 2.6 Gate-level
schematic of the 4:1 MUX
using 2:1 MUX

0

1

0

1

0

1

a1

a2

a3

a4

y

t1

t2

s0 s1

m1

m3

m2



28 2 Basics of Verilog HDL

1. Module instantiation using position of the input/output ports.
2. Module instantiation by mentioning the input/output ports.

The above code of the 4:1MUX is written using the position of the input and outputs.
In this technique, it is required tomaintain the proper sequence of the input and output
ports while calling. On the other hand, if the modules are instantiated by mentioning
the ports then the sequence need not be maintained. The above code can be rewritten
using this technique as

module mux_4_1 (
input a1 , a2 , a3 , a4 ,
input [ 1 : 0 ] s ,
output y
) ;

wire t1 , t2 ;
mux_df m1( . a ( a1 ) , . b ( a2 ) , . s ( s [ 0 ] ) , . y ( t1 ) ) ;
mux_df m2( . a ( a3 ) , . b ( a4 ) , . s ( s [ 0 ] ) , . y ( t2 ) ) ;
mux_df m3( . a ( t1 ) , . b ( t2 ) , . s ( s [ 1 ] ) , . y ( y ) ) ;
endmodule

In the case of module instantiation, there may be a situation where some of the output
ports of the sub-modules are left unconnected. The syntax for representing that is

mux_df m1( . a ( a1 ) , . b ( a2 ) , . s ( s [ 0 ] ) , . y ( ) ) ;//by writing ports
mux_df m2(a , , s , y ) ; // by pos i t ion

The expression for the unconnected ports is left blank. In the first MUX, output port
is unconnected and in the second MUX input port is left unconnected. Unconnected
output ports are unused but the unconnected input ports are connected to Z.

2.6 Mixed Modelling

In themixedmodelling style, the design stylesmentioned above can bemixed to real-
ize a digital circuit. An example of mixed design style is shown below to implement
the same 4:1 MUX.

module mux_4_1_mix (
input a1 , a2 , a3 , a4 ,
input [ 1 : 0 ] s ,
output y
) ;

reg y ;
wire t1 , t2 ;
mux_df m1( a1 , a2 , s [ 0 ] , t1 ) ;
mux_gl m2( a3 , a4 , s [ 0 ] , t2 ) ;
always @( s [1 ] or t1 or t2 )
begin

i f ( s [ 1 ] == 0)
y = t1 ;

else
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y = t2 ;
end
endmodule

Here, one MUX is designed by data flow modelling, one MUX is designed using the
gate-levelmodelling and the thirdMUX is designed using the behaviouralmodelling.
The overall top module is modelled using the module instantiation.

2.7 Verilog Function

In writing Verilog code of a complex design, one can write specific expressions
in a Verilog function and can call that function multiple times. Verilog functions
helps designers to comfortably write their code. Verilog functions have the following
characteristics:

• AVerilog function cannot drive more than one output but can havemultiple inputs.
• Functions are defined in the module in which they are used.
• It is possible to define functions in separate files and use compile directive ’include
to include the function.

• Functions cannot include timing delays, like posedge, negedge, # delay, which
means that functions should be executed in ‘zero’ time delay.

• The variables declared within the function are local to that function. The order of
declarationwithin the function defines how the variables are passed to the function.

• Functions can be used for modelling combinational logic. Functions can call other
functions, but cannot call tasks (described below).

An example of a Verilog function is shown below:

module funct ion_test ( input [ 3 : 0 ] a1 , a2 , a3 , a4 , output reg [ 3 : 0 ] c )
;

reg [ 3 : 0 ] b1 , b2 ;

function [ 3 : 0 ] sum( input [ 3 : 0 ] a , b ) ;
begin sum = a + b ; end
endfunction

always @∗
begin
b1 = sum(a1 , a2 ) ;
b2 = sum(a3 , a4 ) ;
c = sum(b1 , b2 ) ;
end
endmodule
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2.8 Verilog Task

Just like other programming languages, Verilog also has tasks. Tasks are also called
as sub-routines. In a task, part of programme is written and the task is called many
times in the main code. This way, modelling a complex design is easy. A Verilog
task has following characteristics:

• Verilog task can have multiple inputs and multiple outputs.
• Tasks are defined in the module in which they are used.
• It is possible to define a task in a separate file and use the compile directive ’include
to include the task in the file which instantiates the task.

• Task can include timing delays, like posedge, negedge, #delay or wait.
• The variables declaredwithin the task are local to that task. The order of declaration
within the task defines how the variables passed to the task by the caller are used.

• Tasks can call another task or function.
• tasks can be used for modelling both combinational and sequential logic.
• A task must be specifically called with a statement, it cannot be used within an
expression as a function can.

A simple example of a Verilog task is shown below:

module task_test ( input [ 3 : 0 ] a1 , a2 , a3 , a4 , output reg [ 3 : 0 ] c ) ;
reg [ 3 : 0 ] b1 , b2 ;

task sum( input [ 3 : 0 ] a , b , output [ 3 : 0 ] s ) ;
begin s = a + b ; end
endtask

always @∗
begin
sum(a1 , a2 , b1 ) ;
sum(a3 , a4 , b2 ) ;
sum(b1 , b2 , c ) ;
end
endmodule

2.9 File Handling

In order to verify a complex design, we may need huge set of data elements. In such
cases, reading data elements from an external file or writing into an external file can
be very useful. Here, we will discuss how data elements can be read from or written
to a text file using Verilog HDL.
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2.9.1 Reading from a Text File

The command f open() opens a file input_vector.t xt in read mode. In the loop of
j , j th element of input_vector.t xt (of 0) stored in register A1. Then the content of
A1 is stored in j th location of b which is an array of registers. The text file should
be in the project directory.

module mem_read(C1, ada , c lk ) ;
input [ 9 : 0 ] ada ;
input clk ;

integer of0 ;
output reg [ 17 :0 ] C1 ;
reg [ 17 :0 ] A1 ;
reg [ 17 :0 ] b1 [1023 :0 ] ;
integer j ;
init ial begin
of0=$fopen ( " input_vector . txt " , " r " ) ;
for ( j =0; j <=1023; j = j +1)
begin

$ f scanf ( of0 , "%d\n" ,A1) ;
#1;

b1 [ j ] = A1 ;
end
$ f c l o s e ( of0 ) ;
end

always @ (posedge clk )
begin
C1 = b1 [ ada ] ;
end

endmodule

2.9.2 Writing into a Text File

The value of the register A is written to the text file output_vector.t xt only if en
signal is high and with positive edge of clock. The clock is considered to be of period
10 ns. The output file will be written in the project directory.

module mem_write (A, en , c lk ) ;
integer of0 ;
input [ 17 :0 ] A ;
input en , clk ;
integer j ;
init ial begin j = 0 ; end
always @(posedge clk )
begin
i f ( en )

begin
of0=$fopen ( " output_vector . txt " , "w" ) ;

for ( j =0; j <=4; j = j +1)
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begin
$ fd isp lay ( of0 , "%d\n" ,A) ;
#10;

end
end

else
$ f c l o s e ( of0 ) ;
end

endmodule

2.10 Test Bench Writing

In the previous sections, various modelling styles are discussed. A simple design of
2:1 MUX is taken to illustrate the design styles. Test benches are written to verify
the Verilog codes. Test benches contain the input test vectors and clock information
to verify the design code. Here, the main Verilog file is Unit Under Test (UUT) and
the test bench is used to give test vectors to verify the UUT. This is shown in Fig. 2.7.
An example of a test bench for the 2:1 MUX is shown below:

module mux_tb ;
// Inputs
reg a ; reg b ; reg s ;
// Outputs
wire y ;
// Ins tant ia te the Unit Under Test (UUT)
mux_gl uut (

. a ( a ) ,

. b ( b ) ,

. s ( s ) ,

. y ( y ) ) ;
init ial begin

// In i t i a l i z e Inputs
a = 0; b = 0; s = 0;
// Wait 100 ns for global r e s e t to f in i sh
#100;
a = 1; b = 0; s = 0;
#20;
a = 1; b = 0; s = 1;
#20;
a = 1; b = 1; s = 0;
// Add stimulus here

end
endmodule

Here the inputs are given under initial statement. The input variables are register
type as they are mentioned under the initial statement and the outputs are wire type.
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Fig. 2.7 Verification
environment for Verilog files
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2.11 Frequently Asked Questions

Q1. How to modify a parameter defined within a module (within a hierarchy)?
A1. In a structural modelling of a complex digital system, if it is required to change
the size of the whole design then it is very difficult to change size of the sub-modules
individually. Thus it is better to use the parameter operand to define the size. It is
shown below for a simple 2:1 MUX.

module muxM(A,B,S ,Y) ;
parameter M = 4;

input [M: 0 ] A,B;
output [M: 0 ] Y;
input S ;

assign Y = (S) ? B : A;
endmodule

Here, the size of theMUX isM.A4:1MUX is designed using these 2:1MUXes.Now
if we want to change the size of the 4:1 MUX then size of all the three 2:1 MUXes
should be changed. The parameters of the sub-module muxM can be override by the
defparam operand. This is shown below:

module Mux4_1(A,B,S ,Y) ;
parameter M1 = 7;
input [M1: 0 ] A,B;
input S ;
output [M1: 0 ] Y;
wire [M1: 0 ] Y1 ,Y2 ;
defparam mux1.M = M1, mux2.M = M1, mux3.M = M1;
muxM mux1(A,B,S ,Y1) ;
muxM mux2(A,B,S ,Y2) ;
muxM mux3(Y1 ,Y2 ,S ,Y) ;
endmodule

In order to override the parameter (M) or multiple parameters, the path of the param-
eter is given in the defparam operand. Here the path is mux1.M.

Q2. What is the difference between asynchronous reset and synchronous reset?
A2. The sequential designs are generally cleared using a reset signal. This reset sig-
nal can be asserted in two ways, viz., in synchronization with clock signal or without
syncing with clock signal. The behavioural model of D flip-flop shown in Sect. 4.2.3
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is an example of synchronous reset. Example of asynchronous reset is shown below
for the same D flip-flop:

module DFF(q , clk , reset , d ) ;
input d , clk , reset ;
output reg q ;

init ial begin q=0; end
always @ (posedge clk , posedge reset ) begin
i f ( reset )
q <= 0;

else
q<= d ;

end
endmodule

Q3. What is the importance of a default clause in a case construct?
A3: The case statement is frequently used tomodel any combinational and sequential
circuit. In the Verilog code using case statement, if all the combinations of the input
variable are notmentioned then a latch is inferred.This is explainedwith the following
example code of simple LUT.

module LUT(
input [ 1 : 0 ] s ,
output reg y ) ;

always @ ( s )
case ( s )
2 ’ b00 : y = 0;
2 ’ b01 : y = 1;
2 ’ b10 : y = 1;
endcase
endmodule

Here, the output is not defined for s = 11 and at this condition output is equal
to the previous value due to the inferred latch. The corresponding hardware model
realized by theXILINX tool is shown in Fig. 2.8. The inferring of latch can be avoided
by mentioning default for the unused conditions. Realization of the same code using
default statement is shown in Fig. 2.9. Note that, without default statement two LUTs
are used instead of one.

lut2
(Mram y11)

2
s

lut2
(Mram y12)

ld
(latch)

y

Fig. 2.8 Realization of the LUT without default statement
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Fig. 2.9 Realization of the
LUT with default statement lut2

(Mram y11)
2

s y

module LUT(
input [ 1 : 0 ] s ,
output reg y ) ;

always @ ( s )
case ( s )
2 ’ b00 : y = 0;
2 ’ b01 : y = 1;
2 ’ b10 : y = 1;
endcase
endmodule

The latch also can be inferred in case of incomplete specification of loop state-
ments. One example is shown below for incomplete if-else statements.

module LUT(
input [ 1 : 0 ] s ,
output reg y
) ;

always @ ( s )
begin

i f ( s == 2 ’ b00 )
y = 0;

else i f ( s == 2 ’ b01 )
y = 1;

else i f ( s == 2 ’ b10 )
y = 1;

end

Q4. What are the different CASE statements and their use?
A4. There are two types of case statements which are casex and casez. In the control
expression, the statements casez and casex allow use of x and z in the don’t care bits.
An example of casex is given below:

module encoder (
input [ 2 : 0 ] s ,
output reg y2 , y1 , y0
) ;

always @( s )
casex ( s )

3 ’ b1?? : y2 = 1 ’b1 ;
3 ’ b01? : y1 = 1 ’b1 ;
3 ’ b001 : y0 = 1 ’b1 ;
default : { y2 , y1 , y0 } = 3 ’ b000 ;

endcase
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Here, y2 is 1 when the s2 bit is 1. Other don’t care bits can be undefined or unknown.
The use of these case statements can be very useful when dealing with don’t care bits
as any bit can be undefined or in high impedance due to designer’s fault or fabrication
fault.

Q5. How to instantiate same module multiple times in Verilog?
A5. Sometimes we have to instantiate same module multiple times. For example, in
designing a 4-bit 2:1 MUX we need four 1-bit 2:1 MUXes. In that case, we have to
instantiate the 2:1 MUX module four times. It is difficult in case of very complex
design. An easiest way is to use the generate statement. Use of this statement is
shown below. The module mux_cs is explained in Sect. 2.3.

module Mux2_1_4bit ( a , b , s , y ) ;
input [ 3 : 0 ] a , b ;
input s ;
output [ 3 : 0 ] y ;
genvar i ;
generate for ( i =0; i <4; i = i +1)
begin : Mux2_block
mux_cs m1( a [ i ] , b [ i ] , s , y [ i ] ) ;
end
endgenerate
endmodule

Q6. How to execute statements in parallel in behavioural coding style inside
always or initial statement?
A6. A parallel block can be inserted in a behavioural style using statements fork and
join. An example of this is shown below:

fork
begin
x = #5 1 ’b1 ;
x = #6 1 ’b0 ;
x = #7 1 ’b1 ;
end
join

Here, all the statements under begin and end are executed concurrently. Bit 1 is
assigned to x after 5 unit time and after 1 unit time bit 0 is assigned to x .

Q7. Write a Verilog code for 8-bit Arithmetic Logic Unit (ALU) to perform
different arithmetic functions?
A7. The design of ALU using Verilog code is introduced here to show how function-
ally various arithmetic functions can be performed using simple Verilog operators.
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module alu (
input [ 7 : 0 ] A,B, // ALU 8−b i t Inputs
input [ 3 : 0 ] ALU_Sel ,// ALU Selec t ion
output [ 7 : 0 ] ALU_Out, // ALU 8−b i t Output
output CarryOut // Carry Out Flag

) ;
reg [ 7 : 0 ] ALU_Result ;
wire [ 8 : 0 ] tmp ;
assign ALU_Out = ALU_Result ; // ALU out
assign tmp = {1 ’ b0 ,A} + {1 ’ b0 ,B } ;
assign CarryOut = tmp [ 8 ] ; // Carryout f lag
always @(∗ )
begin

case (ALU_Sel )
4 ’ b0000 : // Addition

ALU_Result = A + B ;
4 ’ b0001 : // Subtraction

ALU_Result = A − B ;
4 ’ b0010 : // Mult ipl icat ion

ALU_Result = A ∗ B;
4 ’ b0011 : // Division

ALU_Result = A/B;
4 ’ b0100 : // Logical sh i f t l e f t

ALU_Result = A<<1;
4 ’ b0101 : // Logical sh i f t r ight

ALU_Result = A>>1;
4 ’ b0110 : // Rotate l e f t

ALU_Result = {A[ 6 : 0 ] ,A [ 7 ] } ;
4 ’ b0111 : // Rotate r ight

ALU_Result = {A[0 ] ,A [ 7 : 1 ] } ;
4 ’ b1000 : // Logical and
ALU_Result = A & B;

4 ’ b1001 : // Logical or
ALU_Result = A | B;

4 ’ b1010 : // Logical xor
ALU_Result = A ^ B;

4 ’ b1011 : // Logical nor
ALU_Result = ∼ (A | B) ;

4 ’ b1100 : // Logical nand
ALU_Result = ∼ (A & B) ; b ,m ,v9kmv9v

4 ’ b1101 : // Logical xnor
ALU_Result = ∼ (A ^ B) ;

4 ’ b1110 : // Greater comparison
ALU_Result = (A>B) ?8 ’ d1 : 8 ’ d0 ;

4 ’ b1111 : // Equal comparison
ALU_Result = (A==B) ?8 ’ d1 : 8 ’ d0 ;

default : ALU_Result = A + B ;
endcase

end
endmodule
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2.12 Conclusion

In this chapter, a brief discussion on Verilog HDL is given as Verilog HDL will be
used in the next chapters inmodelling of digital systems. There is always a debate that
which programming style is better to model a system. In designing a complex digital
system, all the four programming styles are required. In the subsequent chapters, we
have followed the structural modelling style. This is because the structural modelling
helps to gain more knowledge of designing efficient circuits. But the behavioural
model is also useful for rapid prototyping of a system. Also it is easier to design some
circuits like FSM using behavioural style. Thus a designer can use behavioural or
data flowmodelling to design the basic blocks. But the sub-blocks must be integrated
using structural modelling. This way the circuit can be optimized for power, area and
speed.



Chapter 3
Basic Combinational Circuits

3.1 Introduction

In a combinational circuit, the output is a pure function of inputs only whereas in
sequential circuits output is not only a function of the present inputs but also a
function of previous output status. This means combinational circuits do not have
memory. Combinational circuits implement a particular Boolean expression and are
also known as time-independent circuits.

Complex digital systems cannot be a pure combinational circuit. Both sequential
and combinational circuits are required for a digital system implementation. Exam-
ples of combinational circuits are Adder, Subtractor, Multiplexer, De-Multiplexer,
Encoder, Decoder, etc. In this chapter, various combinational circuits will be dis-
cussed. This will be a very brief discussion as there are many books and online
tutorials available on this topic.

3.2 Addition

Addition operation is the most important basic arithmetic operation which is mostly
used in implementing the digital systems. A two-input adder circuit receives input
operands a and b and generates two outputs s and cout . Here, s is the summation
output, and cout is the carry out representing that the overflow is occurred. The truth
table for two-input addition is shown in Table 3.1. The two-input addition circuit is
commonly known as Half Adder (HA). The logical expression for the HA derived
from the truth table is

s = a ⊕ b (3.1)

cout = a.b (3.2)
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Table 3.1 Characteristic table of a HA

a b s cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Fig. 3.1 Gate level logic
diagram for the HA a

b
s

cout

Table 3.2 Characteristic table of a FA

a b cin s cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The circuit diagram for theHA is shown in Fig. 3.1.AFullAdder (FA) is an arithmetic
circuit that receives three inputs and generates two outputs. In addition operation of
two-input operands, the HA circuit do not consider the carry input. But in the FA
circuit, a third input cin is considered and thus FA is called the complete adder. The
truth table of the FA is shown in Table3.2. The logical expressions for the FA derived
from the truth table are shown below

s = a ⊕ b ⊕ cin (3.3)

cout = a.b + a.cin + b.cin (3.4)

The gate level logic diagram for the FA is shown in the Fig. 3.2. Here the FA is
implemented using two HA circuits.
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Fig. 3.2 Gate level
realization of FA using HA
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3.3 Subtraction

Subtraction operation is also very important operation in implementing digital sys-
tems like addition operation. A two-input subtraction circuit receives input operands
(a and b) and generates two outputs (d and bout ). Here, d is the difference output and
bout is the borrow out representing that the higher number is subtracted from lower
number. The truth table for two-input subtraction is shown in Table3.3. The two-
input subtraction circuit is commonly known as Half Subtractor (HS). The logical
expression for the HS derived from the truth table is

d = a ⊕ b (3.5)

bout = ā.b (3.6)

The circuit diagram for the HS is shown in Fig. 3.3. A Full Substractor (FS) is
an arithmetic circuit that receives three inputs and generates two outputs. In the
subtraction operation of two-input operands, the HS circuit does not consider the
borrow in (bin) input. But in the FS circuit, a third input bin is considered and thus
FS is called as complete subtractor. The truth table of the FS is shown in Table3.4.
The logical expressions for the FS derived from the truth table are shown below

s = a ⊕ b ⊕ cin (3.7)

cout = ā.bin + ā.b + b.bin (3.8)

The gate level logic diagram for the FS is shown in Fig. 3.4. Here FS is implemented
using two HS circuits.

Table 3.3 Characteristic table of a HS

a b d bout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
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Fig. 3.3 Gate level logic
diagram for the HS a

b
d

bout

Table 3.4 Characteristic table of a FS

a b bin d bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Fig. 3.4 Gate level
realization of FS using HS
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3.4 Parallel Binary Adder

Previouslywe have discussed the addition operation between two 1-bit operands. The
addition operation between two n-bit operands can be performed using n FA blocks.
Here, a 4-bit adder which adds two 4-bit operands is discussed and it generates a
4-bit sum output and a carry out output. Each bit from the two operands is added
in parallel by 4 FA blocks. The architecture of this parallel binary adder is shown in
Fig. 3.5.

The first FA block receives the initial carry input which can be kept as 0. The first
FA block generates a carry out signal which is passed to the second FA block. The
second FA block then computes its sum and carry out signal. This way carry out
signal propagates to the last FA block. Thus this structure is known as Ripple Carry
Adder (RCA). This block has a delay of n.tFA for n bits where tFA is the delay of
one FA block. More about the fast adders are discussed in Chap.7.
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Fig. 3.5 Architecture of 4-bit ripple carry adder

3.5 Controlled Adder/Subtractor

Controlled adder/subtractor block is one of themost important combinational circuits
in designing digital systems. In many applications, it is required to perform addition
and subtraction operation by a single block. The controlled adder/subtractor block
performs addition and subtraction operation depending on a control signal.

The architecture for 4-bit adder/subtractor is shown in Fig. 3.6. In two’s comple-
ment representation, two operands a and b are added as a + b. In order to subtract
b from the operand a, the first two’s complement of b is taken and then added to a.
This can be written as a − b = a − one’s complement of b + ulp where ulp = 20.
The addition operation is performed when the ctrl input is low and the subtraction
operation is performed when the ctrl input is high. The XOR gates are used to take
the one’s complement of b and the ctrl input is connected to the first full adder as
input carry to add ulp.
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Fig. 3.6 Architecture of 4-bit adder/subtractor
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3.6 Multiplexers

Multiplexer is a circuit which selects one signal between two or many signals based
on a control signal. A 2:1 Multiplexer circuit selects from two inputs. Multiplexer
circuits havemany use in digital circuits for data sharing, address bus sharing, control
signal selection, etc. The Boolean expression for a simple 2:1 Multiplexer circuit is
shown below

y = s.x0 + s.x1 (3.9)

The Multiplexer circuit chooses input x0 when the control signal s is low and selects
input x1 when the control signal is high. The details of Multiplexer circuits are
discussed in Chap. 2.

3.7 De-Multiplexers

ADe-Multiplexer sends a input signal to different output ports depending on a control
signal. A De-Multiplexer can do the reverse operation that a multiplexer does. The
basic Boolean expression for 1:2 De-Multiplexer is given below

y0 = s.x (3.10)

y1 = s.x (3.11)

Here, s is the control signal. The input signal x is passed to the output line y0 when
s is logic zero and x is connected to the output line y1 when s is logic one. The
architecture of 1:4 De-Multiplexer using 1:2 De-Multiplexer is shown in Fig. 3.7.

Fig. 3.7 A schematic for a
1:4 DeMUX

1

0

1

0

1

0

x

y3

y2

y1

y0

s0

s1
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Table 3.5 Characteristic table of a 2-4 decoder

en s1 s0 y0 y1 y2 y3

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

Fig. 3.8 Circuit diagram of
a 2-4 decoder

s0

s1

y0 y1 y2 y3

en

3.8 Decoders

Adecoder circuit is used to change or decode a code into a set of signals. The decoder
receives n signals and produces 2n output signals. Only one output signal is at logic
level 1 at a time. There may be 2-4 decoder, 3-8 decoder or 4-16 decoder circuit. The
truth table for a 2-4 decoder is shown in Table3.5.

The Boolean expressions for each output signal are

y0 = s0.s1.en (3.12)

y1 = s0.s1.en (3.13)

y2 = s0.s1.en (3.14)

y3 = s0.s1.en (3.15)

The circuit diagram of 2-4 decoder is shown in Fig. 3.8. The circuit diagram is very
similar to that of De-Multiplexer. But in case of De-Multiplexer one input is passed
to different output lines but on the other hand decoder decodes a n input code. Higher
order decoder circuits can be easily implemented using the smaller decoder circuits.

3.9 Encoders

Encoders does the opposite function that a decoder does. An encoder receives 2n

input signals and converted them into a code of n output lines. Encoders are very
useful in sending coded messages in the field of communication. The encoders can
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Table 3.6 Characteristic table of a 4-2 Binary Encoder

a b c d y1 y0

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 1 1

Fig. 3.9 Circuit for a 4-2
encoder

y0 y1

a
b
c
d

be available as 4-2 encoder, 8-3 encoder or 16-4 encoder. The truth table for a 4-2
encoder is shown in Table 3.6.

The Boolean expressions for each output signal are

y0 = b + d (3.16)

y1 = c + d (3.17)

The circuit diagram for 4-2 encoder is shown in Fig. 3.9. Encoders are used to reduce
the number of bits to represent the input information. Also encoder reduces the
number of bits to store the coded information.

3.10 Majority Voter Circuit

Majority voter circuit is useful in fault-tolerant computing and in other applications.
Output of a majority voter circuit becomes true when above 50% inputs to it are true.
For example in a four-input majority voter circuit, if more than two inputs are logic
1 then output will become 1. This means majority of inputs are true. Here, a 4-input
majority voter circuit is designed and its Boolean expression is

y = ab(c + d) + cd(a + b) (3.18)

Corresponding logic diagram of this majority voter circuit is shown in Fig. 3.10.
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Fig. 3.10 A four-input
majority voter circuit a

b
c

d

y

3.11 Data Conversion Between Binary and Gray Code

In Gray code, only one bit changes in the code while going from one state to another.
In Gray code no weight is assigned to a bit position and thus Gray code is an un-
weighted code. Gray code finds application where low switching rate is required.
The comparison of Gray code compared to the decimal numbers and binary code is
given in Table 3.7.

It may be noted that the Gray code can be regarded as reflected code. It can be
clear by seeing the first 3-bit positions below and above the horizontal line. The
conversion between binary and Gray code is very important to interface two kind of
systems. The Boolean expression to convert a binary code to Gray code is

Table 3.7 Binary representation versus Gray representation

Decimal number Binary representation Gray representation

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000
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Fig. 3.11 Binary data to
Gray code conversion for 4
bits
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Fig. 3.12 Gray code to
binary data conversion for 4
bits
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a0
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gi =
{
an, if i = n

ai+1 ⊕ ai , if i = 0, 1, 2, ..., (n − 1)
(3.19)

The architecture for converting a 4-bit binary code to a 4-bit Gray code is shown
Fig. 3.11. Similarly the Boolean expressions for converting the Gray code to equiv-
alent binary code can be generated using K-map. The expressions are

ai =
{
gn, if i = n

ai+1 ⊕ gi , if i = 0, 1, 2, ..., (n − 1)
(3.20)

The corresponding scheme for converting a 4-bit Gray code to binary code is given
in Fig. 3.12.

3.12 Conversion Between Binary and BCD Code

The binary number system versus the Binary Coded Decimal (BCD) code is shown
in Table3.8. In BCD code, 10 digits are used to represent decimal numbers. These
digits vary from 0 to 9. Equivalently binary representation of these numbers can be
found. Thus up to digit 9 in decimal, both BCD and binary number system are the
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Table 3.8 Binary representation and their BCD equivalents

Decimal number Binary codes BCD codes

0 0000 00000

1 0001 00001

2 0010 00010

3 0011 00011

4 0100 00100

5 0101 00101

6 0110 00110

7 0111 00111

8 1000 01000

9 1001 01001

10 1010 10000

11 1011 10001

12 1100 10010

13 1101 10011

14 1110 10100

15 1111 10101

same. Often BCD codes are used to display the results of a digital system on LCD
display. In such case, conversion between binary and BCD codes is very important.
These conversion techniques are described below

3.12.1 Binary to BCD Conversion

After observing Table 3.8, it can be said that after digit 9, 6 is added to the decimal
number to get the digit in the BCD code. For example, 10 in the decimal system is
represented as 16 in the BCD code. Here, we will discuss well known double-dabble
[1] algorithm for binary to BCD conversion. This algorithm is also known as shift
and Add 3. A binary number is left shifted and if the shifted part under weightage of
One’s, Ten’s or Hundred’s is equal to or greater then ‘1012’ then 3 is added. Then
again apply a left shift and repeats the steps. This way the number is converted to
the BCD code. An example of this conversion technique is shown in Table 3.9.

The architecture for binary to BCD conversion is shown in Fig. 3.13. The Add-3
block adds 3 to a 4-bit number whenever the number is equal to or greater than 5.
The structure of this ADD-3 block is shown in Fig. 3.14. There are seven Add-3
blocks used in Fig. 3.13. A selection logic is there to select the number after addition
with 3.
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Table 3.9 Example of binary to BCD code conversion

Operations Tens Ones Binary

Start 00111111

Shift 0 0111111

Shift 00 111111

Shift 0001 11111

Shift 0 0011 1111

Shift 00 0111 111

Add 3 00 1010 111

Shift 001 0101 11

Add 3 001 1000 11

Shift 0011 0001 1

Shift 0110 0011

Fig. 3.13 Binary number
system to BCD code
conversion circuit

Add-3

Add-3

Add-3

Add-3 Add-3

Add-3 Add-3

x0x1x2x3x4x5x6x700

y0y1y2y3y4y5y6y7y8y9

Fig. 3.14 The structure of
the Add-3 circuit

x2

x0
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x
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Fig. 3.15 An example of
BCD to binary conversion

0 0 1 10

0 1 01 2 × 1010
0 1 110 00

4 × 1010
1 1 1111000

0 1100

3.12.2 BCD to Binary Conversion

The conversion of BCD codes to Binary numbers is also important in digital circuits.
A BCD number x = 123, can be expressed as x = 123 = 1 × 100 + 2 × 10 + 3 ×
1. The conversion from a BCD number to binary number follows this philosophy. For
example, in the number BCD number x = 0001_1001 first four bits from the LSB
have the weightage of one and the next four bits have the weightage of Ten (1010).
Thus this number can be converted to binary as y = 1001 + (0001 × 1010) =
0001_0011. Another example of BCD to binary conversion is shown in Fig. 3.15.
Here, BCD number 63 (0110_0011) is converted to binary (00111111).

The BCD to Binary conversion circuit is shown in Fig. 3.16. The LSB is equal
for Binary and BCD codes. Here, two 4-bit adders are used. In the first adder, two
bits under the weightage of TEN are dissolved and in the second adder next two bits

4-bit Parallel Adder

a0a1a2a3b0b1b2b3

cout cin

s0s2

0

0

4-bit Parallel Adder

a0a1a2a3b0b1b2b3

cout cin

s0s2

0

s3

s3 s1

s1

0

y1y2y3y4y5y6

x1x2x3x4x5x6x7 x0

y0

Fig. 3.16 BCD code to binary conversion circuit
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Table 3.10 Condition for adding multiple of TENs

x5 x4 b3 b2 b1 b0

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 0

1 1 1 1 1 1

are considered. Through the b input of the adder, multiple of weightages are added.
Condition for inputs to the b input is based on Table3.10. Here for the first adder
b3 = b1 = x5 and b2 = b0 = x4. Similarly, the conditions for the second 4-bit adder
are derived.

3.13 Parity Generators/Checkers

Parity check and generation is an error detection technique in the digital transmission
of bits. A parity bit is added to the data to make the number of ones either even or
odd. In even parity bit scheme, the parity bit is ‘0’ for even number of ones present
in the data and the parity bit is ‘1’ for odd number of ones in the data. If there are
even number of ones in the data then the parity bit becomes ‘1’ in odd parity bit
scheme and similarly the parity bit becomes ‘0’ for odd number of ones. Parity bit
is generally added in the MSB.

Realization of both types of parity for 4-bit data is described in Figs. 3.17 and
3.18. If evn_pari ty is ‘1’ then there are odd number of ones in the data. Three XOR
gates are used to calculate evn_pari ty. odd_pari ty is just invert of evn_pari ty
but a separate architecture is shown in Fig. 3.18. This is a balanced architecture and
has some advantages over the structure shown in Fig. 3.17. This balanced structure
will be discussed in detail in Chap.15.

Fig. 3.17 Even parity
generation for-bit data

a0
a1

a2

a3 evn parity

Fig. 3.18 Odd parity
Generation for 4-bit data

a0
a1

a2

a3
odd parity
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3.14 Comparators

Comparison is a very important operation in implementation of any algorithm where
sorting operation is carried out or where operands are compared to find themaximum
or minimum. A comparator compares an operand (a) with another operand (b) to
check whether the first operand is equal to, less than or greater than the second
operand. In this section, design of a comparator block using hierarchical modelling
style is discussed. First the comparator will be designed for smaller bits and then
design of the higher order comparator will be discussed.

In a comparator, the operands are compared bit by bit. For example, for 16-bit
comparator comparison starts from the MSB and then all the bits are compared.
Thus first 1-bit comparator is discussed and then design of a 16-bit comparator is
discussed. The truth table for a 1-bit comparator is shown in Table3.11. Here, from
the truth table of the 1-bit comparator it can be said that when the two bits are same,
the equal (=) output is high. This equality check can be done simply by a XNOR
gate. Similarly Boolean expressions for other output signals can be easily derived
and these are shown below

eq = (a ⊕ b) (3.21)

lt = a.b (3.22)

gt = a.b (3.23)

The architecture for 1-bit comparator is shown in Fig. 3.19. This is the optimized
block diagram of the 1-bit comparator where the XNOR gate is replaced with the

Table 3.11 Truth table of a 1-bit comparator

a b = < >

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

1 1 1 0 0

Fig. 3.19 Schematic of a
1-bit comparator

a

b

a > b

a = b

a < b
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a[0]
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Fig. 3.20 Architecture of a 4-bit comparator using 1-bit comparator

NOR gate. Now we can proceed to design of higher order comparators using the
1-bit comparators. Lets discuss design of a 4-bit comparator. Four 1-bit comparators
are required to design a 4-bit comparator. If all the bits are equal then only operands
a and b are equal. Thus to check equality, equal (=) outputs from all the comparators
are checked and ANDed. The output signals less than (<) or greater than (>) are
checked by comparing the operands a and b from the MSB side. If a3 > b3 then it
can be said that a > b. If a3 = b3 then the next bit is checked. If a3 = b3 and a2 > b2
then also a > b. This way the next bit is checked until LSB is faced. Similarly, the
less than operation is carried out.

The architecture of a 4-bit comparator is shown in Fig. 3.20. Here, four 1-bit
comparators are used. The comparator has three outputs lt2, eq2 and gt2. Three
more inputs are included to this block to support the hierarchical design. These
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Fig. 3.21 Architecture of a 16-bit comparator using 4-bit comparator

inputs are lt1, eq1 and gt1. The 4-bit comparator block receives these inputs from
another block.

An architecture of a 16-bit comparator using 4-bit comparators is shown in
Fig. 3.21. Here, four 4-bit comparators are used. The 16-bit word length is parti-
tioned in four nibbles. Each nibble has four bits. The nibble from the MSB side is
compared first and then the next nibble is compared. The initial inputs for the 4-bit
comparator that receives the lower 4 bits are set as lt1 = 0, eq1 = 1 and gt1 = 0.
The input eq1 is facing an AND gate and thus it must be set to logic 1.

3.15 Constant Multipliers

In many signal processing or image processing applications constant parameters are
multiplied. These constants are fixed for a particular design. Then the complete mul-
tipliers are not required in those applications to multiply the constants. Basically,
the complete multipliers are avoided to multiply constants as they consume more
logic gates. An alternative is to use constant multipliers or scale blocks to realize the
multiplication with the fixed constants.

In evaluation of the equation b = ca, where b is the output, a is the input operand
and c is the constant parameter, constant multipliers are very useful. The constant
multipliers are constant specific means that the hardware specification varies from
constant to constant. Let’s consider an example where the input data a is divided by
the constant 3. In other words, input a is multiplied by 1/3 = 0.3333. This multipli-
cation process can be written as

b = a/c = a(2−2 + 2−4 + 2−6 + 2−8) (3.24)

Here, data width of 18-bit is considered and 9-bit is taken to represent the fractional
part. Here, when a operand a is multiplied by 2−i , then the operand is right shifted by
i th bit. This shifting operation is realized by wired shifting technique which does not
consume any logic element. This shifting operation is realized by directly connecting
the wires thus very fast. A schematic for hardware wire shifting for 1-bit right and
1-bit left is shown in Fig. 3.22.
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(a) Schematic for 1-bit hardware right shift
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(b) Schematic for 1-bit hardware left shift

for 4-bit data width.

Fig. 3.22 Schematic for wired shifting by 1-bit right and left for 4-bit data width

This wired shifting methodology supports both signed and unsigned numbers
represented in two’s complement representation. For example, for 0.5/2 the result
should be 0.25 and for −0.5/2 the result should be −0.25. This is why the MSB bit
is kept same for input operand and the output. The wired shift block for 1-bit right
shift is called here as RSH1 and for 1-bit left shift block is called here as LSH1.

The constant multiplication block that multiplies the input operand a by 0.3333
is shown in Fig. 3.23. Here, four right shift blocks are designed which are RSH2,
RSH4, RSH6 and RSH8. The input operand is shifted and added to obtain the final
result according to Eq. (3.24). Here, only three adders are used thus it can be said
that this constant multiplier block is hardware efficient than a complete multiplier.

The shift blocks shown in Fig. 3.23 are for fixed number of bits. But in many
applications variable shifting operations are required. These variable shift blocks
shift an input operand by a variable count. Before discussing the variable shift blocks,
first consider a block that shifts an input operand by 1-bit in the right side depending
on a control signal. If the control bit is high then the input operand is right shifted
by 1-bit otherwise the block passes the same input to the output. This type of block
is called Controlled RSH (CRSH) block for the right shift and called as Controlled

Fig. 3.23 Scheme for
constant multiplier

RSH2 RSH4 RSH6 RSH8

Adder Adder

Adder

a[17 : 0]

a/3
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Fig. 3.24 Scheme for
controlled 1-bit right shift
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Fig. 3.25 Scheme for
variable right shift CRSH1
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LSH (CLSH) for left shift. Here, CRSH1 block is shown in Fig. 3.24 which shifts
the input operand by 1-bit if s is equal to 1. The CRSH block has a delay of a MUX
in the path.

Now, the variable shift blocks can be designed using the controlled shift blocks.
The variable shift block for right shift is called as Variable RSH (VRSH) and the
variable shift block for left shift is called as Variable LSH (VLSH). A diagram for
VRSH block is shown in Fig. 3.25. Here, this block is configured using CRSH1,
CRSH2, CRSH4 and CRSH8 blocks. This block is capable of shifting an operand
by any number from 0 to 15. Shifting by s = 0 means all the controlled shift blocks
are disabled and they pass the input data as it is. Shifting by s = 15 is achieved by
enabling all the blocks. The VRSH or VLSH block has a delay of a maximum of 4
MUXes connected in series. Thus has a speed limitation.

3.16 Frequently Asked Questions

Q1. Write a Verilog code in behavioural style for an 18-bit comparator?
A1. Realization of a comparator using behavioural model is very straightforward
forward as shown below

module comp18 (A1,B1,LT1,GT1,EQ1) ;
input [ 17 :0 ] A1,B1 ;
output reg LT1,GT1,EQ1;
always @ (A1,B1)
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(b) Number 2 is represented.

Fig. 3.26 Seven segment display and it representation

begin
i f (A1>B1)
begin
LT1 <= 0; GT1 <= 1; EQ1 <= 0;
end
else i f (A1<B1)
begin
LT1 <= 1; GT1 <= 0; EQ1 <= 0;
end
else
begin
LT1 <= 0; GT1 <= 0; EQ1 <= 1;
end
end

endmodule

Q2. Write Verilog Code to display BCD numbers on Seven Segment display?
A2. In order to display the BCD numbers, Seven Segment Display (SSD) is used.
SSD is an inbuilt feature of many FPGA kits. Seven segments together display any
number in the SSD. These seven segments can be used to display 27 = 128 number
of combinations but few combinations are used. Representation of a BCD number
using seven segments is shown in Fig. 3.26.

module segment7 (BCD,SEG) ;
input [ 3 : 0 ] BCD;
output reg [ 6 : 0 ] SEG;

always @(BCD)
begin

case (BCD)
0 : SEG = 7 ’ b1111110 ;
1 : SEG = 7 ’ b0110000 ;
2 : SEG = 7 ’ b1101101 ;
3 : SEG = 7 ’ b1111001 ;
4 : SEG = 7 ’ b0110011 ;
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(d) XOR using MUX.

Fig. 3.27 Realization of different gates using 2:1 MUX

5 : SEG = 7 ’ b1011011 ;
6 : SEG = 7 ’ b1011111 ;
7 : SEG = 7 ’ b1110000 ;
8 : SEG = 7 ’ b1111111 ;
9 : SEG = 7 ’ b1111011 ;
default : SEG = 7 ’ b0000000 ;

endcase
end

endmodule

Q3. Realize different logic gates using 2:1 MUX?
A3. Different logic gates can be realized using 2:1 MUX and it is very helpful in
FPGA implementation. The implementation of different logic functions using 2:1
MUX is shown in Fig. 3.27. For a 2:1 MUX, output is equal to I0 when the select
signal is 0 and output is equal to I1 when the select signal is 1.
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3.17 Conclusion

Various combinational circuits are discussed in this chapter. Though this is a brief
discussion, we have covered all the major combinational circuits required to imple-
ment a complex digital system. Among the arithmetic circuits, basic full adders,
subtractors and control adder/subtractor blocks are discussed. The multiplication,
division or other complex circuits are discussed in separate chapters.

Other combinational circuits like Multiplexers, De-Multiplexers, Encoder,
Decoder, data coders are also discussed here. Design of a 16-bit comparator using
smaller comparators is shown in this chapter. The data shifters are very important in
designing digital systems. Here, wired shifting methods for signed data is demon-
strated. The design of constant multipliers is also shown in this chapter using these
wired shift blocks. These combinational blocks can bemodelled using Verilog easily.



Chapter 4
Basic Sequential Circuits

4.1 Introduction

In the last chapter, we have discussed different combinational circuits and their
implementation. But no digital system purely contains the combinational circuits. In
case of sequential circuits, the output is not only a function of the present input but
also depends on output past history. Sequential circuits are sometimes called as time
dependent circuits as outputs are updated according to a time event.

In this chapter, a brief theory on the sequential circuits is discussed. The objective
of this chapter is to discuss themajor sequential blockswhich are needed to implement
a complex digital system. Some of the basic concepts are avoided here as these are
already discussed in many textbooks or in many online tutorials. Operation of major
sequential blocks such as flip-flops, shift register, counters and frequency dividers is
explained below in the following sections.

4.2 Different Flip-Flops

The basic element of a sequential circuit is a flip-flop. Flip-flops are sometimes
referred as memory elements as they can store 1-bit of information. Flip-flops are
also sometimes regarded as Bistable multivibrators as flip-flop has two stable states.
There are mainly four types of flip-flops studied in literature which are

1. SR Flip-Flop
2. JK Flip-Flop

3. D Flip-Flop
4. T Flip-Flop

All these clocked flip-flops change their state depending on the triggering by the
clock signal. A flip-flop can be either level triggered or edge triggered. The edge
triggering can be of two types which are positive edge triggering or negative edge
triggering. The transition of clock signal from the active high state to low state is
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Fig. 4.1 Concept of positive
edge triggering

clk

clk

clk3

clk3

posedge

0.6ns

posedge

the positive edge. Similarly in the negative edge, clock signal goes to low state from
the high state. The edge triggering can be generated either by an analog circuit (R-C
network) or by a digital circuit. The conception of positive edge triggering is shown
in Fig. 4.1.

4.2.1 SR Flip-Flop

SR flip-flop is the most basic flip-flop. The truth table of the SR flip-flop is shown in
Table4.1 where Q is the present state and Q∗ represents the next state. SR flip-flop
has two inputs, one is set (S) and another is reset (R). The set input sets the output (Q)
and the reset input resets the output. When the S and R input is ‘10’ , Q is set. The
output is reset when input is ‘01’ . The SR flip-flop retains its previous state when

Table 4.1 SR flip-flop truth table

Inputs Output

S R Q Q∗

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 X

1 1 1 X
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S

(a) NAND Based clocked SR flip-flop.

Q

Q

R

CLK

S

(b) NOR Based clocked RS flip-flop.

Fig. 4.2 Schematic for SR flip-flop

input is ‘00’ due to the feedback connection of the SR latch. The output goes to an
undefined state when the input is ‘11’ because of NOR or NAND gate functionality.

The implementation of SR flip-flop using NAND and NOR SR latch is shown in
Fig. 4.2. The realization of the SR flip-flop using Verilog is shown below. Here, SR
flip-flop is realized using behavioural coding using the truth table of SR flip-flop.

module s r f f (S ,R, clk , reset , q , qb ) ;
output reg q , qb ;
input S ,R, clk , reset ;
init ial begin q=1 ’b0 ; qb =1 ’b1 ; end

always @ (posedge clk )
i f ( reset ) begin
q <= 0; qb <= 1;

end
else begin
i f (S!=R) begin
q <= S ; qb <= R;

end
else i f (S==1 && R==1) begin
q <= 1 ’bZ ; qb <= 1 ’bZ ;

end
end

endmodule

4.2.2 JK Flip-Flop

ThebasicSRflip-flophas anundefined statewhen S = 1 and R = 1.Thus application
of SR flip-flop is limited. JK flip-flop is modified version of SR flip-flop and works
exactly sameway as the SRflip-flop does but eliminates the limitation of SR flip-flop.
JK flip-flop has two inputs called J and K instead of S and R in case of SR flip-flop.
The input combination J = 1 and K = 1 is permitted in case of JK flip-flop. The
truth table of JK flip-flop is shown in Table4.2.
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Table 4.2 JK flip-flop truth table

Inputs Output

J K Q Q∗

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

J
Q
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K

(a) JK flip-flop by NAND SR latch.

Q

Q

K

CLK

J

(b) JK flip-flop using NOR SR latch.

Fig. 4.3 Schematic for JK flip-flop

The output of the JK flip-flop toggles when J = K = 1. Thatmeans, if the present
state of Q is ‘0’ then Q is switched to ‘1’ . Also, if the present state of Q is ‘1’ then
Q is switched to ‘0’ . The schematic of the JK flip-flop using the NAND-based SR
latch and NOR-based SR latch is shown in Fig. 4.3. The realization of JK flip-flop
using Verilog HDL is given below.

module jk ( q , qb , j , k , reset , c lk ) ;
output reg q , qb ;
input j , k , clk , reset ;
init ial begin q = 1 ’b0 ; qb = 1 ’b1 ; end

always @ (posedge clk )
i f ( reset )
begin
q = 1 ’b0 ; qb = 1 ’b1 ;

end
else
case ( { j , k } )
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{ 1 ’ b0 , 1 ’ b0 } : begin q=q ; qb=qb ; end
{ 1 ’ b0 , 1 ’ b1 } : begin q=1 ’b0 ; qb=1 ’b1 ; end
{ 1 ’ b1 , 1 ’ b0 } : begin q=1 ’b1 ; qb=1 ’b0 ; end
{ 1 ’ b1 , 1 ’ b1 } : begin q=~q ; qb=~qb ; end

endcase
endmodule

4.2.3 D Flip-Flop

The D flip-flop is the most used clocked flip-flop in designing the digital systems.
Compared to the SR flip-flop, D flip-flop ensures that both S and R input do not get
same value. Thus all the states of D flip-flop is valid. The D flip-flop is used for delay
insertion as it is capable of delaying a signal by one clock period. The truth table of
the D flip-flop is shown in Table4.3.

Here, the output of the D flip-flop does not change its state when the value of the
clock is low and output follows the input when the clock signal is high. Thus clock
signal works as enable signal. The timing diagram for the D flip-flop is shown in
Fig. 4.4. Here, clock signal is positive edge triggered. The duration of one sample of
data is equal to clock period. The output signal Q is a delayed version of the input
data signal D.

The realization D flip-flop using SR flip-flop or JK flip-flop is shown in Fig. 4.5.
In every sequential circuits, D flip-flop is used as the basic building block. Thus it is
important to know the Verilog modelling of D flip-flop. Below is a Verilog code of
a D flip-flop in structural modelling style. Here, the positive edge triggering signal
is generated within the code. Additional signals like control enable (ce) and reset

Table 4.3 Truth Table for D flip-flop

Clock D Q Q̄

Low X Q Q̄

High 0 0 1

High 1 1 0

Fig. 4.4 Timing diagram for
the D flip-flop

posedge

D

Q

clk



66 4 Basic Sequential Circuits
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(a) D flip-flop using SR flip-flop.
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D QJ
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(b) D flip-flop using JK flip-flop.

Fig. 4.5 Realization of D flip-flop using SR and JK flip-flop

Fig. 4.6 A typical modelling
style of D flip-flop

d

q

clk

ce

reset

d

are also used. An extra enable signal ce is used to control the writing of data signals
without interfering the clock signal. The reset signal clears the output.

module d f f _ s t ruc t ( q , qb , d , reset , ce , c lk ) ;
output q , qb ;
input d , reset , ce , c lk ;
wire t1 , t2 , d1 , d2 , d3 ;
wire clk1 , clk2 , clk3 ,posedge ;
assign #0.2 clk1 = ∼clk ;
assign #0.2 clk2 = ∼clk1 ;
assign #0.2 clk3 = ∼clk2 ;
assign d1 = ∼ce & q & ∼reset ;
assign d2 = ce & d & ∼reset ;
assign d3 = d1 |d2 ;
assign posedge = clk3 & clk ;
assign t1 = ∼ ( d3 & posedge ) ;
assign t2 = ∼ (∼d3 & posedge ) ;
assign q = ∼ ( t1 & qb ) ;
assign qb = ∼ ( t2 & q ) ;
endmodule

The D flip-flop according to the structural Verilog code is shown in Fig. 4.6. Here,
if the ce is active then only input is passed to the output and if ce is low then output
retains its previous value. This configuration has many use in designing complex
digital systems. In the following Verilog code, D flip-flop is also modelled using
behavioural coding Style. Here, we do not need to generate the positive or negative
edge. This is the mostly used model for D flip-flop.
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module d f f ( q , reset , clk , d ) ;
output reg q ;
input reset , d , c lk ;
init ial begin q=1 ’b0 ; end
always @ (posedge clk )
i f ( reset )
q <= 1 ’b0 ;
else
q<=d ;
endmodule

4.2.4 T Flip-Flop

T flip-flop is also known as ‘Toggle flip-flop’ . This is because its output toggles
between a state and its inverted state depending on a single input. The truth table for
this type of flip-flop is shown in Table4.4. The behaviour shown in Table4.4 can be
modelled in Verilog as

module t f f ( q , reset , clk , t ) ;
output reg q ;
input t , reset , c lk ;
init ial begin q=1 ’b0 ; end
always @ (posedge clk )
i f ( reset )
q <= 1 ’b0 ;
else i f ( t )
q= ∼q ;
else
q = q ;
endmodule

Tflip-flop can be designed using eitherD or JKflip-flop. T flip-flop can be realized
using D flip-flop as

D = T ⊕ Q (4.1)

Table 4.4 Truth table for T flip-flop

Input Output

Present state Next state

T Q Q∗

0 0 0

0 1 1

1 0 1

1 1 0
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(a) T flip-flop using JK flip-flop.
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(b) T flip-flop using D flip-flop.

Fig. 4.7 Schematic of T flip-flop using D flip-flop and JK flip-flop
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Fig. 4.8 Schematic of Master-Slave D flip-flop

Similarly, JK flip-flop can also be used to realize T flip-flop by setting J = K = T .
The realization T flip-flop using JK flip-flop and D flip-flop is shown in Fig. 4.7.

4.2.5 Master-Slave D Flip-Flop

Amaster-slave flip-flop is constructed using two separate but same type of flip-flops.
One flip-flop serves as master while the other serves as the slave. It is used to convert
level triggered to edge triggered flip-flop. Thus the master-slave D flip-flop has the
advantage that it always works on clock edge. When the clock is high, the first latch
store the data and state of second latch does not change. When the clock is low,
second latch gets data that is stored by the first latch, and the first latch do not change
its state. This is for positive edge triggering and similar operation is followed for
negative edge triggering. A master-slave D flip-flop is shown in Fig. 4.8.

4.3 Shift Registers

Shift registers load the data present on its inputs and then moves or shifts it to its
output once in every clock cycle. A shift register basically consists of several single
bit D-Type flip-flops, one for each data bit. Shift registers can be used to shift a input
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data, serial to parallel conversion, parallel to serial conversion or for data storage.
There are mainly four types of shift registers which are

1. Serial Input Serial Output (SISO)
2. Serial Input Parallel Output (SIPO)
3. Parallel Input Serial Output (PISO)
4. Parallel Input Parallel Output (PIPO)

All these shift registers discussed here are synchronous, which means the same
clock input is connected to all the flip-flops.

4.3.1 Serial In Serial Out

SISO is a type of shift register which receives a serial stream of bits or bytes and
shifts the stream serially. In other words, the data stream is delayed by the SISO.
If there are n flip-flops then the data stream will be delayed by n clock cycles. The
SISO for n = 4 is shown in Fig. 4.9. Here four D flip-flops are connected in series.
The output signal is the same as the output of the 4th flip-flop. The clockwise shifting
of the single bit data stream for n = 4 is shown in Fig. 4.10. Each flip-flip introduces
a delay of one clock cycle. Here all the flip-flops are positive edge triggered.

4.3.2 Serial In Parallel Out

SIPO is a type of shift register which is used to convert a serial data stream into a
parallel data stream. The main use of this type of shift register is in the interfacing
circuits (ADC, DAC interfacing) or in the circuits where we need to convert serial
data to equivalent parallel one. The SIPO is shown in Fig. 4.11 for n = 4. Here four
flip-flops are serially connected but the output is taken in parallel. In converting a
serial data to parallel data stream, the care should be taken in selecting the clock
frequency for input sampling and output sampling. If clk1 is used to sample the
outputs then the relation clk1 = n.clk should be maintained. The time instant when
the parallel outputs q3:0 is taken is shown in Fig. 4.10 by dotted line.

d0
dff1

q0i/p d1
dff2

q1 d2
dff3

q2 d3
dff4

q3

clk

o/p

Fig. 4.9 A 4-bit serial in serial out shift register
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Parallel Output

Fig. 4.10 A 4-bit serial in serial out shift register

4.3.3 Parallel In Serial Out

PISO is a type of shift register which is opposite of SIPO type of shift register. PISO
takes a parallel data stream as input and outputs a serial stream of data. The PISO
is used to convert a parallel stream in a serial one. In integrated circuits, due to the
limitation of input and output ports parallel data stream is converted to the serial data
stream.
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Fig. 4.11 A 4-bit serial in parallel out shift register
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Fig. 4.12 A 4-bit parallel in serial out shift register
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Fig. 4.13 A 4-bit Parallel in serial out shift register
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Fig. 4.14 A 4-bit parallel in parallel out shift register

The schematic of PISO for n = 4 is shown in Fig. 4.12. Here, b3:0 is the parallel
input data and q3 is the serial output. The parallel data is loaded to the flip-flops by a
control signal load. The PISO starts working as a SISO after the data is loaded. The
timing diagram for the PISO is shown in Fig. 4.13. After four clock cycle of delay,
the load signal is again high. The clock frequency at which the load signal should
be asserted is clk1 = clk/n for n number of flip-flops.

4.3.4 Parallel In Parallel Out

PIPO is type of shift register which is mostly used in digital systems than the other
type of registers. In PIPO a parallel data stream is input and a parallel data stream
is output. PIPO is most popularly known as pipeline register or simply as register.
PIPO is used for storing a data for one clock cycle or delaying a data by one clock
cycle. The schematic of the PIPO is shown in Fig. 4.14 for n = 4. The D flip-flops
are not connected to each other. Each flip-flop independently receives an input and
produces an output synchronously.
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Table 4.5 Truth table for sequence generator using three flip-flops

q2 q1 q0 d2

1 0 1 0

0 1 0 1

1 0 1 1

1 1 0 0

0 1 1 1

Table 4.6 Truth table for sequence generator using four flip-flops

q3 q2 q1 q0 d3

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1

4.4 Sequence Generator

Sequence generator is a sequential block which generates a particular sequence and
then repeats. First step in designing a sequence generator is to find number of flip-
flops. Lets say the length of the sequence is L . Then number of flip-flops can be find
from the relation L ≤ (2n − 1). Here, n indicates the minimum number of flip-flops.
Lets consider the sequence is ‘10110’. Here, L = 5 thusminimum three flip-flops are
enough. The truth table for this sequence using three flip-flops is shown in Table4.5.

Here output is taken from the q2 port. The expression of input d2 will be some
combination of q0, q1 and q2. Here, two states are same which is equal to ‘101’. Thus
this is not possible to generate the sequence with three flip-flops. Lets rewrite the
truth table with four flip-flops which is shown in Table4.6.

Here, no states are same and four flip-flops are to be used. The Boolean expression
of the d3 can bewritten usingK-map. TheK-map is shown in Fig. 4.15. The optimized
Boolean expression for d3 is

d3 = q̄3 + q̄0 (4.2)

The circuit diagram for the sequence generator using four flip-flops is shown in
Fig. 4.16. In designing a sequence generator, first step is to find the number of flip-
flops. The second important thing is to make the correct truth table. In the truth table,
from the left side first column is the sequence and the second column is the circular
shifted version of the sequence. Third step is the K-map optimization problem.



4.5 Pseudo Noise Sequence Generator 73

q3q2
q1q0

00 01 11 10
00

01

11

10

×

0

× ×

1

1

0

×

1×
×
×

×
×
× ×

Fig. 4.15 K-map optimization for d3
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Fig. 4.16 Architecture for the ‘10110’ sequence generator

4.5 Pseudo Noise Sequence Generator

Pseudo Noise (PN) sequence or sometimes called as Pseudo Random (PR) sequence
has many application in signal processing or in the field of communication. The
voltage level of the PN sequence can vary either from 0 to 1 or from −1 to 1. PN
sequence is not totally random but has randomness in a certain period.Most common
way to generate a PN sequence is usingLinear FeedbackShift Register (LFSR). Some
of the techniques to generate PN sequence are mentioned below.

Fibonacci LFSR is a famous technique to generate PN sequences. An n bit LFSR
generates a PN sequence of period (2n − 1) using n flip-flops. LFSR is a register
whose input is a linear function of its previous state. This linear function is most
commonly XOR. The PN sequence to be generated is controlled by a feedback
polynomial. The value of co-efficients of the polynomial can be either 1 or 0. This
polynomial says the XOR function will take input fromwhich flip-flops. An example
of such polynomial is shown below

x4 + x3 + 1 = x4 + x3 + x0 (4.3)

This polynomial says that output of 4th and 3rd flip-flops are taken to XOR network.
The ‘1’ does not represent any flip-flop, it represents that the input is taken to the
first flip-flop. The structure of the LFSR according to the above equation is shown
in Fig. 4.17. Here, total n = 4 number of flip-flops are used and the period of the
PN sequence is 15. This means that after 15 samples the PN sequence will repeat.
Different PN sequences can be generated by using different values of n. Generation
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Fig. 4.17 PN sequence generation using Fibonacci LFSR

Table 4.7 Different feedback polynomials and their period

Bits Feedback polynomial Period (2n − 1)

2 x2 + x + 1 3

3 x3 + x2 + 1 7

4 x4 + x3 + 1 15

5 x5 + x4 + 1 31

6 x6 + x5 + 1 63

7 x7 + x6 + 1 127
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Fig. 4.18 PN sequence generation using Galois LFSR

of PN sequences using different feedback polynomials and their period is shown in
Table4.7.

Another way of generating PN sequence is to use Galois LFSR. The Galois LFSR
follows the same feedback polynomial but in a reverse order. The Galois LFSR
technique is shown in Fig. 4.18. Here the XOR gate is placed between the flip-flops
and Galois LFSR uses always two-input XOR gate. Thus Galois LFSR is faster than
Fibonacci LFSR.

Another way of generating PN sequence is using Gold codes. Gold codes have
many application in the field of communication. PN sequence generated using Gold
has small cross-correlationswithin a set.Gold codes are functionof twoPNsequences
and most common function is XOR. Generation of simple Gold code is shown in
Fig. 4.19. Here, two n-bit PN sequence are XORed and the resultant Gold code has
same period of (2n − 1).
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Fig. 4.19 PN sequence
generation using Gold code n-bit LFSR
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4.6 Synchronous Counter Design

Counters can be broadly classified as follows:

1. Asynchronous and Synchronous counters
2. Single and multi-mode counters
3. Modulus counters
4. Shift Register counters.

Design of asynchronous counters (Ripple counter) is easy as flip/flops are not
under control of a single clock. Its speed of operation is limited and also there may
be glitches at the outputs. These drawbacks are eliminated by giving single clock
reference to every flip/flops. A countermay be either an up counter or a down counter.
Multimode counters are also possible which have a control input to switch between
up and down. Modulus counters are defined based on the number of states they are
capable of counting. Shift registers are also can be arranged to form a counter. There
are two types of shift register-based counter which are Ring counter and Johnson
counter. A counter to count arbitrary sequence can also be designed using basic
flip-flops.

In this section, design of synchronous counter is discussed.A synchronous counter
may count in increasing order or in decreasing order. The truth table of a 4-bit
synchronous up counter using D flip-flop is shown below in Table4.8. The present
state is q3:0 and q∗

3:0 represents the next state. Corresponding inputs to the different
flip-flops are also shown. Input to the D flip-flop is same as next state as D flip-flop
just delays the input signal by one clock period.

The up counter is to be realized using the D flip-flops. The Boolean expressions
for the input of the D flip-flops can be evaluated using the K-map shown in Fig. 4.20.

The Boolean expression for d0 derived from the K-map is

d0 = q0 (4.4)

The Boolean expression for the d1 is

d1 = q1.q0 + q1.q0 = q1 ⊕ q0 (4.5)
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Table 4.8 Truth table synchronous up counter

Decimal q3q2q1q0 q∗
3q

∗
2q

∗
1q

∗
0 d3 d2 d1 d0

0 0000 0001 0 0 0 1

1 0001 0010 0 0 1 0

2 0010 0011 0 0 1 1

3 0011 0100 0 1 0 0

4 0100 0101 0 1 0 1

5 0101 0110 0 1 1 0

6 0110 0111 0 1 1 1

7 0111 1000 1 0 0 0

8 1000 1001 1 0 0 1

9 1001 1010 1 0 1 0

10 1010 1011 1 0 1 1

11 1011 1100 1 1 0 0

12 1100 1101 1 1 0 1

13 1101 1110 1 1 1 0

14 1110 1111 1 1 1 1

15 1111 0000 0 0 0 0
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(a) K-map for d 0 .
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(b) K-map for d 1 .
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Fig. 4.20 Deriving the logical equation for up counter using K-map
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Fig. 4.21 A 4-bit synchronous up counter

The Boolean expression for d2 can be derived as

d2 = q2.q1 + q2.q0 + q2.q1.q0 = q2 ⊕ (q1.q0) (4.6)

The Boolean expression for d3 can be derived as

d3 = q3.q2 + q3.q1 + q3.q0 + q3.q2.q1.q0 = q3 ⊕ (q2.q1.q0) (4.7)

The schematic for the 4-bit synchronous up counter is shown in Fig. 4.21. Here,
four D flip-flops are used and they are connected to a common clock. The counter
counts from 0 to 15 and again reset to the 0.

4.7 Loadable Counter

Loadable counter is a very popular counter used in many applications. The loadable
counter can be treated as a general counter which can be used as BCD counter or
Modulus counter. The loadable counter can be used to generate any arbitrary or
semi-arbitrary sequence. The loadable counter can be of two types

1. Loadable Up Counter
2. Loadable Down Counter

The basic block diagram of the loadable up/down counter is shown in Fig. 4.22.

Fig. 4.22 A 4-bit
synchronous up counter
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Fig. 4.23 A 4-bit loadable up counter

4.7.1 Loadable Up Counter

In the previous section, design of synchronous up counter is discussed. The loadable
up counter is simply a synchronous up counter with load facility. A 4-bit loadable
up counter is shown in Fig. 4.23. 2:1 MUXes are placed before each D flip-flop to
load parallel data to the flip-flops. A control signal load selects the data b3:0 when
its value is logic 1. The loadable counter can start the sequence from the load value
(b). The loadable up counter starts counting when the control signal enable (en) is
high and also it has control sequence reset which can reset the counter. The loadable
up counter has two outputs, viz., q3:0 and terminal count (tc). The terminal count
signal is generated when the count is equal to another limit value (lmt). The tc signal
can be used for many purposes. The tc signal can be used to stop the counter, load
the counter or to start another counter. This control signal can be generated using a
equality comparator which is a combination of XNOR gates and AND gate.

An example is shown in Fig. 4.24 to demonstrate the use of loadable up counter
to generate a semi-arbitrary sequence. In this example, the value of data is taken as
b = 5 and the value of limit is lmt = 7. As the enable signal goes high, the loadable
up counter starts counting. The value of 5 is loaded to the counter when the load
signal is high. As the en signal is high, the counter starts counting from the 5. The
terminal count signal (tc) is generated when the count reaches the value 7.

4.7.2 Loadable Down Counter

In the previous section, design of loadable up counter is discussed. The loadable down
counter is simply a synchronous down counter with load facility. A 4-bit loadable
down counter is shown in Fig. 4.25. The operation of a loadable down counter is
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Fig. 4.24 Timing diagram for the 4-bit loadable up counter
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Fig. 4.25 A 4-bit loadable down counter

similar to that of a loadable up counter. The Boolean expressions for the loadable
down counter are shown below

d0 = q0 (4.8)

d1 = q1 ⊕ q0 (4.9)

d2 = q2 ⊕ (q1.q0) (4.10)

d3 = q3 ⊕ (q2.q1.q0) (4.11)

The operation of both loadable up and down counter is similar. But count for
a loadable up counter is incremented but for a loadable down counter the count is
decremented. Initially the loadable up counter starts from0 and then incremented.But
for down counter a valid count should be loaded first and then should be decremented.

4.8 Even and Odd Counter

In implementing signal processing algorithms, it is sometimes required to generate
even and odd address locations using counters. Even and odd counter can be easily
designed using the simple up counters as shown in Fig. 4.26. In this design, even and
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Fig. 4.26 A 4-bit even and
odd counter using a simple
up counter

4-bit Up
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Count

Odd
Count

4

0

1

odd counter are generated from a single up counter. In generating the even counter,
up counter output (q) is first left shifted by 1-bit using wired shift block LSH1.
Then using concatenation even and odd count are generated. The circle indicates
the concatenation function. In even count generation, 0 is concatenated and for even
count, 1 is concatenated at LSB position.

4.9 Shift Register Counters

Shift register counters are another type of counters which do not actually count
consecutive numbers but generate special sequences. The sequence {8, 12, 14} can
be generated using normal counters but need extra circuitry but shift register-based
counters will easily generate this sequence. Thus shift register-based counters have
many use in the implementation of signal processing algorithms. Two types of shift
register-based counters are popular which are Ring counter and Johnson counter.

A Ring counter is basically a SISO register-based counter. Here, output of the last
flip-flop is connected to the input of the first flip-flop. This counter is also known
as one-hot counter. It circulates logic one around the ring. The truth table for this
Ring counter is shown in Table4.9. This Ring counter has n states for n number of

Table 4.9 Truth table for Ring counter

State q0 q1 q2 q3

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 0 0 0 1

0 1 0 0 0
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Fig. 4.27 A 4-bit Ring counter

Table 4.10 Truth table for Johnson counter

State q0 q1 q2 q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

0 0 0 0 0
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Fig. 4.28 A 4-bit Johnson counter

flip-flops used in the circular chain. The schematic of the Ring counter is shown in
Fig. 4.27. Here, the flip-flop has one input for reset and one input for set. Initially the
first flip-flop is set and all other flip-flops are cleared.

The above Ring counter is called as straight Ring counter. Another type of Ring
counter is Johnson counter where the inverted output of the last flip-flop is the input
of the first flip-flop. The truth table of the Johnson counter is shown in Table4.10.
The Johnson counter has 2n states instead of n states for n number of flip-flops. The
schematic of the Johnson counter is shown in Fig. 4.28. Here, only the reset input is
used and there is no need of setting the first flip-flop.
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clk
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Fig. 4.29 Timing diagram of the PG block

4.10 Phase Generation Block

Phase Generation (PG) block is a very important and frequently used sequential cir-
cuit to control the selective operation ofmemory blocks, counters and other important
computing units. This PG block along with counter circuit control the operation of
a complex digital system. The PG block generates a phase signal when it receives a
start pulse and the phase signal is deactivated when another stop pulse is asserted.
The timing diagram of this PG block is shown in Fig. 4.29.

This kind of timing diagram can be generated in manyways. Here we have given a
simple Verilog code to achieve the same timing diagram. Typically PG block is used
to run a counter selectively and this block is stopped by the terminal count signal
(tc) of the counter.

module pg ( start , stop , phase , clk , reset ) ;
input start , stop , reset , c lk ;
output reg phase ;
init ial begin phase <=0; end
always @(posedge clk )
i f ( reset )

phase <= 1 ’b0 ;
else i f ( s tart )

phase <= 1 ’b1 ;
else i f ( stop )

phase <= 1 ’b0 ;
endmodule

4.11 Clock Divider Circuits

Clock division circuits are very important in digital systems to provide clock signal
of different frequencies. For example, two types of clock frequencies are required
for serial to parallel conversion and for parallel to serial conversion. In any digital
platform where the digital systems are implemented, slower clocks are generated
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Fig. 4.30 Concept of clock division

from a high speed clock using the clock divider circuits. In Phase Locked Loops
(PLL) clock divider circuits are an integral part to generate high frequency of clock
signal.

In Fig. 4.30 the clock signal and the concept of clock division is shown. Here,
clock division is shown for factor of 2 and 4. Note that here 50% duty cycle is
considered for all signals. Frequency is defined as the inverse of clock period. Thus
as the clock period increases the frequency decreases.

4.11.1 Clock Division by Power of 2

The clock division by power of 2 can be achieved using D flip-flops connected in a
fashion shown in Fig. 4.31. The total number of flip-flops required to divide a clock
by 2N is N . This is an asynchronous circuit where a flip-flop is triggered by output
of the previous flip-flop. The above approach of clock division can also be realized
using T flip-flop as shown in Fig. 4.32. Here same number of flip-flop is required as
earlier.
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q1 d2
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Fig. 4.31 First approach for clock division by power of two
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Fig. 4.32 Second approach for clock division by power of two
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Fig. 4.33 Timing diagram for the clock division by 3

d0
dff1

q0 d1
dff2

q1 d2
dff3

q2

clk

clk/3

Fig. 4.34 Schematic for the clock division by 3

4.11.2 Clock Division by 3

Clock division by power of 2 is comparatively easier than clock division by any other
number. To achieve clock division by any other number, lets discuss clock division
circuit by 3 first. Clock division by 3 can be achieved by a mod-3 counter. A mod-3
counter can count up to 2. Clock division by 3 is explained in Fig. 4.33. Output q1
is shifted half clock cycle to generate q2. The final output is logical OR between
q1 and q2. To divide by three, along with 2 flip-flops an extra flip-flop is required.
This extra flip-flop is negative edge triggered. The schematic for clock divider by 3
is shown in Fig. 4.34.
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4.11.3 Clock Division by 6

Previously we have discussed clock signal division by odd number which is 3. Now
we will discuss clock division by a even number. This even number is 6 for example.
The concept of clock division by 6 is shown in Fig. 4.35. Here, a mod counter counts
up to 5 and then again starts from zero. The q1 signal is delayed by one clock cycle
and then ORed with q3 to generate clock signal divided by 6. Thus major blocks
needed here are a mod counter, a positive edge triggered flip-flop and an OR gate.
The architecture is shown in Fig. 4.36.

The frequency synthesizer circuits or clock multipliers need a circuit that can
divide clock signal by any integers within a range. An integer can be even or odd.
Clock division by odd number can be achieved by first designing a mod counter and
then using a negative edge triggered flip-flop. On the other hand, the clock division
by even number needs an extra positive edge triggered flip-flop in place of negative
edge triggered flip-flop. Thus a general clock divider circuit can be designed by
combining clock division circuits for even and odd numbers.
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Fig. 4.35 Timing diagram for the clock division by 6
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Fig. 4.37 Schematic for a programmable clock divider

4.11.4 Programmable Clock Divider Circuit

In this section, a basic architecture of a programmable clock divider is presented.
Clock divider circuits have many use in frequency synthesizers. A basic circuit is
presented below in Fig. 4.37. The circuit is capable of dividing the input clock by N
where N can take values from 1 to 15. The circuit passes the same input to the output
when N = 1. The circuit is based on a 4-bit loadable counter and a 4-bit comparator.
The value of N is decremented and passed to the lmt input of the loadable counter.
This increment is done by a simple 4-bit subtractor. The tc output of the loadable
counter is connected to the load input and thus the counter acts as mod counter.
The RSH1 block is a simple 1-bit right shift block. This block has another output rs
which is the residual bit after shifting. The rs bit selects the negative or positive edge
triggering for the D flip-flop. The above-mentioned programmable clock divider can
be scaled to increase the range of clock division. This can be done by increasing the
width of the loadable counter and comparator.

4.12 Frequently Asked Questions

Q1. Write a Verilog code in behavioural style for a Mod-N counter?
A1. Realization of aMod-N counter using behavioural model is very straightforward
forward as shown below

module modN_counter
# (parameter N = 10 ,WIDTH = 4)
( input clk , reset ,
output reg [WIDTH−1:0] out ) ;
always @ (posedge clk ) begin

i f ( reset ) begin
out <= 0;

end else begin
i f ( out == N−1)
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out <= 0;
else

out <= out + 1;
end

end
endmodule

Q2. Design D flip-flip using MUX?
A2. D flip-flop can be realized using 1-bit 2:1 MUX. First we will discuss the real-
ization of a latch using 2:1 MUX. The realization of a latch using MUX is shown in
Fig. 4.38. Here, output of the MUX is connected back to the I0 input of the MUX.
The clk signal is connected to the select signal of the MUX.

Now a Master-slave D flip-flop can be realized using one MUX as master and the
other MUX as slave. The realization of MSD flip-flop is shown in Fig. 4.39.

Q3. If an IC has maximum clock frequency of 100 MHz then how to operate a
design at double data rate?
A3. If a design is to be operated at double data rate on an IC which has maximum
clock frequency of 100MHz then the design should be operated at 200 MHz. In this
case, clock frequency is multiplied by factor of 2. Frequency multiplication by any
factor is achieved by Phase Locked Loop (PLL) but frequency multiplication by 2
can be achieved by considering both the clock edges instead of any one edge (either
positive edge or negative edge). An example of operating a counter at double data
rate is shown below.

Fig. 4.38 Realization of
Latch using 2:1 MUX
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Q

Fig. 4.39 Realization D
flip-flop using MUX
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Fig. 4.40 Scheme of generation of both the clock edges

module counter_ddr ( out , clk , en , reset ) ;
output reg [ 2 : 0 ] out ;
input clk , en , reset ;
init ial begin out=3 ’b000 ; end
always @(posedge clk or negedge clk )
i f ( reset ) begin

out <= 3 ’ b000 ;
end else i f ( en )

out <= out + 3 ’ b0001 ;
else out <= out ;
endmodule

The scheme of achieving both the clock edges is shown in Fig. 4.40. This is similar
to the scheme shown in Fig. 4.1 but here an XNOR gate is used instead of an AND
gate.

4.13 Conclusion

Many major sequential blocks are discussed in this chapter with their Verilog mod-
elling. Any of these blocks can be required in design of complex digital systems.
Firstly flip-flops are discussed and among all the flip-flops D Flip-Flop is mostly
used in most of the designs reported in this chapter or subsequent chapters. All types
of shift registers are very important in system design applications. Counter design
is a very important topic in sequential circuits and we have focused on design of
synchronous loadable up/down counter as it is broadly used in complex designs.
Lastly, various frequency divider circuits are discussed and then a programmable
clock divider is explained. The programmable clock divider has the most use in
frequency multiplier circuits.



Chapter 5
Memory Design

5.1 Introduction

In implementation of digital system, we may require to store data vectors or matrices
to initialize or we may require to store intermediate results. The storing of initial or
intermediate data can be done using memory elements. A design can support real-
time execution using memory elements. On the other hand, a design can achieve
better execution time by insertion of more parallelism using memory elements. Thus
memory elements play an very important role in efficient implementation of a digital
system.

In this chapter, realization of basic memory elements is discussed. Different types
of memory elements are realized using Verilog HDL along with their different oper-
ating modes. All the memory elements are explained using suitable example. In the
digital systems, there are three types of memory elements used which are

1. Controlled Register
2. Read Only Memory
3. Random Access Memory.

In the following sections, all the memory elements are discussed one by one using
their Verilog model and timing diagram.

5.2 Controlled Register

In many applications, we may require to store a single bit or a byte instead of an
array. In these cases, we do not require a complete memory element. In such cases,
a single register or a flip-flop will serve the purpose. This type of registers is called
as controlled registers. The block diagram of a controlled register is shown in the
Fig. 5.1. This register is simply a parallel in parallel out register as discussed in this
chapter. Only difference is that this register has a control enable input (en).
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Fig. 5.1 The block diagram
of a controlled register d0
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Fig. 5.2 The timing diagram
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The timing diagram for the controlled registers is shown in Fig. 5.2. The positive
edge triggered clock event is considered here. When the control input is high, the
byte d = 05 is loaded in the register. The register holds the output data whenever
the control input becomes low. The output of the register can be accessed until the
enable signal is again become high.

5.3 Read Only Memory

Read Only Memory (ROM) elements are used to store a vector, matrix of data or
control data words in a digital system to start the execution. As the name suggests,
the data stored in ROMs are only can be read and we cannot write data into it. ROM
stores the essential data to start a process or specific control words. These types of
memory element can be of two types which are

1. Single Port ROM (SPROM)
2. Dual Port ROM (DPROM).

5.3.1 Single Port ROM

The block diagram of a SPROM is shown in Fig. 5.3. This type of ROM element has
single port (dout) through which data are read. The address of the memory locations
is provided by the addr input. Here the addr input is of 3-bit width, this means
there are a total of 8 memory locations and at each location 8-bit data can be stored.
It has two other inputs which are clk and en. The SPROM is synchronously read
that means in each clock cycle one data byte is read. The en signal is used to enable
the memory element and whenever the en signal is high the data bytes can be read.
Synchronous read is also possible when data reading does not depend on clock event.
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The timing diagram for the SPROM is shown in Fig. 5.4. Here, initially the data
set {3, 5, 6, 7, 8, 9, 10, 11} is stored in the address locations from 0 to 7. The enable
signal (en) is high for two clock cycle and during these two clock cycles SPROM
is active. The data are read through the output port corresponding to the address
locations provided on the address line during this period.

TheSPROMis realized here using theBehaviouralmodelling style and theVerilog
code is shown below. In this Verilog code there are two sections, viz., initialization
and the data accessing part. Here, the memory locations are initially loaded with the
case statement under one always statement. The data accessing part is written under
another always statement.

module rom( clk , addres , data_out , en ) ;
input clk , en ;
input [ 2 : 0 ] addres ;
output reg [ 7 : 0 ] data_out ;
reg [ 7 : 0 ] mem [ 0 : 7 ] ;
// i n i t i a l begin data_out = 8 ’ b00000000 ; end
always @ ( addres )
case ( addres )
3 ’ b000 : mem[ addres ] = 8 ’ b00000001 ;
3 ’ b001 : mem[ addres ] = 8 ’ b00000010 ;
3 ’ b010 : mem[ addres ] = 8 ’ b00000011 ;
3 ’ b011 : mem[ addres ] = 8 ’ b00000100 ;
3 ’ b100 : mem[ addres ] = 8 ’ b00000101 ;
3 ’ b101 : mem[ addres ] = 8 ’ b00000110 ;
3 ’ b110 : mem[ addres ] = 8 ’ b00000111 ;
3 ’ b111 : mem[ addres ] = 8 ’ b00001000 ;
default : mem[ addres ] = 8 ’ b0000000 ;
endcase
always@ (posedge clk )
begin
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i f ( en )begin
data_out <= mem[ addres ] ;
end else
data_out <= data_out ;
end
endmodule

5.3.2 Dual Port ROM (DPROM)

The block diagram of a DPROM is shown in Fig. 5.5. The DPROM element has two
ports which are Port A and Port B. The output port douta is for port A and doutb
is for port B. All the memory locations are shared to both the ports. It is possible to
read from any location through both the ports in parallel. Thus both the ports have
separate address lines and enable inputs. Here, address bus addra is for port A and
addrb is for port B. Both the address bus have same width. Similarly, ena is for port
A and enb is for port B. The truth table for the DPROM is given in the Table 5.1.
Both the ports of DPROM can be selectively used using the enable control signals.

Fig. 5.5 Block diagram of
DPROM
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Table 5.1 Reading data from the DPROM

ena enb Operation

Port A Port B

0 0 N.A. N.A.

0 1 N.A. Read

1 0 Read N.A.

1 1 Read Read
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5.4 Random Access Memory (RAM)

Random Access Memory (RAM) is used to store the intermediate results in a digital
system. Compared to the ROMs discussed in the previous section, data can bewritten
into or read from the RAM blocks. RAMs have a special feature to write the data in
the address locations and thus consume more hardware than the ROMs. There are
two types of RAM blocks similar to the ROMs which are

1. Single Port RAM (SPRAM)
2. Dual Port RAM (DPRAM).

5.4.1 Single Port RAM (SPRAM)

The block diagram of the SPRAM is shown in Fig. 5.6. This block has two control
inputs which are en and we. The en signal enables the SPRAM block and we signal
enables the writing operation. The data on the data bus din are written when the
SPRAM block is active (en signal is high) and the we signal is high. The address
locations are indicated by the addr bus. The reading operation is taken place when
the SPRAM block is active and the we signal is low. The status of the control signal
and the corresponding operations are shown in Table 5.2.

An example of write and read operation in the SPRAM block is shown Fig. 5.7.
The data samples 5 and 6 are written to the addresses 1 and 2 respectively when both
the control signals are high. The addresses 1 and 2 are again inserted in the address
bus to read the data samples which are written previously. Thus the latency in the

Fig. 5.6 Block diagram of a
SPRAM
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Table 5.2 Reading and writing operation of SPRAM

en we Operation

0 0 N.A.

0 1 N.A.

1 0 Read

1 1 Write
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Fig. 5.7 Timing diagram for
data writing and reading in
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reading operation is three clock cycles. The SPRAM memory element is realized
using the behavioural coding style and the Verilog code is given below.

module ram( clk , addres , data_in , en ,we, data_out ) ;
input clk , en ,we ;
input [ 2 : 0 ] addres ;
input [ 7 : 0 ] data_in ;
output reg [ 7 : 0 ] data_out ;
reg [ 7 : 0 ] mem [ 0 : 7 ] ;
init ial begin data_out = 8 ’ b00000000 ; end
always@ (posedge clk )
i f ( en )begin
i f (we)
mem[ addres ]= data_in ;
else
data_out=mem[ addres ] ;
end
else
data_out = data_out ;
endmodule

5.4.2 Dual Port RAM (DPRAM)

The DPRAM blocks are most promising memory block in current memory technol-
ogy. The DPRAM blocks revolutionized the implementation of digital systems with
its concurrent read and write facility. In implementation of many signal processing
algorithms DPRAM blocks provide an easy platform for real-time operation. In real-
time operation, the DPRAM block help to achieve concurrent data acquisition and
data processing.
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Fig. 5.8 The block diagram
of DPRAM
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Table 5.3 Reading and writing operation of DPRAM

ena wea enb web Operation

Port A Port B

1 0 1 0 Read Read

1 0 1 1 Read Write

1 1 1 0 Write Read

1 1 1 1 Write Write

Similar to the DPROM block, the DPRAM block has two ports which are port
A and port B. Both the ports share the common memory locations. In the previous
section,wehave seen that a SPRAMblock has two control signals. In case ofDPRAM
block there are two sets of control signals, one for port A and one for port B. Port
A and Port B has separate address lines. Also, DPRAM has two output ports, viz.,
douta and doutb. The block diagram of the DPRAM is shown in the Fig. 5.8.

The DPRAM block can be used in different modes, depending on the control
inputs. The different operating modes of the DPRAM are shown in Table 5.3. Either
of the port can be used for writing or reading. Also, both the ports can be used for
writing or reading. The mode write-read/read-write is mostly used in which writing
operation is carried out through one port and reading operation is carried out through
the other port. In the write-write mode of operation, both the ports are used for
writing. In this mode, it should be noted that the address on the addra and addrb
bus should be different. As both the port share the same address locations and writing
at the same address cannot be possible.

An example of read-write operation for the DPRAM is shown in Fig. 5.9. Here,
port A is used for writing and port B is used for reading. Writing operation is carried
out for two clock cycles and reading operation is started after one clock cycle. The
control signals ena and wea are high during writing. During this period the input
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Fig. 5.9 The timing diagram
for write-read operation
using DPRAM
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data on dina bus and address on addra bus is given. After one clock cycle, the
control signal enb becomes high and the web signal is kept low. After two clock
cycle of latency, data is read out through the port B. In this mode, the douta port is
not connected. The Verilog code for the DPRAM is shown below.

module dp_ram( clka , clkb , ada , adb , ina , inb ,
ena , enb ,wea ,web , outa , outb ) ;

input clka , clkb , ena ,wea , enb ,web ;
input [ 2 : 0 ] ada , adb ;
input [ 7 : 0 ] ina , inb ;
output reg [ 7 : 0 ] outa , outb ;
reg [ 7 : 0 ] mem [ 0 : 7 ] ;
init ial begin
outa = 8 ’ b00000000 ;
outb = 8 ’ b00000000 ;
end
always@ (posedge clka )
i f ( ena )begin
i f (wea)
mem[ada]= ina ;
else
outa = mem[ada ] ;
end
else
outa = outa ;

always@ (posedge clkb )
i f ( enb )begin
i f (web)
mem[adb]= inb ;
else
outb = mem[adb ] ;
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end
else
outb = outb ;
endmodule

5.5 Memory Initialization

One method of memory initialization is shown previously for ROM, which is by
assign statement. But for bigger memory size it is very difficult to initialize this way.
Another way is

init ial begin
$readmemb( " c1 . txt " , mem1) ; //here , mem1 i s the memory array .
///$readmemb ( " c1 .mem" , mem1) ; ///for newer Xil inx version
///Xil inx vivado now allow only .mem f i l e for memory

i n i t i a l i z a t i on .
end

Here the readmemb command loads the memory array from a text file c1.t xt or
c1.mem which must be in the project directory. Here in the text file data are written
in binary. To load the data in hexadecimal format the command readmemh can be
used. Note that these commands are very useful for verifying the digital systems.
But user has to check whether they are synthesizable or not. Thus if it is required to
fill a ROM by pre-defined data elements then the assignment procedure using case
statement must be opted. The intellectual property-based memory block provides
easy initialization by .coe files. The data written in .coe file can be loaded to the
memory arrays easily.

5.6 Implementing Bigger Memory Element Using Smaller
Memory Elements

In many cases we may have smaller memory blocks and we need a memory block
with bigger size. The bigger memory block can be easily realized using the smaller
memory blocks. Implementation of a 32× 8 ROM using four 8× 8 ROMs is shown
in Fig. 5.10. Here, the data width is 8-bit and the address width is 5-bit for the bigger
ROM block. The lower three bits are for providing the address to the smaller blocks
and the two bits from the MSB side are used to select the outputs from the ROM
blocks. This way any bigger memory block can be realized by smaller blocks.
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Fig. 5.10 Realization of
32× 8 ROM using 8× 8
ROM blocks
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5.7 Implementation of Memory Elements

In this chapter, we have focused on gate level modelling and HDL realization of the
memory elements whereas the actual transistor level discussion is avoided here for
simplicity. In case of ASIC design either the ready made macro blocks are available
or memory elements are realized using the registers. In FPGA, the memory elements
are realized in two ways which are

1. Block RAMs: Block RAMs (BRAMs) are inbuilt to the FPGA devices. The size
of these BRAMs is either 18 Kb or 36 Kb. These BRAMs can be configured as
ROM or RAM and also as single port or dual port. These BRAMs provide many
other features for high performance in terms of low power, less area and high
speed.

2. Distributed RAMS: Distributed RAMs on the other hand realized using the LUTs
present in the FPGA device. Thus a memory block realized using distributed
RAMs consumes LUTs. Distributed memory blocks are not flexible as the Bock
RAMs. Distributed RAMs can be registered or non-registered.

In case of FPGA implementation, it is a common question that which type ofmemory
implementation should be used. If the storage requirement is high then it is better
to use the Block RAMs as they do not consume LUTs and thus can be very faster.
Smaller memories can be realized using the distributed RAMs. A simple dual port
RAM realized using the distributed RAMs is shown in Fig. 5.11. Four D flip-flops are
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Fig. 5.11 Concept of simple
dual port ram
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Table 5.4 Simultaneous reading and writing using two SPRAMs

ena enb ada Operation Output

RAM A RAM B

0 0 0–15 Read Read Douta and
doutb

0 1 0–15 Read Write Douta

1 0 0–15 Write Read Doutb

1 1 0–15 Write Write Not applicable

used to store four bits. Two 4:1 MUXes are used to take two outputs. The DEMUX
is used to provide the wea signal to all the flip-flops.

Sometimes it may be also be required to realize the DPRAM-like memories using
the SPRAMs. The realization of the DPRAM-like memories using the two SPRAMs
is shown in Fig. 5.12. Here, the data input is the same to both the SPRAMs and both
the SPRAMs are connected to the same clock and same address bus. Both the RAMs
have separate enable pins ena and enb. Here data acquisition is accomplished in two
phases. In the phase 1, the RAM A is enabled and data is written to RAM A. In the
second phase, RAMA is in readingmode and data is written into the RAMB. Output
of the both the RAMs are multiplexed and enb1 signal is the delayed version of the
enb signal. This configuration is not truly a DPRAM but resembles the simultaneous
read and write feature and is very useful in signal acquisition of huge stream of serial
data. Different modes of this type of usage of memory elements are shown in Table
5.4 for 4-bit address width.
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Fig. 5.12 Realization of
dual port ram using single
port ram Single Port

RAM A

Single Port
RAM B

din

ada

ena

enb

clk

douta

doutb

dout

enb1

1

0

5.8 Conclusion

In this chapter, different memory elements are discussed using their Verilog HDL
model, truth table and timing diagram. This chapter will help the readers to use
the memory elements where necessary. Memory elements must be used carefully.
If it is required to store constant data elements then ROM must be used. Designers
should always try to use single port memory elements wherever applicable. Dual
port memory is mostly used to implement algorithms as it enables concurrent data
acquisition and processing. In FPGA implementation, BRAMs must be preferred
first and then if all the BRAMs are utilized then distributed memories can be used.



Chapter 6
Finite State Machines

6.1 Introduction

Finite State Machine (FSM), also known as finite state automation, is a style of
modelling a system which can be represented by finite number of states. In those
systems, transition occurs from initial state to final state through some intermediate
states. This transition of states is modelled by FSM and system is implemented in
terms of combination of sequential and combinational circuits.

FSM design style is very significant in implementing control systems for practical
automation problems. Any control system such as process parameters variation con-
trol in an industry, event control in an integrated chip, controlling of any electronic
equipment, interfacing a slave IC to a controller, etc. can be designed using FSM
design style. Verilog HDL is a powerful language to model a system by following its
behaviour. FSM design style along with Verilog HDL is a very powerful method for
rapid prototyping of critical system. In this chapter, we have presented a very brief
theory on FSM design style along with some examples of system implementation
using FSM. Also, we have presented Verilog codes for modelling FSMs.

6.2 FSM Types

Any digital system can be represented using finite number of states. The transition
from one state to another reflects the behaviour of the system. Consider an example
of a simple 2-bit synchronous up counter with enable input. The counter counts from
0 to 3 when an enable (en) signal is high and retains the previous output when en
signal becomes low. The count value of this counter at a particular clock cycle is a
state. A state transition occurs when the count value is updated.

State transition diagram or simply the state diagram for a system is very important
to characterize the system behaviour. The state diagram for the up counter is shown
in Fig. 6.1. There are four states and a state transition occurs in every clock cycle.
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Fig. 6.1 State diagram of
2-bit synchronous up counter
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Note that transition occurs only when the en signal is high. Otherwise the same state
is retained. The behaviour of the counter is explained by the state diagram.

AnFSMhas three sectionswhich are output state decoder, state register and output
decoder. FSMs are generally of two types based on the dependency of the output
signal on present state and input signal. These two types are

1. Mealy Machine: Mealy circuits are named after G. H, Mealy, one of the leading
personalities in designing digital systems. The basic property of Mealy circuits is
that the output is a function of the present input conditions and the present state
(PS) of the circuit. The concept of the Mealy type of FSMs is shown in Fig. 6.2.

2. Moore Machine: Moore circuits are named after E. F. Moore, another leading
personality in designing digital systems. The basic property of Moore circuits is
that the output is strictly a function of the present state (PS) of the circuit. The
concept of the Moore type of FSMs is shown in Fig. 6.3.

Most of the digital systems use either Moore or Mealy machine but both machines
also can be used together. In the initial days of digital system design when HDL
languages are not discovered, Mealy or Moore machines are realized using K-Map
optimization technique. The K-map optimization technique provides an optimized
solution but it is a rigorous and lengthy process. On the contrary, HDL provides

NEXT State
Decoder

State Register Output
Decoder

i/p o/p
clk

Fig. 6.2 Concept of the Mealy type FSMs
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State Register Output
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i/p o/p
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Fig. 6.3 Concept of the Moore type FSMs

an easy solution to the design of FSMs by saving design time. In this chapter, we
will discuss the design of some of the digital systems using both Mealy and Moore
machine. A comparison between these two machines is given in this chapter. We will
end up our discussion by explaining some of the popular FSM state optimization
techniques.

6.3 Sequence Detector Using Mealy Machine

Sequence detector is a good example to describe FSMs. It produces a pulse output
whenever it detects a pre-defined sequence. In this chapter, we have considered a
4-bit sequence ‘1010’ . The first step of an FSM design is to draw the state diagram.
The sequence detectors can be of two types: non-overlapping and overlapping. For
example, consider the input sequence as ‘1101010101’ . Then in non-overlapping
style, the output y will be ‘0000100010’ and the output y in with overlapping style
will be ‘0000101010’ . This situation for Mealy machine is shown in Fig. 6.4.

In Fig. 6.4, it is observed that the overlapping style also considers the non-
overlapping sequences. The Design of both types of sequence detectors will be
discussed in this chapter. Lets consider the non-overlapping case first. The state dia-
gram of the ‘1010’ sequence detector using the Mealy machine in non-overlapping
style is shown in Fig. 6.5. The Mealy machine has four states and these states are
defined by parameter S. Each state corresponds to each bit in the sequence ‘1010’ .
For example, state S0 corresponds to 1 and state S1 corresponds to 0. The states are
written inside a circle and along the branch it is written as ‘input/output’ .

clk

x

y Non-Overlapping

y Overlapping

Fig. 6.4 ‘1010’ sequence detector output for overlapping and non-overlapping case
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Fig. 6.5 State diagram for
‘1010’ sequence detector
using Mealy machine in
non-overlapping style

S0 S1 S2 S3
1/0

0/0
0/0 1/0

1/01/0

1/0
0/1

The drawing of the correct state diagram is very crucial in designing FSMs. In PS
of S0, if the input is x = 1 then a state transition occurs from S0 to S1 but if x = 0
then next state (NS) is equal to PS (S0). Similarly, in the PS of S1, state transition
occurs only when x is equal to 0. Similarly the other state transitions can be assigned.
Here, S0 is the starting state and S3 is the end state when the output is 1. If there is
a false input, the next state will be the nearest similar state or there will be no state
transition. It is to remember that for any combinations we have to reach the branch
where the output is ‘1’. For example, if there is a false state at PS = S1 then end
state can be reached as S1S1S2S3S0. But if there is a false state at PS = S2 then the
path from S2 to S3 does not complete the sequence. Thus we have to start again from
S0. Consider an input sequence as ‘011010’ then the sequence of next states will be
S0S1S1S2S3S0.

Once the state diagram is drawn, now we can proceed to realize the sequence
detector in terms of hardware using K-map optimization method. The steps to be
followed to realize an FSM are the formation of state table, assignment of the states,
and then formation of the excitation table according to a flip-flop by which the FSM
will be realized. The state table is shown in Table 6.1 for sequence 1010.

The next step in designing an FSM is assignment of the states or representa-
tion of the states using their binary equivalent or any other coding techniques. The
assignment of the states is shown in Table 6.2. Here, S0 is represented as 00, S1 is
represented as 01, S2 is represented as 10 and S3 is represented as 11.

The next step is to form the excitation table. Here, we have chosen D flip-flop
to implement the FSM and in a D flip-flop input is reflected on output after a clock
period. The excitation table is shown in Table 6.3. Two D flip-flops will be required
as we need only two bits to represent the states. The Boolean expressions for the

Table 6.1 State table for the state diagram shown in Fig. 6.5

Present state Next state Output

X = 0 X = 1 X = 0 X = 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S3 0 0

S3 S0 S1 1 0
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Table 6.2 State assignments for the state table shown in Table 6.1

Present state Next state Next state

X = 0 X = 1 X = 0 X = 1

00 00 01 0 0

01 10 01 0 0

10 00 11 0 0

11 00 01 1 0

Table 6.3 Excitation table for 1010 sequence detector

Present state Input Next state F/F inputs Output

q1 q0 x q∗
1 q∗

0 d1 d0 y

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0

1 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0

1 1 0 0 0 0 0 1

1 1 1 0 1 0 1 0

inputs of the D flip-flops can be obtained by K-map optimization technique using
this excitation table. The K-maps for determining the expressions for d0, d1 and y
are shown in Fig. 6.6. The Boolean expressions are shown below

d0 = x (6.1)

d1 = q1q̄0x + q̄1q0 x̄ (6.2)

y = q1q0 x̄ (6.3)

The circuit for 1010 sequence detector using Mealy machine can be drawn using
the above equations. The sequence detector is shown in Fig. 6.7. Here output of the
sequence detector (y) is a function of input signal x and also function of the present
states (q1, q0). This reflects that the sequence detector is strictly a Mealy machine.

The above discussion was for 1010 sequence detector using Mealy machine in
non-overlapping style. Earlier in Fig. 6.4, we have shown the nature of the output
signal in case of overlapping style. The state diagram for the 1010 sequence detector
using Mealy machine for overlapping style is shown in Fig. 6.8. In the PS of S3
as soon as x = 0 is received, state transition occurs from S3 to nearest state for 1
which is S2. Previously, in non-overlapping case, sequence is started from S0 but
here searching for new sequence can be started from the intermediate states also.
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(a) K-Map for d 0 .
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(c) K-Map for Output.

Fig. 6.6 K-Map for 1010 sequence detector using Mealy machine

Fig. 6.7 Hardware
realization of the 1010
sequence detector using
Mealy machine using
non-overlapping style
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Table 6.4 State table for the state diagram of sequence ‘1010’ sequence detection using Moore
Machine in non-overlapping style

Present state Next state Output

X = 0 X = 1 X = 0 X = 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S3 0 0

S3 S4 S1 0 0

S4 S0 S1 1 1
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Fig. 6.8 1010 sequence
detector using Mealy
machine for overlapping
style S0 S1 S2 S3
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6.4 Sequence Detector Using Moore Machine

In this section, we will discuss implementation of the same 1010 sequence detector
but using Moore machine. In Moore type FSMs, we also can have two types of
sequence detectors which are non-overlapping and overlapping. The variation of the
output signal y in both the cases is shown in Fig. 6.9. It can be observed that the
output is one clock cycle delayed compared to the output of Mealy machine.

The state diagram for 1010 sequence detector using Moore machine in non-
overlapping style is shown in Fig. 6.10. Here inside the circle S0/0 represents that in
the PS of S0 output is zero. The input signal (x) is written along the branches from
one state to another. The Moore machine needs extra states compared to the Mealy
machine and in these extra states (S4) output is 1. Here one extra state is used and
in this extra state, output is always 1. Thus the objective is to reach the output state
from any state. Considering the same input sequence as ‘011010’ then the sequence
of next states will be S0S1S1S2S3S4.

The 1010 sequence detector using Moore machine is also designed here using
K-map. The state table is shown in Table 6.4. The state table is formed according to
the state diagram shown in Fig. 6.10. The next step is to assign the steps. Here, four
states are used and thus minimum of three bits are needed to represent them. The
state assignment table is shown in Table 6.5.

The excitation table for 1010 sequence detector using the Moore machine in non-
overlapping style is shown in Table 6.6. Here, same D flip-flip is used. In comparison
to the Mealy machine, three flip-flops are required. Thus using the K-map optimiza-
tion, the Boolean expression for the input of the flip-flops and the output is derived.

clk

x

y

y

Non-Overlapping

Overlapping

Fig. 6.9 ‘1010’ sequence detector output for overlapping and non-overlapping case for Moore
machine
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S4/1
0

01

Fig. 6.10 State diagram for 1010 sequence detector usingMoore machine in non-overlapping style

Table 6.5 State table with state assignments for sequence ‘1010’ detector using Moore Machine
in non-overlapping style

Present state Next state Next state

X = 0 X = 1 X = 0 X = 1

000 000 001 0 0

001 010 001 0 0

010 000 011 0 0

011 100 001 0 0

100 000 001 1 1

Table 6.6 Excitation table for 1010 sequence detector using Moore machine

Present state Input Next state F/F inputs Output

q2 q1 q0 X q∗
2 q∗

1 q∗
0 d2 d1 d0 y

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0

0 0 1 1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 1 1 0

0 1 1 0 1 0 0 1 0 0 0

0 1 1 1 0 0 1 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1
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(b) K-Map for d 1 .
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(c) K-Map for d 2 .
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(d) K-Map for Output.

Fig. 6.11 K-Map for 1010 sequence detector using Moore machine

The K-map optimization is shown in Fig. 6.11. The don’t care conditions may be
used to generate optimized expressions but here these conditions are not considered.
The Boolean expressions without optimization are shown below.

do = q̄2x + q̄1q̄0x (6.4)

d1 = q̄2q1q̄0x + q̄2q̄1q0 x̄ (6.5)

d2 = q̄2q1q0 x̄ (6.6)

y = q2q̄1q̄0 (6.7)

The hardware realization of the 1010 sequence detector using Moore machine in
non-overlapping style is shown in Fig. 6.12. Here, three D flip-flops are used. The
output of this sequence detector is a function of only the present states. Thus this
sequence detector is strictly a More machine.

The above discussion was for sequence detector using Moore machine in non-
overlapping style. Similarly we can convert this detector to detect overlapping
sequences. The nature of the output was previously shown in Fig. 6.9. The state
diagram for overlapping style is shown in Fig. 6.13. In the PS of S4 if the input is 1,
then state transition occurs from S4 to S3 to search the nearest state for 0.
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Fig. 6.12 Hardware implementation of 1010 sequence detector using Moore machine in non-
overlapping style
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Fig. 6.13 State diagram of 1010 sequence detector using Moore machine in overlapping style
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Table 6.7 Comparison between Mealy and Moore machine

Mealy machine Moore machine

Output depends on present input and present
state of the circuit

Output depends only on the present state of the
circuit

Required less number of states Required more number of states

Asynchronous output generation though the
state changes synchronous to the clock

Both output and state change synchronous to
the clock edge

Faster, the output is generated on the same
clock cycle

The output is generally produced in the next
clock cycle

Glitches can be generated as output change
depends on input transition

Safer to use, because they change states on the
clock edge

6.5 Comparison of Mealy and Moore Machine

In the above sections, we have studied Mealy and Moore machine with an example
of detecting a sequence. But the question now arises that which machine is better
to use and what are the differences between them. A comparison between these two
FSM styles is shown in Table 6.7.

Thus it is clear from the above discussion is that theMealymachine is faster, asyn-
chronous and glitches can be occurred in Mealy machine. On the other hand, Moore
machine is synchronous but needs more states. To avoid the glitches in the Mealy
machine, registeredMealymachine or synchronousMealy can be used. Synchronous
Mealy machines are nothing but Moore machines without output state decoder.

6.6 FSM-Based Serial Adder Design

Serial adder design using FSM is a popular design which is frequently used in litera-
ture. Here in this chapter, we will design a serial adder using both Mealy and Moore
machine. The serial adder adds two single bit stream a and b. The truth table for
adding two inputs is shown in chapter 3. The adder results two outputs sum and cout .
In this addition, if carry is generated and then it is added with the next set of inputs.

The state diagram for the serial addition in case of Mealy machine is shown in
Fig. 6.14. There are two states defined based on the carry output. The state S0 is for
carry equal to zero and S1 is for carry equal to 1. The corresponding state table is
shown in Table 6.8. This table can be used to design the hardware for serial adder.
There is a provision of reset signal. This reset signal will initially set the NS as 0.
Thus addition starts from the state S0. The corresponding architecture of the serial
adder using Mealy machine is shown in Fig. 6.15.
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Fig. 6.14 State diagram for
serial adder using Mealy
machine
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Table 6.8 State table for serial adder using Mealy machine

PS a b NS Sum cout

S0 0 0 S0 0 0

S0 0 1 S0 1 0

S0 1 0 S0 1 0

S0 1 1 S1 0 1

S1 0 0 S0 1 0

S1 0 1 S1 0 1

S1 1 0 S1 0 1

S1 1 1 S1 1 1

Fig. 6.15 Architecture of
serial adder using Mealy
machine
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q

reset
clk

In case of Moore based serial adder design, we need more states. These are

1. S0—Carry is 0 and sum is 0.
2. S1—Carry is 1 and sum is 0.
3. S2—Carry is 0 and sum is 1.
4. S3—Carry is 1 and sum is 1.

The state diagram is shown in Fig. 6.16. The state table can be formed using the state
diagram shown in Fig. 6.16. In Moore case, there are four states and thus we need
two bits to represent the states. The state table is shown in Table 6.9. This means one
extra D flip-flop will be used in the architecture of serial adder but the architecture
will be fully synchronous. This structure is shown in Fig. 6.17.
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Fig. 6.16 State diagram of
serial adder using Moore
FSM
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Table 6.9 State table for serial adder using Moore machine

Present state Next state Output (sum)

ab = 00 ab = 01 ab = 10 ab = 11

S0 S0 S3 S3 S1 0

S1 S3 S1 S1 S2 0

S2 S3 S1 S1 S2 1

S3 S0 S3 S3 S1 1

Fig. 6.17 Implementation of
serial adder using Moore
FSM
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6.7 FSM-Based Vending Machine Design

Vending Machine is a practical example where FSM can be used. The ticket dis-
patcher unit at the stations, and the can drinks dispatcher at the shops are some
examples of Vending machines. Here in this chapter we will try to understand a sim-
ple Vending machine which dispatches a can of coke after deposition of 15 rupees.
The machine has only one hole to receive coins that means customers can deposit
one coin at a time. Also the machine receives only 10 (T) or 5 (F) rupee coins and it
doesn’t give any change. So the input signal x can take values like

1. x = 00, no coin deposited.
2. x = 01, 5 rupee coin (F) deposited.
3. x = 10, 10 rupee coin (T) deposited.
4. x = 11 (forbidden) Both coins can’t be deposited at the same time.
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Fig. 6.18 State diagram for
the simple vending machine
problem using FSM
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Table 6.10 State table for FSM-based vending machine

Present state Next state Output

ab = 00 ab = 01 ab = 10 ab = 11

S0 S0 S3 S3 S1 0

S1 S3 S1 S1 S2 0

S2 S3 S1 S1 S2 1

S3 S0 S0 S0 S1 1

Also a customer can deposit 15 rupees as 10 + 5 = 15, 5 + 10 = 15 and 5 + 5 + 5 =
15. If more money is deposited than 15 then the machine will be in the same state
asking the customer to deposit right amount. The state diagram for the vending
machine is shown in Fig. 6.18. In order to get a can of drinks the customer has to
give 15 rupees. In terms of machine language, the objective is to reach the step S3
from the step S0. Once the step S3 is reached the Vending machine dispatches a can
and asks the customer if he wants another. The architecture of the Vending machine
can be designed using the state table shown in Table 6.10.
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6.8 State Minimization Techniques

State minimization is important if we want to reduce the number of states in a
complex FSM which has many states. If the number of states is reduced then the
reduced number of bits will be required for state assignment. Thus less number
of flip-flops will be required and so there is a chance to reduce combinational or
sequential blocks also. This is why it is important to reduce the number of states.

Before going to discuss the state minimization techniques some definitions must
be known. If input x = 0 is applied to a state machine in PS = S1 and NS is S2
then S2 is a 0-successor of S1. Similarly, If input x = 1 is applied to a state machine
in PS = S1 and NS is S3 then S3 is a 1-successor of S1. These two successors are
generally called as k-successors. Two states S1 and S2 can be called equivalent if the
following conditions are satisfied

1. The states S1 and S2 should have same output for all the input sequences.
2. Their k-successors also obey the first criteria.

Some of the popular state minimization techniques are

1. Row Equivalence Method
2. Implication Chart Method
3. State Partition Method
4. Some Heuristic Methods.

6.9 Row Equivalence Method

In the row equivalence method [26], it is checked that rows of a state table are
equivalent or not. Here, a comparatively strict definition of state equivalence is used.
The conditions for two states S1 and S2 to be equivalent are

1. The outputs must be same for both the states.
2. The k-successors must be same for all the input conditions.

The row equivalence method is explained with the help of the state table shown in
Table 6.11. Here, states S1 and S5 can be said equivalent as their output is same and
their k-successors are also same. Similarly, the states S2, S4 and S6 are equivalent.
Thus using this simple state minimization technique the state table is reduced to the
state table as shown in Table 6.12. Here, S∗

1 is written for states S1 and S5. Similarly,
S∗
2 is written for states S2, S4 and S6.
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Table 6.11 State table example for state minimization

Present state Next state Output

x = 0 x = 1

S0 S1 S2 0

S1 S3 S4 0

S2 S5 S6 0

S3 S3 S4 1

S4 S5 S6 0

S5 S3 S4 0

S6 S5 S6 0

Table 6.12 State table example for state minimization using row equivalence

Present state Next state Output

x = 0 x = 1

S0 S∗
1 S∗

2 0

S∗
1 S3 S∗

2 0

S∗
2 S∗

1 S∗
2 0

S3 S3 S∗
2 1

6.10 Implication Chart Method

Implication Chart method [47] is a very popular method for reducing the steps of
an FSM and it is more machine friendly method. In this method, a chart is prepared
to find the equivalent steps. The implication chart is shown in Fig. 6.19a. States are
written along the x-axis as S0, S1,...,Sn , and the states are written along the y-axis
in the reverse order. A square Xi j , contains the equivalent states between Si and Sj .
The Implication Chart can be modified as Xi j = X ji and thus the triangle above the
diagonal can be removed. Also, the diagonal can be removed as there is no sense to
find equivalence between a state and itself. The reduced implication chart is shown
in Fig. 6.19b.

First step of state minimization is to fill the squares of the chart correctly. The
implication chart is shown in Fig. 6.20 according to the state table shown in Table
6.13. The squares are filled as by two rows. First row consists of 0-successors and
the second row consists of 1-successors. In the topmost square from the left side,
first row is S3 − S1 and the second row is S5 − S2. These pairs are called as implied
state pairs. During the filling of squares, some boxes are crossed for states which
cannot be combined. For example, S2 and S0 cannot be combined as their output is
different.

State minimization by the implication chart method is accomplished by some
passes until no further combination is possible. Searching for equivalent states is
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S0

S1

S2

S3

S4

S5

S6

S7

S0 S1 S2 S3 S4 S5 S6 S7

X5,1

X1,5

(a) Implication Chart.

S1

S2

S3

S4

S5

S6

S7

S0 S1 S2 S3 S4 S5 S6

(b) Reduced Implication Chart.

Fig. 6.19 Implication chart and reduced implication chart

Fig. 6.20 Implication chart
after filling of squares and
marking cross for not related
states

S1
S3-S1

S5-S2

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S1

S6-S2

S1-S3

S6-S5
S5-S5

S4-S4

S5-S5

S6-S4

S4-S5

S3-S4

S4-S5

S3-S2
S5-S4

S6-S3

S5-S5

S6-S2

Table 6.13 State table example for state minimization

Present state Next state Output

x = 0 x = 1

S0 S1 S2 1

S1 S3 S5 1

S2 S5 S4 0

S3 S1 S6 1

S4 S5 S2 0

S5 S4 S3 0

S6 S5 S6 0

x = 0, S1 → S3 and S0 → S1

x = 1, S1 → S5 and S0 → S2
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Fig. 6.21 Implication chart
after pass 1

S1
S3-S1

S5-S2

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S1

S6-S2

S1-S3

S6-S5
S5-S5

S4-S4

S5-S5

S6-S4

S4-S5

S3-S4

S4-S5

S3-S2
S5-S4

S6-S3

S5-S5

S6-S2

Fig. 6.22 Implication chart
after second pass

S1
S3-S1

S5-S2

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

S1-S1

S6-S2

S1-S3

S6-S5
S5-S5

S4-S4

S5-S5

S6-S4

S5-S5

S6-S2

done from the top to the bottom starting from the left side of the chart. The state S1
can be combined with state S0 or S3 as shown in Fig. 6.21. But state S2 and S5 cannot
be combined as the square corresponding to the states S3 and S4 is marked crossed.
So, the square block corresponding to S2 and S5 is cross marked. Similarly for the
square block X65 as state S6 and S3 cannot be combined. At the end of the first pass
it can be concluded that S0, S1 and S3 can be equivalent. Also, S2, S4 and S6 can be
combined. The state S5 cannot be combined with any other states.

Second pass started similarly from the top to bottom starting from the left to right
as shown in Fig. 6.22. Here, the square block X10 is cross marked as we have seen
in the earlier pass that S2 cannot be combined with S5. Similarly, the square block
X31 is cross marked because of state S5. After the second pass it can be concluded
that S0 and S3 are equivalent. Also, S2, S4 and S6 are equivalent.

Another pass can be run but after the third pass there is no new state for reduction.
Thus finally the modified state table can be formed. Here, S0 and S3 are combined as
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Table 6.14 State table in Table after state minimization

Present state Next state Output

x = 0 x = 1

S∗
0 S1 S2 1

S1 S∗
0 S5 1

S∗
2 S5 S∗

2 0

S5 S∗
2 S∗

0 0

S∗
0 . The states S2, S4 and S6 are combined as S∗

2 . The modified state table is shown
below in Table 6.14. Here, initially there were seven states and after minimization
there are now four states.

6.11 State Partition Method

State Partition method is another powerful method for state minimization. In this
technique, the states are partitioned into groups based on the possibility that they
can be combined. Lets consider the same state table as shown in Table 6.13 for
state minimization using state partition method. This method also performs state
minimization after some passes. These passes are described below.

1. Start: In the first pass there is only one group and this is P = (S0S1S2S3S4S5S6).
2. First Pass: In the first pass, the states which have different outputs are partitioned

in separate groups. Here, S0, S1 and S3 have same output and thus grouped in
P1 = (S0S1S3). The rest of the states have same output and thus they grouped as
P2 = (S2S4S5S6).

3. Second Pass: In this pass, the states are partitioned based upon their k-successors.
In order to combine two states, their k-successors should be in the same partition
or group. Consider the first partition P1 and their k-successors are

(a) 0-successors—S0 → S1, S1 → S3 and S3 → S1. Here, S1 and S3 belong to
the same group P1. States S0, S1 and S3 can be combined.

(b) 1-successors—S0 → S2, S1 → S5 and S3 → S6. Here, S2, S5 and S6 belong
to the same group P2. States S0, S1 and S3 can be combined.

Now consider the second partition P2 and their k-successors are

(a) 0-successors—S2 → S5, S4 → S5, S5 → S4 and S6 → S5. Here, S4 and S5
belong to the same group P2. States S2, S4, S5 and S6 can be combined.

(b) 1-successors—S2 → S4, S4 → S2, S5 → S3 and S6 → S6. Here, S2, S4 and
S6 belong to group P2 but S3 belong to the group P1. Thus states S2, S4 and
S6 can be combined but S5 is a different state and it is assigned to another
partition P3.
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4. Third Pass: In the third pass we have three partitions P1 = S0S1S3, P2 = S2S4S6
and P3 = S5. Same steps are followed in this pass also. Consider the partition P1
and their k-successors are

(a) 0-successors—The 0-successors are S1 and S3 which belong to same group.
(b) 1-successors—The 1-successors are S2, S5 and S6. Here, S2 and S6 belong

to P2 but S5 belong to P3. Thus S1 cannot be combined with S0 and S3. The
state S1 must be kept in another partition.

Similar analysis can be run for partition P2 and P3.

After the third pass, the partitions are updated as P1 = S0S3, P2 = S1, P3 = S2S4S6
and P4 = S5. Further passes can be run but after the third pass there is no change
in the partitions. Thus final states are same as result of the third pass. The state
minimization result is same as the Implication chart produces.

6.12 Performance of State Minimization Techniques

In this chapter, we have discussed three techniques for state minimization. The row
equivalence method is a basic method for state minimization. This method does not
always lead to an optimized number of states. The Implication chart method is a
rigorous technique for state minimization. Though the chart preparation is difficult,
it supports machine implementation. The partition-based technique is simple but
another rigorous method for state minimization. It is also machine realizable. Some
of the heuristic methods based on K-map also exist but they are more pen-and-paper
methods.

State minimization is a wonderful way to minimize the states and thus to reduce
hardware elements. But there is not always a need to optimize an FSM. This is
because minimization of states can lead to complex circuit in terms of reduced flip-
flops but increased complexity in combinational path. The state minimization is also
difficult when there are don’t care conditions. It is evenmore difficult when don’t care
conditions exist on output. Thus minimization algorithms must be carefully applied.

6.13 Verilog Modelling of FSM-Based Systems

module melfsm ( din , reset , clk , y ) ;
input din ;
input clk ;
input reset ;
output reg y ;
reg [ 1 : 0 ] cst , nst ;
parameter S0 = 2 ’b00 , //a l l s ta t e

S1 = 2 ’b01 ,
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S2 = 2 ’b10 ,
S3 = 2 ’ b11 ;

always @( cst or din )
begin
case ( cs t )

S0 : i f ( din == 1 ’b1 )
begin

nst = S1 ;
y=1 ’b0 ;
end

else
begin
nst = cst ;
y=1 ’b0 ;
end

S1 : i f ( din == 1 ’b0 )
begin

nst = S2 ;
y=1 ’b0 ;
end

else
begin
y=1 ’b0 ;
nst = cst ;

end
S2 : i f ( din == 1 ’b1 )

begin
nst = S3 ;
y=1 ’b0 ;
end
else
begin
nst = S0 ;
y=1 ’b0 ;
end

S3 : i f ( din == 1 ’b0 )
begin

nst = S0 ;
y=1 ’b1 ;
end

else
begin
nst = S1 ;
y=1 ’b0 ;
end

default : nst = S0 ;
endcase

end
always@ (posedge clk )

begin
i f ( reset )

cs t <= S0 ;
else



122 6 Finite State Machines

cs t <= nst ;
end

endmodule

module moore2 ( din , reset , clk , y ) ;
input din ;
input clk ;
input reset ;
output reg y ;
reg [ 2 : 0 ] cst , nst ;
parameter S0 = 3 ’b000 ,

S1 = 3 ’b001 ,
S2 = 3 ’b010 ,
S3 = 3 ’b011 ,

S4 = 3 ’ b100 ;
always @( cst or din )
begin
case ( cs t )

S0 : i f ( din == 1 ’b1 )
begin

nst = S1 ;
y=1 ’b0 ;
end

else nst = cst ;
S1 : i f ( din == 1 ’b0 )

begin
nst = S2 ;

y=1 ’b0 ;
end

else
begin
nst = cst ;
y=1 ’b0 ;
end

S2 : i f ( din == 1 ’b1 )
begin

nst = S3 ;
y=1 ’b0 ;
end

else
begin
nst = S0 ;
y=1 ’b0 ;
end

S3 : i f ( din == 1 ’b0 )
begin

nst = S4 ;
y=1 ’b0 ;
end

else
begin
nst = S1 ;
y=1 ’b0 ;
end
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S4 : i f ( din == 1 ’b0 )
begin

nst = S1 ;
y=1 ’b1 ;
end
else
begin
nst = S3 ;
y=1 ’b1 ;
end

default : nst = S0 ;
endcase

end
always@ (posedge clk )
begin

i f ( reset )
cs t <= S0 ;
else

cs t <= nst ;
end
endmodule

6.14 Frequently Asked Questions

Q1. Design a positive edge detector using both Mealy and Moore machine.
A1.Positive edge of a signal is defined as the transition of the signal from the zero state
to one state. The detection of positive edge is very important in many applications.
This problem of edge detection can be easily solved using FSM design technique. In
case ofMealy machine, two states can be defined as S0 for signal value equal to 0 and
S1 for signal value equal to 1. In case of Moore machine one extra state is required.
The state diagram for both types of edge detectors is shown in Fig. 6.23. The Verilog
code for the edge detector can be written easily based on these state diagrams.

Q2.Design a square wave generator with programmable duty cycle using FSM.
A2. Square wave generator using FSM is another important application of FSM-
based design. Here two states can be defined which are S0 and S1. The state S0 stands

S0/0 S1/1 S2/0
1

0

1

0

0
1

(a) Moore based Edge detector.

S0 S1
1/1

0/0

0/0

1/0

(b) Mealy based Edge detector.

Fig. 6.23 Design of edge detector using Moore and Mealy machine
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Fig. 6.24 State diagram of
FSM-based square wave
generator

S0/0 S1/1
t = toff − 1

t < ton − 1

t = ton − 1

t < toff − 1

reset

for off state and state S1 stands for on state. Here, t is a parameter to track the on and
off time of the square wave. During ton the value of the signal is high and during tof f
the signal is low. The state diagram for square wave generator is shown in Fig. 6.24.
The Verilog code for FSM-based square wave generator is shown below.

module square_wave
#( parameter

N = 4 ,
on_time = 3 ’d5 ,
of f_t ime = 3 ’d3

)
(

input wire clk , reset ,
output reg s_wave

) ;

localparam
S0 = 0 ,
S1 = 1;

reg PS, NS;
reg [N−1:0] t = 0 ;

always @(posedge clk ) begin
i f ( reset == 1 ’b1 )

PS <= S0 ;
else

PS <= NS;
end

always @(posedge clk ) begin
i f (PS != NS)

t <= 0;
else

t <= t + 1;
end

always @(PS, t ) begin
case (PS)

S0 : begin
s_wave = 1 ’b0 ;
i f ( t == of f_t ime − 1)

NS = S1 ;
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else
NS = S0 ;

end
S1 : begin

s_wave = 1 ’b1 ;
i f ( t == on_time − 1)

NS = S0 ;
else

NS = S1 ;
end

endcase
end
endmodule

Q3.Design a serial two’s complementer circuit using FSMbased designmethod-
ology?
A3. Two’s complement of a number is obtained by taking one’s complement first
and then adding 1 at the LSB position. In other words, starting from the LSB all the
bits are retained til 1-bit is found and then retaining this bit, all the following bits
are complemented. For example, if input x = 0110 then output is y = 1010. If this
hardware is to be designed using FSM, then two states are to be assigned. State S0
is for tracking the first 1-bit from the LSB and the state S1 is for complementing
the remaining bits which follow the 1-bit. The state diagram for the serial two’s
complementer circuit using Mealy Machine is shown in Fig. 6.25.

Q4. Draw the state diagram for FSM-based serial odd parity indicator?
A4. A serial odd parity indicator is a circuit which indicates that the number of 1’s
till a time instant is odd and is indicated by giving 1 at output. If there are even
1’s then the output becomes 0. For example, if input is x = 0010_1100_1101_0100
then the output is y = 0011_0111_0110_0111. The design of this kind of circuit is
straightforward and two states are required. One for output 0 and one for output 1.
The state diagram is shown in Fig. 6.26.

Fig. 6.25 State diagram of
FSM-based 2’s
complementer

S0 S1
1/1

0/0

1/0

0/1

Fig. 6.26 State diagram of
FSM-based serial odd parity
checker

S0/0 S1/1

00

1

1
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Fig. 6.27 State diagram of
FSM-based Gray counter
(Enable based)

00 01

11 10

1

10

00

0

1 1

Q5. Identify the circuit realized using the state diagram shown in Fig. 6.27 and
explain its working?
A5. The state diagram shown in Fig. 6.27 is of enable-based 3-bit Gray counter. Here,
the LSB of the counter works as the enable bit. In order to count in Gray sequence
the proper sequence of enable input is required. If enable input is continuously 0 then
present state is always the initial state and if it is contentiously 1 then state transition
occurs in circular order.

6.15 Conclusion

In this chapter, we have learned about the FSMs. We first discussed the theoretical
background of the FSM.TheFSM ismainly of two typeswhich areMealy andMoore.
Design of both the FSM types is discussed using the sequence detector problem in
non-overlapping and overlapping style. TheK-map optimizationmethod is used here
to implement the FSMs in terms of sequential and combinational circuits. Then the
performance of both the FSM types is compared. It was found that Mealy machine
is faster but has chances of producing glitches. The Moore machines need a higher
number of states but synchronous in nature.

We have also focused on state minimization techniques. There are three popular
techniques, viz., Row equivalence method, Implication chart and partition method.
The row equivalence method is not so robust to produce fully optimized FSM. But
the implication chart method is a robust technique to reduce number of states and
also machine implementable. Partition method is simpler than the Implication chart
method and also a robust technique. State minimization techniques are not always
preferred as optimization can lead to a more complex combinational circuit.

We have also covered some of the example designs using the FSM like serial
adder ad Vending machine. At the end of the chapter, we have discussed Verilog
implementation of the FSM. Verilog is a very easy way to implement the FSM. Here,
only state diagram is important to design a FSM. Thus Verilog is an easier method for
implementing FSM. Some Verilog codes are also provided at the end of this chapter.



Chapter 7
Design of Adder Circuits

7.1 Introduction

Adders are the most important basic logic element in designing a digital system.
Adders are used in almost every processing units. Addition operation is also used
to compute multiplication, division or square root. Thus speed of an adder is very
important parameter to decide performance of a design.

So, it is important to optimize the performance of this logic block. There are vari-
ous techniques discovered tomake faster adder, to design adders with low power con-
sumption or to design such an adder which is comparatively faster but area efficient.
Application-specific trade-offs are to be considered. The basic idea about various
types of adders is discussed in this chapter.

7.2 Ripple Carry Adder

Basic theory of adder, subtractor or adder/subtractor is explained in Chap. 3. A
parallel addition mechanism for 4 bits of data width was also shown. In that parallel
adder, there are four FA blocks used. This parallel adder is known as ripple carry
adder. The carry signal is propagated from the first block to the last block. The
delay of this ripple carry adder is n.tFA where n indicates the number of bits. In
case of higher data widths this carry chain is higher. This carry propagation must be
completed before the final output is used in other operations. A fast adder may be
designed by reducing this carry propagation time.
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7.3 Carry Look-Ahead Adder

CarryLook-aheadAdder (CLA) is a very common fast adderwhich is used frequently
in digital systems. CLA is based on computing all the carries in parallel. The truth
table of a full adder is shown in Table 7.1. Two parameters are introduced in case of
CLA. These are shown below:

Gi = Ai BiCin + Ai BiCin = Ai Bi (7.1)

Pi = Ai ⊕ Bi (7.2)

The variable Gi represents the generated carry and Pi is the propagation condition.
An alternate equation of propagation condition is

Pi = Ai + Bi (7.3)

Both the equations can be used. The first equation is hardware efficient but the second
equation is more popular as only an OR gate is required. The use of the second
equation will be discussed later. Until now we will stick to the first expression.

From the truth table of the full adder, some conclusions can be made. In the first
two rows, output carry (Cout ) is always zero. In the rows from 3 to 6, input carry
(Cin) propagates to output carry and in the last two rows, Cout is one. It can be said
that Cout is equal to the generated carry (Gi ) in the rows {1, 2, 7, 8} and equal to
Cin in rows 3–6 when propagation condition (Pi ) is satisfied. The general Boolean
expression for the output carry can be written in the following style:

Ci+1(Cout ) = Gi + PiCi (7.4)

Initially C0 is equal to Cin and i = 0, 1...(n − 1), where n is data width. The com-
putation of the Ci+1 is progressed as

Table 7.1 Truth table for a full adder

Row a b cin s cout

1 0 0 0 0 0

2 0 0 1 1 0

3 0 1 0 1 0

4 0 1 1 0 1

5 1 0 0 1 0

6 1 0 1 0 1

7 1 1 0 0 1

8 1 1 1 1 1
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Fig. 7.1 Structure of the 4-bit CLA

Fig. 7.2 Structure of the
basic sub-block (CLA-1) for
4-bit CLA architecture

C1 = G0 + P0C0 (7.5)

C2 = G1 + G0P1 + C0P0P1 (7.6)

C3 = G2 + G1P2 + G0P1P2 + C0P0P1P2 (7.7)

C4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 + C0P0P1P2P3 (7.8)

All the carry signals depend on Cin and the inputs instead depending on the other
carry signals. Then the equation for sum (S) is

Si = Ai ⊕ Bi ⊕ Ci (7.9)

Based on the above expressions, the architecture for the 4-bit CLA is shown in
Fig. 7.1. There are four basic sub-blocks used. Each sub-block is called here as
CLA-i . A CLA-i block computes Pi , Gi and Si . This block passes Pi and Gi to a
carry generation unit. The structure of the CLA-i block is shown in Fig. 7.2. The
carry generation unit is shown in Fig. 7.3.

CLA is a very fast adder inwhich timing complexity to compute the sumsor carries
is almost the same for every value of i irrespective of n. The maximum timing path
to computeC3 is XOR2-AND4-OR4 and that forC4 is XOR2-AND4-OR5. Thus the
timing path varies with respect to gate fan-in. Similarly, the maximum timing path
for S3 is (XOR2-AND4-OR4)-(XOR2-XOR2). It takes 5tg delay to compute sum of
numbers of any width where tg is the delay of a single gate.
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Fig. 7.3 Architecture of the carry propagation chain for the 4-bit CLA

7.3.1 Higher Bit Adders Using CLA

Carry look-ahead adders prove to be very fast regardless the datawidth. But for higher
data width, the hardware complexity to generate carry is extremely high and thus
area increases. To reduce the hardware overhead, several techniques are proposed
to efficiently design the carry generation unit for higher order adders. Higher order
adders can be implemented in terms of smaller adders. Like a 64-bit adder can be
implemented using 16 numbers of 4-bit adders. Generally, 4-bit adders are taken as
the basic building block.

In a 4-bit adder, 4 bits are grouped together and so the corresponding signals can
also be grouped. The equations for block propagated carry, block generated carry
and carryout are given below:

Pi : j =
{
Pi , for i = j

Pi Pi−1: j , for i > j
(7.10)
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Gi : j =
{
Gi , for i = j

Gi + PiGi−1: j , for i > j
(7.11)

Ci+1 = Gi : j + Pi : jC j (7.12)

First consider an 8-bit adder is to be implemented usingCLA. It can be designed using
two 4-bit CLAs as shown in Fig. 7.4. More levels of carry look-ahead generators
can be added as the data width (n) increases. The required number of block is lognb
where b is the blocking factor. The blocking factor is 4 in Fig. 7.4. The addition time
for carry look-ahead adder is therefore proportional to lognb . Thus this type of adder
is famously known as logarithmic adder.

The carry generation unit in the CLAs is the most critical. Several tree-based
designs are available in literature for the carry generation unit. The tree-based
designs are implemented using parallel prefix circuit. A prefix circuit receives inputs
x1, x2, ..., xn and generates outputs like x1, x2 ◦ x1, ...., xn ◦ xn−1.... ◦ x1 where ◦ is
symbol for binary associative operation. CLAs with prefix circuit are sometimes
called as prefix adders. To understand the prefix tree adders a new associative binary
function is defined.

(Pi :m,Gi :m) ◦ (Pv: j ,Gv: j ) = (Pi :m Pv: j ,Gi :m + Pi :mGv: j ) (7.13)

and the following equation is also valid:

(Pi : j ,Gi : j ) = (Pi :m,Gi :m) ◦ (Pv: j ,Gv: j ) (7.14)

Fig. 7.4 Design of an 8-bit carry look-ahead adder using 4-bit CLAs
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Fig. 7.5 Basic tree structure for the carry generation unit

where the range of m is j < m < i and condition for v is v ≤ (m − 1). For n = 4,
associative operation will be

(P3:2,G3:2) ◦ (P1:0,G1:0) = (P3:2P1:0,G3:2 + P3:2G1:0) (7.15)

The operation of the tree structures can be understood by taking an example. The
equations involved in calculating C8 are

(P7:0,G7:0) = (P7:4,G7:4) ◦ (P3:0,G3:0) (7.16)

= {(P7:6,G7:6) ◦ (P5:4,G5:4)} ◦ {(P3:2,G3:2) ◦ (P1:0,G1:0)} (7.17)

= {[(P7,G7) ◦ (P6,G6)] ◦ [(P5,G5) ◦ (P4,G4)]} (7.18)

◦ {[(P3,G3) ◦ (P2,G2)] ◦ [(P1,G1) ◦ (P0,G0)]} (7.19)

The tree structure to compute C8 is shown in Fig. 7.5. This is a simple tree structure
where each node has fan-in of two inputs but this may not be the case for other tree
structures.

7.3.2 Prefix Tree Adders

Some of the popular prefix adders are discussed in this chapter. All the prefix adders
have their own pros or cons. The performance of a prefix tree depends on number of
used nodes, number of levels, fan-in/fan-out count or ease of implementation.
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Fig. 7.6 Data flow graph for Brent–Kung prefix tree

7.3.2.1 Brent–Kung Parallel Prefix Tree

Brent–Kung parallel prefix tree adder [17] is a very popular prefix tree adder to
implement the carry generation unit. The data flow path for Brent–Kung adder is
shown in Fig. 7.6. Some of the important features of this configuration are

1. Total stages—The Brent–Kung tree has (2 log2 n − 1) number of stages in com-
parison to the minimum log2 n number of stages. Thus for n = 16, there are
seven stages in the Brent–Kung prefix tree. As the depth is higher, the delay is
also higher.

2. Total nodes—n/2 log2 n.
3. Fan-in/Fan-out—The Brent–Kung tree has the advantage of low fan-in and fan-

out at each stage. This value is two at each stage. Thus Brent–Kung tree avoids
explosion of wires and odd computation.

7.3.2.2 Ladner–Fischer Adder

Brent–Kung prefix adder tree has higher number of stages. Ladner–Fischer prefix
tree adder [41] is an improvement over Brent–Kung tree in terms of number of stages.
The data flow path for Ladner–Fischer adder is shown in Fig. 7.7. The features of
this adder are

1. Stages—Ladner–Fischer prefix tree adder has log2 n stages and thus it has lower
depth and supposed to have less delay.

2. Total nodes—This prefix tree has the same number of nodes (n/2 log2 n) that of
Brent–Kung tree.
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Fig. 7.7 Ladner–Fischer prefix tree adder data flow

3. Fan-in/Fan-out—Nodes are having high fan-out compared to Brent–Kung tree.
Thus implementation has high congestion. The need of adding buffers and wiring
delay can slow down the executing speed.

7.3.2.3 Kogge–Stone Adder

The Kogge–Stone prefix tree adder [35] improves the speed as well as improves the
implementation ease by reducing the congestion due to high fan-in/fan-out. The data
flow path for Kogge–Stone adder is shown in Fig. 7.8. The features of Kogge–Stone
adder are

1. Stages—This adder has the same number of stages (log2 n) as that of Ladner–
Fischer prefix tree adder.

2. Total Nodes—Total number of nodes used in this type of adder is (n − 1) + (n −
2) + (n − 4) + (n − 8) + ..... This tree adder uses higher number of nodes and
thus has higher area.

3. Fan-in/Fan-out—This tree adder has fan-in/fan-out of two at each stage. Perfor-
mance is faster but still suffers from delay due to long wires.

7.3.2.4 Han–Carlson Adder

Han–Carlson prefix tree adder [30] is proposed by combining the advantages of
Brent–Kung adder and Kogge–Stone adder. The data flow path for Han–Carlson
adder is shown in Fig. 7.9.

1. Stages—This tree adder has log2 n + 1 number of stages. For n = 16, it has five
stages. Thus it has moderate stages.

2. It is a Hybrid Adder, where middle stages resemble the Kogge–Stone adder.
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Fig. 7.8 Data path structure of Kogge–Stone prefix adder

Fig. 7.9 Han–Carlson prefix tree adder data path
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3. Fan-in/Fan-out—This tree adder has fan-in/fan-out value as that of Brent–Kung
tree.

4. Total Nodes—This tree adder uses same number of nodes as that of Brent–Kung
tree adder.

7.4 Manchester Carry Chain Module (MCC)

The Manchester carry chain is a variation of the carry look-ahead adder that
uses shared logic to lower the transistor count. A Manchester carry chain gener-
ates the intermediate carries by tapping off nodes in the gate that calculates the
most significant carry value. However, not all logic families have these internal
nodes, CMOS being a major example. Dynamic logic can support shared logic,
as can transmission gate logic. One of the major drawbacks of the Manchester
carry chain is that the capacitive load of all of these outputs together with the
resistance of the transistors causes the propagation delay to increase much more
quickly than a regular carry look-ahead. A Manchester carry chain section generally
doesn’t exceed 4 bits. The Manchester carry scheme for the group of 4 is shown in
Fig. 7.10.

Fig. 7.10 Overall framework for CS-based RADAR signal reconstruction
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Fig. 7.11 The architecture of the carry skip adder

7.5 Carry Skip Adder

The Carry Skip Adder, also known as carry bypass adder, is based on the similar
carry propagation criteria. If the propagation criterion is satisfied, the input carry is
passed to the output. Thus the status of output carry is evaluated using propagation
criteria. The simple carry skip adder for n = 8 is shown in Fig. 7.11. The performance
of the carry skip adder scheme depends on the size of carry skip adder block size.
Here 8-bit adder is implemented using the block size of 4 bit. The condition for the
block size is

√
n/2. The variable block size is adopted to achieve fast addition.

7.6 Carry Increment Adder

The design of Carry Increment Adder (CIA) consists of an adder block (CLA, RCA)
and an incremental circuitry. The incremental circuit can be designed using HA’s in
ripple carry chain with a sequential order. For example, the addition operation for
8-bit data can be done by dividing the total number of bits in two groups of 4 bits and
addition operation is done using 4-bit RCA or CLA. This fast addition technique is
not much popular since a carry chain still exists. The architecture of CIA is shown
in Fig. 7.12.

7.7 Carry Select Adder

The carry select adder consists of two addition paths. One path calculates sum con-
sidering Cin is equal to zero and the other path calculates sum with Cin is equal to
one. After the sums are calculated, correct sum and correct Cout are selected through
a MUX. Thus it has two adder blocks and two MUX units. The adder block can be
an RCA or a CLA. The size of the carry select block can be fixed or can be variable.
For fixed size carry select adder, optimum delay occurs when block size is

√
n. For

example, the block size is 4 for n = 16. So, there will be two 4-bit RCA/CLA in a
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Fig. 7.12 The structure of the carry increment adder

carry select adder block. Thus carry select adders achieve fast addition by consum-
ing more hardware. The simple block diagram of a carry select adder is shown in
Fig. 7.13.

If the block size is fixed then carry select adder is called linear. For example, a
16-bit adder can be realized using block sizes 4-4-4-4. On the other hand to improve
the performance of non-linear carry select adders, choose variable block sizes. For
example, the same 16-bit adder can be implemented by block sizes 2-2-3-4-5.

7.8 Conditional Sum Adder

The idea of carry select adder is behind the idea of fast conditional sum adders [65].
An n-bit adder can be designed using smaller n/2 or n/4 bit adders using the same
carry select concept. For example, a 4-bit adder can be built using seven 1-bit adders.
This example is shown in Fig. 7.14. Conditional sum adders also provide logarithmic
speedup.
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Fig. 7.13 A schematic of 4-bit carry select adder

Fig. 7.14 Schematic of 4-bit conditional sum adder

7.9 Ling Adders

Ling adders [42] are variations of carry look-ahead adders. It uses the simpler equa-
tion of group generated carry and thus resulting in fast addition. The equation for the
output carry of a 4-bit adder block can be expressed as

C4 = G3:0 = G3:2 + P3:2G1:0 (7.20)
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Assume, C0 = 0 or G0 = A0B0 + P0C0. The equation of group generated carry in
a block of 4-bit adder is

G3:0 = G3 + P3G2 + P3P2(G1 + P1G0) (7.21)

Assume as Pi = Ai + Bi , G3P3 = G3. So, in the above equation P3 can be taken as
common factor and the equation be rewritten as

G3:0 = G3H3:0 (7.22)

where H3:0 can be written as

H3:0 = H3:2 + P2:1H1:0 (7.23)

and
H3:2 = G3 + G2, H1:0 = G1 + G0 (7.24)

The general expression is
Hi :0 = G1 + Pi−1Hi−1:0 (7.25)

The sum is calculated by the following equation:

Si = Ci ⊕ (Ai ⊕ Bi ) = Pi−1Hi−1:0(Ai ⊕ Bi ) (7.26)

= Hi−1:0AiCi ⊕ (Ai ⊕ Bi ) + Hi−1:0(Pi−1(Ai ⊕ Bi )) (7.27)

The calculation of Hi−1:0 is faster than calculation of Ci which reduces the delay in
calculating sum.

7.10 Hybrid Adders

A hybrid adder is the one which uses two or more above kind of addition techniques
to implement higher order adder. Generally, a hybrid adder employs one kind of
adder for generating the carry and another kind for computing sum. For example,
Manchester Carry Chain (MCC) can be used for carry generation and carry select
adder can be used for sum calculation.
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7.11 Multi-operand Addition

Up to now,we have discussed fast additionwith two operands. If several operands are
to be added then these adders are needed to be used several times. Direct application
of these adders for multi-operand addition can be inefficient because of multiple use
of carry processing units. Many techniques are reported in literature to efficiently
add multiple operands. Carry save addition is one such technique which reduces the
complexity involved in multi-operand addition.

7.11.1 Carry Save Addition

Carry SaveAdder (CSA) is actually a three-input adderwhich receives three operands
and produces two outputs. For 1-bit data, CSA is actually a full adder. It is sometimes
called as a 3:2 counter/compressor as it compresses three inputs to two outputs. The
general equation for a CSA is given below:

x + y + z = 2c + s (7.28)

where s and c are the sum and carry outputs from CSA. They are evaluated as

s = (x + y + z)mod2 (7.29)

and

c = (x + y + z) − s

2
(7.30)

A simple CSA-based addition of three operands is shown in Fig. 7.15. Here we need
one stage of CSA and one Carry Propagated Adder (CPA).

Fig. 7.15 A simple example of carry save addition for three operands
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Fig. 7.16 Wallace tree of
CSAs for seven-input
addition

7.11.2 Tree of Carry Save Adders

For fast addition of multi-operands tree of CSAs can be formed. An example of
the addition of seven 8-bit operands is shown in Fig. 7.16. This scheme to add
seven operands is popularly known asWallace tree. Five CSAmodules and one CPA
module are used here. The scheme of the fast addition of multiple operands is needed
to be understood. A basic scheme of the addition of seven 4-bit numbers is shown
in Fig. 7.17 using Wallace tree addition method. There are other types of CSA trees
available for multi-operand addition. We will discuss them in more detail in the next
chapter where multiplication operation is discussed.

7.12 BCD Addition

Though BCD addition does not belong to the category of fast addition, we discussed
it here as it is also a type of adder. In BCD addition, inputs are in BCD format and
the output is also in BCD format. In BCD format, counting is done from 0 to 9. If the
summation result is greater than 9, then correction is needed. And that correction is
done by adding 6 to the summation result. The equation for the correction logic is



7.12 BCD Addition 143

Fig. 7.17 An example of addition of seven operands using Wallace tree

Cc = C3 + S3(S2 + S1) (7.31)

HereC3 is the carryout of the last adder in the first stage. The logic diagram is shown
in Fig. 7.18.
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Fig. 7.18 Architecture of 4-bit BCD adder

7.13 Conclusion

We have discussed several techniques for fast addition in this chapter but a proper
comparison is not shown. So that the general question arises that which adder is
suitable for system design? For two operands, carry look-ahead adder performs well.
For higher data width, CLA with prefix adders is a common choice. In signal pro-
cessing, vector multiplication is a common operation to be performed and it involves
multipliers and several multi-operand additions. Carry save adders are always suit-
able for these types of multi-operand addition. We will discuss further multi-operand
addition techniques in Chap. 8.



Chapter 8
Design of Multiplier Circuits

8.1 Introduction

Over the past few decades, researchers have been trying to improve the architecture
of amultiplier in terms of speed, power or area. This is because in almost every digital
systems a multiplier is used. Also, multiplication operation is used to approximate
other complex arithmetic operations like division, reciprocal, square root or square
root reciprocal.

The multiplication can be achieved in three general ways. Firstly, the sequential
multipliers sequentially generate the partial products and add them with the previ-
ously stored partial products. In the second method, parallel multipliers generate the
partial products in parallel and add them by a multi-operand adder. The third method
corresponds to use of array of identical blocks that generates and adds the partial
products simultaneously.

In this chapter, various structures for multiplication operation will be discussed.
A multiplier can be sequential or parallel depending on the system requirement.
A multiplier can be signed or unsigned. The major objective of this chapter is to
discuss about the fast multiplication techniques. But other techniques to evaluate
multiplication operation are also discussed.

8.2 Sequential Multiplication

Sequential multiplier is an old method to multiply two binary numbers. But it is
also relevant in many architectures and it is the base of many newly developed
multiplication techniques. The multiplication between a and b is shown in Fig. 8.1.
The multiplication between two operands a and b can be considered as addition of
the operand a total b times. For example, s = 5 × 3 = 5 + 5 + 5 = 15. Serially 5 is
added total 3 times to compute the final result. Thus total one adder is sufficient. For
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Fig. 8.1 Implementation of
8-bit multiplier using four
4-bit multipliers

a3 a2 a1 a0

b3 b2 b1 b0
p30 p20 p10 p00

p31 p21 p11 p01
p32 p22 p12 p02

p33 p23 p13 p03
s0s1s2s3s4s5s6s7

a word length of 4 bits, width of the multiplication result is 8 bit. So, an 8-bit adder
is required.

An alternative method is shift and add method. If any bit in the multiplier (b) is 0
then the multiplicand (a) is added with zero. An adder is used which is of the same
length as of the operands. Output of the adder and the multiplier is augmented in a
register bank. After each addition, contents of the register bank are shifted right. A
schemeof serial addition is shown inFig. 8.2. The start signal starts themultiplication
process. It loads a in a register and also loads b in another register. Each D flip-flop is
controlled by a control signal. The DFFs shift data to the right only when the control
signal is high. The counter tracks the latency of the multiplier. The PG block is there
to generate the enable signal (en) for the counter and the bottom register. The start
pulse generates the en signal.

8.3 Array Multipliers

In the previous section, a scheme of sequential multiplier is discussed. Sequential
multipliers may be useful when we are concerned about hardware not the speed.
But in majority of digital systems, parallel multipliers are used. The first and most
popular parallel multiplication method is array multiplication. Array multiplication
for both unsigned and signed numbers is discussed here.

Array multiplier resembles the pen-and-paper method of multiplication process
which is shown in Fig. 8.1. An array of full adders is used for the unsigned mul-
tiplication process. For n-bit data width, total n(n − 1) full adders are used in this
multiplier. Carry outputs of a stage are added in the next stage to form a systolic
architecture. But in the last stage carry is used in the same stage to reduce hardware.
The architecture of the array multiplier is shown in Fig. 8.3. At the first stage, the
FAs can be replaced with HAs but here FA blocks are retained.

The signed multiplication is little bit complicated than the unsigned array mul-
tiplication. In case of signed multiplication where the operands are represented in
two’s complement representation, instead of adding the product bits a3.b0 or a0.b3
should be subtracted. This is because the MSB bit in 4-bit operand is signed bit.
Array multipliers are designed to handle such bits and a Sub-block (SB) is designed.
The basic operation of this block is
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Fig. 8.2 4-bit sequential multiplier

s = (x + y − z)mod 2 and c = ((x + y − z) + s)/2 (8.1)

The Boolean expressions become upon simplifying using K-map as

s = x ⊕ y ⊕ z and c = xy + x z̄ + yz̄ (8.2)

The expressions are similar to that of the FA but negative bit is inverted in the
computation of carry. The signed array structure is shown in Fig. 8.4. Here, three
type of SB blocks are shown but their logic expressions are same. In case of SB, z is
the negative bit. But in case of SB1 and SB2, x and y are the negative bits.

The fast multiplication can be achieved in three general ways.

1. Fast multiplication can be achieved by increasing the clock frequency for sequen-
tial or array multipliers.

2. The second method corresponds to use of fast multi-operand adder to add the
partial products generated by high-speed parallel multipliers.

3. Other way is to reduce the partial products which are to be added to generate the
final product.
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Fig. 8.5 Framework for fast
multiplication techniques
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The increase in frequency does notmake sense as it will increase power consumption.
The performance of the parallel multipliers depends on the performance of multi-
operand adder and also on the optimal number of partial products.An obviousmethod
to design a fast multiplier is to reduce the partial products and then apply fast addition
methods. The framework for fast multiplication techniques is shown in Fig. 8.5. In
this section, some techniques for fast multiplication are discussed.

8.4 Partial Product Generation and Reduction

8.4.1 Booth’s Multiplication

For consecutive zeros, a multiplier only needs to shift the accumulated result to the
right without generating any partial products. For example, the accumulated result
is shifted 1 bit right for every ‘0’ in the multiplier. This principle can be explained
by the help of the following example.

Consider multiplication of two 8-bit numbers where A is the multiplicand and the
multiplier X takes the value as 00111100. Here X has two repetitive zeros in the left
and in the right. The multiplier X has also four repetitive ones in the middle. In the
general multiplication scheme, a multiplier will need four partial products and each
partial product has eight product bits. Totally eight shift operations are required. The
repetitive zeros can be dealt with by only shifting the accumulated result. To deal
with the repetitive ones, the above multiplication can be written as

A ∗ (00{1111}00) = A ∗ (01{0000}00 − 00{0001}00) = A ∗ (010001̄00) (8.3)
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Table 8.1 Booth’s Radix-2 recoding method

xi xi−1 Operation Comments yi

0 0 Shift only String of zeros 0

1 1 Shift only String of ones 0

1 0 Subtract and shift Beginning of
string of ones

1̄

0 1 Add and shift End of string of
ones

1

ThemultiplicandX iswritten as 010001̄00.This is theSignedDecimal (SD) represen-
tation where 1̄ represents the−1. The partial product−A is added to the accumulated
result due to the presence of 1̄ in the newly modified X. Thus in this case, instead of
four partial products only two partial products are needed. The number of shifting
operations remains same.

The above-mentioned technique is called Booth’s recoding of the multiplier [15]
in SD form. In this technique, current bit xi and the previous bit xi−1 of the multiplier
xn−1xn−2..x1x0 are checked to generate the current bit yi of the recoded multiplier
yn−1yn−2..y1y0. A simple way of recoding is by the equation yi = xi−1 − xi . This
technique of recoding is also called as Booth’s Radix-2 recoding method. Recoding
need not to be done in any pre-defined manner and can be done in parallel from any
bit positions. The simplest recoding scheme is shown in Table 8.1.

An example of multiplication using Booth’s radix-2 algorithm is shown in Table
8.2 for two 4-bit signed operands. Here recoding is started from the LSB. The com-
putation of Y is not necessary as it involves extra hardware. Instead the adder and
subtractor blocks are controlled accordingly. There are two drawbacks of this Booth’s
algorithm. First, the number add/sub operations is not fixed and also the number of
shift operations between two add/sub operations is not fixed. The second is that the
algorithm is not efficient when there is isolated ones. For example, 001010101(0) is
recoded as 011̄11̄11̄11̄ which increases the add/sub operations instead of reducing it.

8.4.2 Radix-4 Booth’s Algorithm

The disadvantages of the Radix-2 algorithm are addressed by the Radix-4 Booth’s
algorithm [45]. Here 3 bits are examined instead of 2 bits. The bits xi and xi−1 are
recoded into yi and yi−1 while xi−2 act as reference bit. The variable i takes the value
from the set {1, 3, 5....}. The recoding of the multiplier can be done easily by the
following equation:

yi yi−1 = xi−1 + xi−2 − 2xi (8.4)
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Table 8.2 An example for Booth’s Radix-2 algorithm

A 1 0 1 0 –6

X × 1 1 0 1 –3

Y 0 1̄ 1 1̄ Recoded multiplier

Add
-A

0 1 1 0

Shift 0 0 1 1 0

Add A 1 0 1 0

1 1 0 1 0

Shift 1 1 1 0 1 0

Add
-A

0 1 1 0

0 1 0 0 1 0

Shift 0 0 1 0 0 1 0

Table 8.3 Booth’s Radix-4 algorithm multiplier recoding scheme

xi xi−1 xi−2 yi yi−1 Operation Comments

0 0 0 0 0 +0 String of zeros

0 1 0 0 1 +A A single one

1 0 0 1̄ 0 –2A Beginning of ones

1 1 0 0 1̄ –A Beginning of ones

0 0 1 0 1 +A End of ones

0 1 1 1 0 +2A End of ones

1 0 1 0 1̄ –A A single zero

1 1 1 0 0 +0 String of ones

The scheme of recoding of the multiplier in Booth’s Radix-4 algorithm is shown
in Table 8.3. The Radix-4 algorithm efficiently overcomes all the limitations of the
Radix-2 recoding algorithm. An example of multiplication using Radix-4 recoding
algorithm is shown in Table 8.4. In this multiplication process, totally three add/sub
operations are performed. Hence the Radix-4 algorithm takes totally n/2 add/sub
operations. In each operation, 2 bits are dealt with and shifting operation is of 2 bits.

Booth Array Multiplier
An array multiplier using the Booth radix-4 algorithm can be designed. Booth’s
Radix-4 algorithm works on the principle of selecting partial products from the
set {A, 2A, 0,−A,−2A}. The partial product 2A can be easily obtained by wired
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Table 8.4 An example for Booth’s Radix-4 algorithm

A 01 00 01 17

X × 11 01 11 –9

Y 01̄ 10 01̄ Recoded multiplier

–A +2A –A Operation

Add
–A

+ 10 11 11

2-bit
shift

1 11 10 11 11

Add
2A

+ 0 10 00 10

01 11 01 11

2-bit
shift

00 01 11 01 11

Add
–A

+ 10 11 11

11 01 10 01 11 –153

CAS

0 1

A 2A pin

cincout
hin
din

sout

hout
dout

sin

pout

Fig. 8.6 The basic Sub-block (SB) structure

shifting method. Thus we need a selection procedure to select between A and 2A.
The block diagram for the basic Sub-block (SB) is shown in Fig. 8.6. Here the input
s selects between A and 2A. The major block of the SB is the controlled adder and
subtractor (CAS) block [46]. The Boolean expression for the CAS block is

pout = pin ⊕ (a.h) ⊕ (cin .h) (8.5)

cout = (pin ⊕ d).(a + cin) + a.cin (8.6)

If h = 1, arithmetic operation is performed, otherwise input is passed to the output.
If d = 1, subtraction operation is performed and input a is subtracted from pin .
Then cin is the incoming borrow and cout is the outgoing borrow. If d = 0, addition
operation is performed and input a is added with pin .
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Fig. 8.7 Architecture of the Booth array multiplier

The overall Booth’s array multiplier for 6 bits is shown in Fig. 8.7. This multiplier
is capable of performing sign multiplication without any extra hardware. The control
signals are generated from the Control Blocks (CB). Totally 18 SBs are used in this
design. The generation of the control signals is important. Three control signals are
used in this design which are s, h and d. The truth table for these control signals
according to the input data x is shown in Table 8.5. Boolean expressions for the
control signals can be obtained by applying K-map. The logical expressions are
obtained as

hi = xi .xi−1 + xi .xi−2 + xi−1.xi−2 (8.7)

si = xi−1.xi−2 + xi−1.xi−2 (8.8)

di = xi (8.9)

Here i took the value from the set {1, 3, 5, ......}.
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Table 8.5 Truth table for control signals for Booth array multiplier

xi xi−1 xi−2 h s d Operation

0 0 0 0 × × +0

0 0 1 1 0 0 +A

0 1 0 1 0 0 +A

0 1 1 1 1 0 +2A

1 0 0 1 1 1 –2A

1 0 1 1 0 1 –A

1 1 0 1 0 1 –A

1 1 1 0 × × +0

8.4.3 Canonical Recoding

The number of add/sub operations in a multiplier depends on the optimum SD rep-
resentation of the multiplier (X ). In other way, the number of nonzero elements in
Y decides the number of add/sub operations. The SD representation of the multi-
plier in Booth’s Radix-2 and Radix-4 algorithm is not optimum. Canonical recoding
algorithm is a technique which obtains an optimum representation of a multiplier.
Canonical recoding algorithm operates on a multiplier from right to left on 1 bit
a time. Here xi+1 serves as a reference bit. A multiplier (X ) represented in two’s
complement form is treated as xn−1xn−1xn−2....x2x1x0 to obtain optimum SD repre-
sentation.

Unlike the Radix-2 and Radix-4 algorithms, Canonical recoding algorithm
includes carry input to obtain SD representation. Here ci is the carry input and
ci+1 is the carry output. The different rules of obtaining optimum representation are
shown in Table 8.6. The SD representation of themultiplier X = 01101110 in Radix-
2 algorithm is Y = 101̄1001̄0. The optimum SD representation of this multiplier in
Canonical recoding algorithm is Y = 1001̄001̄0.

There are mainly two disadvantages of Canonical recoding algorithm. Firstly the
bits of the recodedmultiplier are obtained sequentially as it involves carry generation
and propagation. The second disadvantage is same as it is for Radix-2 algorithm,
that is, optimum SD representation corresponds to variation in number of add/sub
operations.

8.4.4 An Alternate 2-bit at-a-time Multiplication Algorithm

An alternative algorithm exists to reduce the partial products by involving fixed
number of add/sub operations. This algorithm is similar to the Radix-4 algorithm
and operates on 2 bits at a time. In this algorithm, the xi+1 is considered as reference
bit and the recodedmultiplier Y can be computed in parallel. Total number of add/sub
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Table 8.6 Canonical recoding rules

xi+1 xi ci yi ci+1 Comments

0 0 0 0 0 String of zeros

0 1 0 1 0 A single one

1 0 0 0 0 String of zeros

1 1 0 1̄ 1 Beginning of ones

0 0 1 1 0 End of ones

0 1 1 0 1 String of ones

1 0 1 1̄ 1 A single zero

1 1 1 0 1 String of ones

Table 8.7 Rules for recoding in alternative 2-bit at a time multiplication algorithm

xi+1 xi xi−1 Operation Comments

0 0 0 +0 String of zeros

0 0 1 2A End of ones

0 1 0 +2A A single one

0 1 1 +4A End of ones

1 0 0 –4A Beginning of ones

1 0 1 –2A A single zero

1 1 0 –2A Beginning of ones

1 1 1 +0 String of ones

Table 8.8 Correction step for the alternative to Radix-4 multiplication algorithm

x2 x1 x0 Operation

0 0 1 +2A – A = A

0 1 1 +4A – A = 3A

1 0 1 –2A – A = –3A

1 1 1 0 – A = A

operations is always n/2. The rules for this algorithm are shown in Table 8.7. Here
the multiple of A can be obtained easily by wired shifting.

In this algorithm as the reference bit is xi+1, it ignores if there is a start of string
of ones in the rightmost pair x1x0. A correction step is needed in this algorithm. This
is described in Table 8.8. This alternative algorithm provides easy recoding rules
compared to the original Radix-4 algorithm but it has a correction step. Initially, there
is decision to make to select between A and 3A. The computation of 3A involves an
extra add/sub operation.
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Fig. 8.8 Implementation of
8-bit multiplier using four
4-bit multipliers
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8.4.5 Implementing Larger Multipliers Using Smaller Ones

The larger multiplier blocks can be realized using smaller multiplier blocks. A 2n ×
2n multiplier can be realized using four n × n multiplier blocks. This is based on the
following equation:

A.X = (AH .2
n + AL ).(XH .2

n + XL ) = AH .XH .2
2n + (AH .XL + AL .XH ).2

n + (AL .XL )

(8.10)
where AH is the most significant half of A, XH is the most significant half of X, AL

is the least significant half of A and XL is the least significant half of X.
The partial products from the smaller multiplier blocks should be correctly

arranged and accumulated by fast multi-operand adders. A scheme of implementing
a 8-bit multiplier using four 4 × 4 multipliers is shown in Fig. 8.8.

8.5 Accumulation of Partial Products

The optimum number of partial products can be obtained by applying any of the
algorithms mentioned in Sect. 8.4. The partial products for a larger multiplier can
also be obtained from the smaller multiplier blocks. The next job in designing a fast
multiplier is to accumulate these partial products by a fast accumulating circuit. In
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this section, all the techniques involved in fast accumulation of partial products are
discussed.

8.5.1 Accumulation of Partial Products for Unsigned
Numbers

Abasic circuit to accumulate two single bits is a half-adder (HA) and a full adder (FA)
accumulates 3 bits. Thus aHA is called as 2-2 counter and a FA is called a 3-2 counter.
Again a HA is hardware efficient than a FA. Carry save adders (CSA) operates on
multiple operands. A basic CSA is equivalent to an FA block. Similarly, several
other counters also exist which can be applied to the design of fast accumulating
circuit. The major objective is to reduce the number of basic counters to reduce
hardware complexity. Thus suitable arrangement of the partial products is important.
An example of the partial products for a 6 × 6multiplier is shown in Fig. 8.9a. Figure
8.9b shows that the partial products can be reorganized to reduce the number of
counters.

Once the partial products are reorganized, carry save operation can be performed.
Basic 2-2 counters or 3-2 counters are applied wherever possible. It can be seen from
Fig. 8.10a that at level 1, 3 HAs and 8 FAs are used. The results of level one are
shown in Fig. 8.10b. At level 2, 3 HAs and 4 FAs are sufficient as shown in Fig.
8.10c. Similarly the last carry save addition is performed at level 3 as shown in Fig.
8.10d. A carry propagation adder (CPA) is needed at the final stage to obtain the
final result. This technique reduces the level of addition from six to four compared
to array multiplication scheme and also reduces the number of counters (HAs and
FAs).

The number of counters can be further reduced by employing the idea of reducing
number of bits in each column to closest element from the set {3, 4, 6, 9, 13, 19....}.
This idea is illustrated for the same example in Fig. 8.11a–d. Total number of 5 HAs
and 15 FAs are used in this technique whereas totally 9 HAs and 16 FAs are used

012345678910

(a) Original form of the partial products

012345678910

(b) Rearrangement of the partial products

Fig. 8.9 Partial products for a 6-bit multiplier
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012345678910

(a) Level 1 carry save addition

012345678910

(b) Results of level 1 addition

012345678910

(c) Level 2 carry save addition

01234567891011

(d) Level 3 carry save addition

Fig. 8.10 Partial products for a 6-bit multiplier

012345678910

(a) Level 1 carry save addition

012345678910

(b) Results of level 1 addition

012345678910

(c) Level 2 carry save addition

012345678910

(d) Level 3 carry save addition

Fig. 8.11 Partial products for a 6-bit multiplier

in the previous scheme mentioned above. The savings of counter are substantial for
higher bit multipliers.
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8.5.2 Accumulation of Partial Products for Signed Numbers

Earlier we have discussed how the partial products for an unsigned multiplier can
be accumulated using suitable organization and consuming minimum number of
counters. In this section, accumulation will be done by considering negative partial
products. If some of the partial products are negative numbers represented in two’s
complement number system, then matrix of bits needs to be changed. All the sign
bits must be properly extended before addition. The extension of sign bit is shown in
Fig. 8.12 for 6-bit partial products. Here the filled circles are representing sign bits.
This modification increases the hardware complexity and also the number of stages.
If the two’s complement numbers are obtained by generating one’s complement then
a carrymust be added in the least significant bit. This will again increase the hardware
complexity.

A 6-bit partial product z5z4z3z2z1z0 represented in two’s complement can be
represented using 11 bit as

s s s s s s z4z3z2z1z0

whose value is

− s.210 + s.29 + s.28 + s.27 + s.26 + s.25 + z4.2
4 + z3.2

3 + z2.2
2 + z1.2

1 + z0.2
0

(8.11)
can be replaced as

00000(−s) z4z3z2z1z0 (8.12)

since

− s.210 + s.(29 + 28 + 27 + 26 + 25) = −s.210 + s.(210 − 25) = −s.25 (8.13)

To represent the value −s in column 5, the original sign digit s is complemented
to obtain (1 − s) and 1 is added. This way we get −s in the column 6 along with a
carry of 1. This carry serves as the extra 1 to deal with the sign of the second partial
product. This way sign bit of all the partial products are dealt with. This solution is

Fig. 8.12 Extension of sign
bit in case of signed partial
products

012345678910
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Fig. 8.13 The modified
array of signed partial
products
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Fig. 8.14 Further modified
array of signed partial
products
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s̄4
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s̄2

s1s̄1

shown in Fig. 8.13. Here number of bits compared to the array in Fig. 8.12 is reduced
but the height is increased.

The disadvantage of the first solution is that its length is 7. Now, the 1 in the
column 5 can be eliminated if the two sign bits s1 and s2 can be placed in the same
column. This is possible as (1 − s1) + (1 − s2) = 2 − s1 − s2. This 2 is carried out to
the next column leaving −s1 and −s2. The extra 1 in column 5 is no longer required.
Placing the two sign bits in the same column is achieved by extending the sign bit s1
bit in one position as shown in Fig. 8.14.

If the negative partial products are obtained by first generating the one’s comple-
ment and then adding a carry at the least significant side then the arrangement can be
made differently. The extra carry at the LSB side then must be added to the matrix.
This solution is shown in Fig. 8.15 where the filled circles represent the complements
of the bits whenever si = 1. Here in this solution the height of the matrix is again 7
but for the unsigned case the last carry at the LSB side can be omitted. The accumu-
lation of signed partial products can be explained using an example. Let us consider
the multiplication of two 6-bit numbers using Booth’s Radix-4 algorithm as shown in
Table 8.9. Here two partial products are negatively represented in two’s complement
format. The above techniques can be applied to decrease the number of operands.
The general technique to reduce the operands in case of Radix-4 Booth algorithm
for signed partial products is shown in Fig. 8.16. The matrix of the operand bits of
Table 8.9 is modified by applying the second technique as shown in Table 8.10.
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Fig. 8.15 Modified array of
signed partial products
represented in one’s
complement
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Fig. 8.16 General operand
reduction scheme for signed
partial products for Radix-4
algorithm
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Table 8.9 An example of sign extension for Booth’s Radix-4 algorithm

A 00 01 11 7

X × 11 01 11 –9

Y 01̄ 10 01̄ recoded multiplier

–A +2A –A operation

Add –A + 11 11 11 10 01

Add 2A + 00 00 11 10 ××
Add –A + 11 10 01 ×× ××

11 11 00 00 01 –63

Table 8.10 An example of operand reduction for signed partial products for Booth’s Radix-4
algorithm

A 00 01 11 7

X × 11 01 11 –9

Y 01̄ 10 01̄ recoded multiplier

–A +2A –A operation

Add
–A

+ 0 11 11 10 01

Add
2A

+ 1 1 00 11 10 ××

Add
–A

+ 0 1 1 10 01 ×× ××

1 1 1 11 00 00 01 –63
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8.5.3 Alternative Techniques for Partial Product
Accumulation

Several techniques are suggested for partial products accumulation. Some of them
target to reduce the logic elements to reduce hardware complexity whereas some of
them target to reduce numbers of levels in the tree of partial products to achieve high
speed. As the number of levels increases irregularity in the design also increases. The
irregularities in the design create problem in generating area-efficient layout. Thus
some techniques tried to achieve more modular architectures for easy implementa-
tion.

Previously efficient accumulation of partial products is achieved by performing
carry save addition using 2-2 or 3-2 counters. More reduction of levels is possible
using compressors such as 4-2 compressor and 7-2 compressor. A basic 4-2 com-
pressor operates on four operands and produces two results (c and s). The advantage
of using a compressor is that cout is not a function of cin so that ripple carry effect is
eliminated. Thus compressor has lower overall delay. A simple design of 4-2 com-
pressor using 3-2 counters is shown in Fig. 8.17. A 4-2 compressor can be designed
as a multilevel circuit as shown in Fig. 8.18. This type of design achieves lesser delay
compared to the compressor circuit using 3-2 counters.

The delay of the compressor circuit using 3-2 counter is of maximum four XOR
gates whereas there are three XOR gates in the critical path of the compressor circuit
of Fig. 8.18. Many realizations of compressor are possible but all the compressor
circuits should follow the following equation:

x1 + x2 + x3 + x4 + cin = s + 2(c + cout ) (8.14)

and cout should not depend on cin to avoid rippling of carry signal. The use of com-
pressors reduces the number of levels in the accumulation process. Also, the delay
of a 4-2 compressor is 1.5 times that of a 3-2 counter. The accumulation of partial

Fig. 8.17 A basic 4-2
compressor using 3-2
counters

FA
(3:2)

FA
(3:2)

cout

c s

cin

x1x2x3x4
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Fig. 8.18 A efficient
implementation of 4-2
compressor

x1 x2 x3 x4

10

10

c

cout
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products using compressor circuits is supposed to be faster than the accumulation
using 3-2 counters. But this is not always true in all cases.

Several techniques are suggested to improve the performance of the CSA-based
accumulation of partial products using 3-2 counters. The objective is to either reduce
the overall delay by reducing number of levels or to obtain a more regular structure.
Three such techniques are shown in this chapter.

1. Firstly the Wallace tree structure is shown in Fig. 8.19 provides regular structure.
It uses total 16 CSA blocks and it has six levels. In the layout perspective, the
Wallace tree uses six wiring tracks between adjacent bit slices.

2. Researches suggested overturned-stair trees [53] shown in Fig. 8.20 to reduce
the wiring tracks from 7 to 3. Overturned-stair trees are more regular, use same
number of CSA modules and have same number of levels.

3. Further a balance tree structure[84] is suggested as shown inFig. 8.21. The balance
tree structures have highest delay due to the presence of seven levels but require
only two wiring tracks.

Similarly a compressor tree is shown in Fig. 8.22. The compressor tree needs only
3 levels to operate on the 20 operands whereas CSA-based tree takes 6 levels. Thus
it can be said that compressor tree provides low overall delay for higher number of
operands.

8.6 Wallace and Dedda Multiplier Design

Chris Wallace in 1964 gave some suggestions on fast multiplication [76]. In order
to achieve high speed without consuming extra hardware, he suggested some tech-
niques. He proposes to use the basic HAs and FAs as basic elements for operand
reduction. He applied operand reduction in parallel layers and achieves better speed.
The steps are
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Fig. 8.19 Wallace tree structure
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Fig. 8.20 Overturned-stair tree structure
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Fig. 8.21 Balance tree structure
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Fig. 8.22 A compressor tree for 20 operands
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Fig. 8.23 Wallace tree multiplier scheme

1. Obtain the partial products and form the matrix.
2. Apply the HAs and FAs to reduce the operands. Try to reduce the operands as

much as possible in parallel.
3. Apply carry propagating adder to generate the final product.

The flow of theWallace tree multiplier is shown in Fig. 8.23 for 8-bit numbers. There
are totally five layers of addition involved. Totally 16 number of HAs and 47 number
of FAs are consumed.

Luigi Dadda in 1965 also gave some suggestions on fast multiplication [22]. He
proposes some similar suggestions to achieve better speed. Dedda targets to reduce
the operands in a particular manner so as to consume minimum number of basic
elements. He achieves slightly better speed than theWallacemultiplier and consumes
less hardware. The steps are

1. Obtain the partial products and form the matrix. Rearrange the matrix in the form
of a tree.

2. Apply the HAs and FAs to reduce the operands. Try to reduce the operands as
much as possible in parallel. Keep the height of length taking value from the set
{2, 3, 4, 6, ..}.

3. Apply carry propagating adder to generate the final product.
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Fig. 8.24 Dedda tree multiplier scheme

The flow of the Dedda tree multiplier is shown in Fig. 8.24 for 8-bit numbers. There
are totally five layers of addition involved. Totally 8 number of HAs and 48 number
of FAs are consumed.

8.7 Multiplication Using Look-Up Tables

An alternative way of computing multiplication is using look-up tables. This tech-
nique can be useful where serial multiplication is needed or memory devices are
available like in FPGA device. This technique is based on the following popular
algebraic equation:

A × B = {(A + B)2 − (A − B)2}/4 = 4 × (A × B)/4 (8.15)

In the first step, two data elements A and B are added and subtracted. Then results
of addition and subtraction are provided to two squaring tables as addresses. The
squaring tables store the square of all the elements which are required to fetch. The
output of the squaring tables is then subtracted to get the final multiplication result.
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Squaring Table

Squaring Table

A

B

A+B

A−B

(A+B)2

(A−B)2

Fig. 8.25 A scheme for computing multiplication using tables

The simplest parallel architecture of multiplication using tables is shown in Fig.
8.25. Here, two n-bit adders and subtractors are placed in the first step. The results of
these adder and subtractor blocks are of (n + 1)-bit. Thus size of the squaring tables
will be 2n × (n + 1). At the final stage, a subtractor is placed which is of 2n-bit size.
The circuit is simpler and pipeline registers can be easily inserted.

One squaring table can also be used. The adder and subtractor blocks in the first
stage also can be shared. In this case, the architecture will be serial and the circuit
will be more hardware efficient. The size of the table can be reduced as they only
store the square numbers. The square numbers will be always even and also the two
LSB bits will be shifted out at the final stage. Thus the new size of the tables will be
2n × (n − 1).

8.8 Dedicated Square Block

In the previous sections, we have discussed techniques which can be used to achieve
fast multiplication. But when the multiplicand and the multiplier are same, there
must be some way to simplify the implementation. Thus squaring operation does
not require the full length hardware of a multiplier. In applications where a squaring
operation is required, a dedicated square block can be used.

In Fig. 8.26, the squaring operation for 2 bits is shown. Here the simplification
of the result is shown. Further the squaring operation by a dedicated square block
for 8 bits is shown in Fig. 8.27. The first array of partial products shows the original
structure. The second array shows the rearrangement of the previous array. The logic
for simplification is also shown in Fig. 8.27.

The fast multiplication techniques can be applied to the array of partial products
as shown in the previous sections. It is sometimes required to arrange the partial
products so the general techniques can be applied. Thus the array of partial products
is arranged. Though it is not necessary. Figure 8.28 shows a possible architecture
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Fig. 8.26 Squaring operation for 2-bit data
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Fig. 8.27 Squaring operation for 8 bits

Fig. 8.28 Architecture of
the dedicated square block
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(Level 1)
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(Level 1)
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Reg Reg

of the dedicated square block. Here the so-called CSA optimization techniques are
not applied. The partial products are added in parallel to increase speed. The values
of m, n, p are 13, 5, 11. Though this is not an optimized architecture but simple to
implement.
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8.9 Architectures Based on VEDIC Arithmetic

Ancient Indian VEDIC Mathematics consists of 16 mathematical formulae recon-
structed from theAtharvaveda. It is recognized as an efficient technique for enhancing
the mathematical skills of students. The arithmetic operations like multiplication,
division, square root, cubing, squaring and finding cube root are time-consuming
processes. VEDIC mathematics results in fast and easy solution for such type of
time-consuming process. In this section, VEDICmathematics is adopted to compute
multiplication, square and cube of a number.

8.9.1 VEDIC Multiplier

VEDIC multiplication algorithm is another option to implement an efficient mul-
tiplier. This section discusses the VEDIC multiplier. There are three methods to
implement multiplication in VEDIC mathematics. Out of three, only one method is
generic method which can be applied to all cases whereas other two are for special
cases. Main algorithm of Vedic multiplication is Urdhva Triyakbhyam. It is a gen-
eral multiplication formula applicable to all cases of multiplication. It literally means
Vertically and Crosswise.

The multiplication of two operands using VEDIC multiplier is achieved by
multiplication by Vertically and Crosswise and then adding all the results. This
multiplication algorithm can be understood using two operands 46 and 33. The
operand 33 can be represented as 33 = (3 × 10 + 3) and 46 can be represented as
46 = (4 × 10 + 6). The multiplication (46 × 33) can be represented as (3 × 6 +
40 × 3 + 30 × 6 + 30 × 40). This multiplication is shown in Fig. 8.29.

Similar way, this multiplication algorithm can be adopted to implement faster
binary multiplier. A 4-bit binary multiplication is shown in Fig. 8.30. VEDIC mul-
tiplier is a good alternative to the other fast multiplicative algorithms. VEDIC mul-
tiplier reduces hardware as well as the delay compared to other algorithms. A 2-bit
multiplier is shown in Fig. 8.31. This circuit uses just two HA blocks and four AND
gates.

VEDIC multiplier for 4-bit data width is shown in Fig. 8.32. This structure is
achieved using four 2-bit multipliers. Here three Add blocks are used. These blocks

Fig. 8.29 VEDIC
multiplication
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Fig. 8.30 VEDIC
multiplication for 4-bit data
width
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Fig. 8.31 Architecture of
2-bit VEDIC multiplier
block
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can be implemented using high-speed adders like conditional sum adder, carry look-
ahead adder or carry select adder as shown inChap. 7. In Fig. 8.32 the circles represent
the concatenation block. For example, the 2 bits from the wire s1 are connected to
the output directly.

8.9.2 VEDIC Square Block

Square of a number can also be computed using VEDIC arithmetic formulas. Square
computation is generally faster and hardware efficient than the complete multipliers.
Similarly a VEDIC square block is hardware efficient than the multiplier block.
Square of an operand is computed using the Dwandwa Yoga or Duplex method. Any
number can be represented as (x + y) and in this method, square of this number can
be computed as
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Fig. 8.33 VEDIC square
example
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(x + y)2 = x2 + 2xy + y2 (8.16)

This can be shown with an example. Let the operand 18 and 18 can be represented as
(1 × 10 + 8). Thus the square of this number using duplex square method is shown
in Fig. 8.33.

Similarly, duplex square method can be applied to the binary numbers as well.
This is shown in Fig. 8.34 by taking ‘1011’ as an example. As discussed earlier that
squaring operation is easier than multiplication. This will be clearer by seeing the
architecture. The 2-bit duplex square block architecture is shown in Fig. 8.35.

This block is used to develop the 4-bit duplex square block. The architecture
of 4-bit square block is shown in Fig. 8.36. Here, two 2-bit square block and one
2-bit multiplier block are used. The LSH1 block is used for left shifting for 1-bit.
This shifting is wired shifting as discussed in Chap. 1. Here, two Add blocks are
used in comparison to the three blocks in case of multiplier. These blocks can be
implemented using high-speed adders like conditional sum adder, carry look-ahead
adder or carry select adder as shown in Chap. 7. In Fig. 8.36 the circles represent the
concatenation block.

8.9.3 VEDIC Cube Block

Apart from the multiplication and square, finding cube of a number is an another
important operation in signal processing. The cube of a number can be computed
using Anurupya Sutra which is the subsutra of Ekadhikena Purvena. VEDIC Cube
architecture is efficient in terms of hardware and also in terms of delay. Cube of
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a number (z3) can be computed easily using the VEDIC sutras. First express the
numbers (z) as sum of two parts as (z = x + y). Then the cube of that number can
be computed as

(x + y)3 = x3 + 3x2y + 3xy2 + y2 (8.17)

This operation is explained in Fig. 8.37 with an example. This method can be easily
adopted for the binary numbers. VEDIC cube for 4-bit binary number is shown in
Fig. 8.38 for z = ‘1110’.

In the computationof cube, several other operations are involved.These are square,
multiplication and lower order cubes. The architecture of these blocks are discussed
in earlier sections. Here the cube architectures are discussed. The 2-bit VEDIC cube
architecture is shown in Fig. 8.39. This is optimized and simple block.

The architecture to compute cube of 4-bit number is shown in Fig. 8.40. In this
figure, starting from the left side the operations computed are x3, x2, 3y, 3x , y2 and
y3. All these operations are computed in parallel. This is the main advantage of this
method. Multiplication by 3 is obtained by first multiplying by 2 and then adding the
input number. The block LSH1multiplies a number by 2 using wired left shifting. 3x
and y2 are multiplied to obtain 3xy2. Similarly, 3x2y is computed. Then, y3 + 3xy2



174 8 Design of Multiplier Circuits

a0a1

s0

0

s2s3 s1s4
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and x3 + 3x2y are computed parallel. The results are added together at the last stage.
The pipeline registers are also shown in suitable places. The circles are placed for
concatenation operation. Add blocks can be implemented using high-speed adders
like conditional sum adder, carry look-ahead adder or carry select adder as discussed
in Chap. 7.
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8.10 Conclusion

In this chapter, various multiplication schemes are discussed. Multiplication opera-
tion can be carried out by either sequential circuits or by parallel circuits. Sequential
multipliers are used in systems where less area is desired. The array multipliers are
basic parallel multipliers and available for both signed and unsigned operands.

This chapter mainly discusses fast multiplication algorithms. Fast step of the
fast multiplication operation is partial products generation and reduction. Reduction
of partial products can be achieved by Booth’s radix-2 or radix-4 algorithm. In
addition to Booth’s algorithm, other methods of generation of partial products and
reduction are also mentioned here. The generated partial products are added by fast
multi-operand added. Various techniques of multi-operand addition are presented in
this chapter. Two special multipliers, Wallace and Dedda tree multipliers, are also
discussed.

This chapter also discusses howLUTs can be used to realize fast multiplier circuit.
Along with the multiplication process, efficient architecture for computing square
operation is also discussed here. VEDIC sutras based on ancient Indian arithmetic
are very popular for developing efficient architecture for square, multiplication and
cube. Thus this chapter also discusses the VEDIC arithmetic architectures.



Chapter 9
Division and Modulus Operation

9.1 Introduction

Many signal processing algorithms include the division operation which is more
complex than the other arithmetic operations like addition/subtraction and multipli-
cation. Both the timing complexity and the hardware complexity of a divider are
higher than that of a multiplier. Thus it is always better to avoid the use of a divider
in a digital system.

In this chapter, we will discuss various division algorithms and their architec-
tures. The division algorithms can be classified as sequential algorithms, fast division
algorithms and iterative approximation algorithms. Classification can also be done
according to the base such as radix-2 dividers and higher radix dividers. Here, only
radix-2 dividers are discussed in detail. Based on the sign of the operands, a divider
can be signed and unsigned. Let’s discuss some of the methods of division.

Another arithmetic operationwhich is discussed here ismodulus operation. Evalu-
ation of modulus operation is based on finding the residue. Thus repeated subtraction
is the direct approach to find modulus. Computation of modulus using division oper-
ation is a general approach. But a divider with high complexity should be avoided
to compute modulus as only the final residual is required. In this chapter, few such
methods of modulus computation is discussed.

9.2 Sequential Division Methods

The basic equation of a division operation is

N = Q.D + R (9.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Roy, Advanced Digital System Design,
https://doi.org/10.1007/978-3-031-41085-7_9

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41085-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-41085-7_9


178 9 Division and Modulus Operation

where N is the dividend, D is the divisor, Q is the quotient and R is the remainder.
The remainder R is less than D. Two types of sequential division algorithms are
there which are restoring algorithm and non-restoring algorithm.

9.2.1 Restoring Division

The division operation is carried away by assuming that the dividend and the divisor
are fractional. Also, the condition N < D is true, so that overflow will not occur.
In the division process, the residual obtained must always be less than the divisor
(R < D). The quotient is generated as Q = 0.q1q2q3...qm , here m = n − 1. The
restoring division algorithm is based on sequential addition and subtraction operation
until the residual is zero or less than the divisor. The restoring division algorithm is
shown below in Algorithm 9.1. Here n is the data width and R is set to N initially.

Algorithm 9. 1 Restoring division algorithm
Input: Dividend N, Divisor D and word length n.
Output: Quotient Q and Remainder R.
1: Initialization r0 = N .
2: ri = 2 ∗ ri−1 − D
3: for i ← 1 to (n − 1) do
4: if ri ≥ 0 then
5: Q(i) = 1
6: else if ri < 0 then
7: Q(i) = 0
8: ri = ri + D
9: end if
10: end for

InAlgorithm9.1, the quotient bits are set based on the current residual and checked
if it is greater than zero or not. If the ri is greater than 0 then qi is set to 1. If the current
residual ri is less than 0 then a restoring operation is carried out by adding D with the
residual. An example of restoring algorithm is shown below for N = 0.5(0.100) and
D = 0.75(0.110). Here positive values are considered and the result is Q = 0.625.
The value of n is 4 here.
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r0 = N 0 0.1 0 0
2r0 0 1 0.0 0 0

Add (−D) 1 1 0.0 1 0
r1 = 2 ∗ r0 − D 0 0 0.0 1 0 set q1 = 1

2r1 0 0 0.1 0 0
Add (−D) 1 1 0.0 1 0

r2 = 2 ∗ r1 − D 1 1 0.1 1 0 set q2 = 0
r2 = 2r1 0 0 0.1 0 0 Restoring

2r2 0 1 0.0 0 0
Add (−D) 1 1 0.0 1 0

r3 = 2 ∗ r2 − D 0 0 0.0 1 0 set q3 = 1

A simplest architecture of the restoring division algorithm is shown in Fig. 9.1. The
architecture is an array of sub-blocks (SB). The architecture of the SB block is also
shown in that figure. The sel signal executes the restoring operation through aMUX.
Totally n2 number of SB blocks are used in the architecture. Intermediate pipeline
registers can be used to increase the speed of operation. In such case, latency will be
of three clock cycles.

SB
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SB SB SB SB

SB SB SB SB

SB SB SB SB
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R3 R2 R1 R0

add sub
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1 0
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Fig. 9.1 Restoring division architecture
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9.2.2 Unsigned Array Divider

Our objective is to divide N by D where both N and D can be positive or negative.
The division operation can be expressed by the following equation by considering
4-bit data width as

N = Q3.2
3.D + Q2.2

2.D + Q1.2
1.D + Q0.2

0.D + R (9.2)

The division operation is carried out by subsequent stages where each stage deter-
mines a quotient bit. Thus it is called as an array divider. In the first stage to find the
bit q3, D is left shifted by 3 bits and subtracted from N . The quotient bit q3 is 1 if the
difference is zero or positive. If the difference is negative, q3 is 0 and the value of N
is passed to the next stage. This technique is simply the restoring division discussed
in the previous section. The division operation is explained by an example shown in
Fig. 9.2 where N = 1100 and D = 0010.

The unsigned divider for 4-bit data width is shown in Fig. 9.3. From the example
shown in Fig. 9.2, it is clear that to compute q3, D0 is subtracted from N3 only when
other bits of D are zero. This logic is implemented in the first stage. Similarly to
compute q2, bits D1 and D0 are needed to be subtracted and thus two sub-blocks are
used. The block diagram of the sub-block is also given in Fig. 9.3. It consists of a
full subtractor and a MUX.

The above architecture is shown for division by unsigned numbers. The signed
division can be done easily by adopting this division method. The input signed
operands (two’s complement representation) are needed to be converted to unsigned
operands and at the output the quotient and residual are also needed to be converted
to signed operands depending on the sign of input operands.

Fig. 9.2 An example of
unsigned division for 4-bit
binary numbers

0001100
0010000-
11111001

bout = 1,Q3 = 0

0001100
0001000-
00001000

bout = 0, Q2 = 1

0000100
0000100-
00000000

bout = 0,Q1 = 1

0000000
0000010-
11111101

bout = 1,Q0 = 0
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Fig. 9.3 A 4-bit unsigned divider

9.2.3 Non-restoring Division

The non-restoring algorithm is also a sequential division algorithm. It also works
for fractional numbers. In non-restoring division algorithm, the quotient bit is not
corrected and the restoration of the remainder also not done immediately if it is
negative. The quotient bit in non-restoring algorithm is defined as

qi =
{
1, if 2ri−1 ≥ 0

1, if 2ri−1 < 0
(9.3)

The new remainder can be computed as

ri = 2ri−1 − qi .D (9.4)

The generalized selection rule for quotient is

qi =
{
1, if 2ri−1 and D have same sign

1, if 2ri−1 and D have opposite sign
(9.5)

The division operation is carried away by assuming fractional numbers. Initially R
is set equal to N and n is the data width. The operands are in two’s complement form
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where MSB bit is the signed bit. The non-restoring division algorithm is shown in
Algorithm 9.2.

Algorithm 9. 2 Non-restoring division algorithm
Input: Dividend N, Divisor D and word length n.
Output: Quotient Q and Remainder R.
1: Initialization r0 = N .
2: for i ← 1 to (n − 1) do
3: if 2 ∗ ri−1 ≥ 0 then
4: Q(i) = 1
5: ri = 2 ∗ ri − D
6: else if 2 ∗ ri < 0 then
7: Q(i) = −1
8: ri = 2 ∗ ri + D
9: end if
10: end for

In non-restoring divider, quotient takes value from the digit set {−1, 1}. At the output,
a conversion is needed to get the actual output in two’s complement form.An example
of non-restoring algorithm is shown below. This example is for N = 0.5 (0.100) and
D = -0.75 (1.010). Here n is equal to 4.

r0 = N 0 0.1 0 0
2r0 0 1 0.0 0 0 set q1 = 1̄

Add (D) 1 1 0.0 1 0
r1 = 2 ∗ r0 + D 0 0 0.0 1 0

2r1 0 0 0.1 0 0 set q1 = 1̄
Add (D) 1 1 0.0 1 0

r2 = 2 ∗ r1 + D 1 1 0.1 1 0
2r2 1 1 0.1 0 0 set q2 = 1

Add (−D) 0 0 0.1 1 0
r3 = 2 ∗ r2 − D 0 0 0.0 1 0

A simplest architecture of non-restoring algorithm-based division for n = 4 is shown
in Fig. 9.4. This architecture is very similar to the restoring algorithm-based division
architecture. This architecture also uses the same number of sub-blocks. Structure of
the sub-blocks is also shown in Fig. 9.4. This SB block is different from the SB block
mentioned in restoring case. Here, there is no provision of restoring the residual.

The architecture shown in Fig. 9.4 does not consider some aspects of non-
restoring-based division. The sign of the remainder and the dividend should be same.
If 10 is divided by –3 then the remainder should be 1 not –2 for quotient of –4. If the
sign of the remainder is different from the dividend then a correction step is needed
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to generate exact remainder and quotient. It is to be noted that even quotient cannot
be generated as the quotient bits are restricted {1, 1}. An example of this situation is
shown below.

r0 = N 0 0.1 0 1
2r0 0 1 0.0 1 0 set q1 = 1

Add (−D) + 1 1 0.0 1 0
r1 = 2 ∗ r0 − D 0 0 0.1 0 0

2r1 0 1 0.0 0 0 set q2 = 1
Add (−D) + 1 1 0.0 1 0

r2 = 2 ∗ r1 − D 0 0 0.0 1 0
2r2 0 0 0.1 0 0 set q3 = 1

Add (−D) + 1 1 0.0 1 0
r3 = 2 ∗ r2 − D 1 1 0.1 1 0

Here in this example, the sign of the remainder is negative while the sign of the
dividend is positive thus a correction step is needed. The remainder is corrected by
adding D to the final remainder r3. This addition yields 1.110 + 0.110 = 0.100. The
quotient is also needed to be corrected as

Qcorrected = Q − ulp = 0.111 − 0.001 = 0.110 (9.6)
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Another situation in non-restoring division is that, the remainder cannot be zero in the
intermediate steps. If the remainder becomes zero, then a correction step is needed.
This situation is explained by the following example:

r0 = N 1 0.1 0 1
2r0 1 1 0.0 1 0 set q1 = 1̄

Add (D) + 0 0 0.1 1 0
r1 = 2 ∗ r0 + D 0 0 0.0 0 0

2r1 0 0 0.0 0 0 set q2 = 1
Add (−D) + 1 1 0.0 1 0

r2 = 2 ∗ r1 − D 1 1 0.0 1 0
2r2 1 0 0.1 0 0 set q3 = 1̄

Add (D) + 0 0 0.1 1 0
r3 = 2 ∗ r2 + D 1 1 0.0 1 0

Here, sign of the final remainder and the dividend is same but the quotient is wrong.
We get Q = 0.1̄11̄ = 0.1̄012 = 3/8 in place of −1/2. Thus a correction step is
needed according to the zero occurrence of the intermediate remainder.

r3(corrected) = r3 + D = 1.010 + 0.110 = 0.000 (9.7)

The quotient is correct as

Qcorrected = 0.1̄01 − 0.001 = 0.1̄00 = −1/2 (9.8)

Thus in general correction step is needed for

1. If the remainder and dividend have opposite signs.

(a) If the dividend and divisor have the same sign, then the remainder is corrected
by adding D and the quotient is corrected by subtracting ulp.

(b) If the dividend and the divisor have opposite signs, then D is subtracted from
remainder and quotient is corrected by adding ulp.

2. If there is a zero intermediate remainder. Correction is done according to the
number of occurrence of zero remainder.

9.2.4 Conversion from Signed Binary to Two’s Complement

The conversion from Signed Binary to Two’s Complement is important in order
to simplify the implementation. The quotient Q is represented in SD format as
0.q1q2q3 = 0.1̄1̄1. To get the actual quotient in two’s complement format an on-
the-fly conversion is needed. The basic scheme for conversion is
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• First mask bits for 1̄. That is Q1 = 0.001.
• Then assign Q2 as Q2 = 0.110.
• Subtract Q2 from Q1 to get actual result. That is Q = 1.011 (–0.625).

In the hardware implementation, if 1̄ is represented as 0 then the quotient is Q =
0.001. This can be converted to two’s complement form as

1. Shift the given number left by 1-bit position.
2. Complement the most significant bit.
3. Replace a 1 into the LSB position.

These steps result the same as 0.001 = (1 − 0).011.

9.3 Fast Division Algorithms

9.3.1 SRT Division

The most well-known fast division algorithm is SRT division algorithm named after
Sweeney, Robertson and Tocher [45, 58, 72]. The SRT algorithm basically improves
the non-restoring algorithm. The non-restoring division algorithm needs n addition/-
subtraction operations and allows bit 0 in the quotient for which no addition/subtrac-
tion operation needed. The rule for selecting quotient bit selection can be changed
as

qi =

⎧⎪⎨
⎪⎩
1, if 2ri−1 ≥ D

0, if − D ≤ 2ri−1 < D

1, if 2ri−1 < −D

(9.9)

The difficulty with this new selection rule is that we need to compare 2ri−1 with D
or −D. If the value of the normalized value of D is restricted as 1/2 ≤ |D| < 1 then
the partial remainder 2ri−1 is to be compared with 1/2 or −1/2. The new selection
rule is now modified as

qi =

⎧⎪⎨
⎪⎩
1, if 2ri−1 ≥ 1/2

0, if − 1/2 ≤ 2ri−1 < 1/2

1, if 2ri−1 < −1/2

(9.10)

This algorithm is famously known as the SRT division algorithm. The SRT division
can be extended to negative divisors in two’s complement. The selection rule then
becomes

qi =

⎧⎪⎨
⎪⎩
0, if |2ri−1| < 1/2

1, if |2ri−1| ≥ 1/2&ri−1 and D have the same sign

1, if |2ri−1| ≥ 1/2&ri−1 and D have the opposite signs.

(9.11)
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An example of division operation using the SRT fast division algorithm is shown
below for N = 0.0101 = 5/16 and D = 0.1100 = 3/4. The SRT algorithm is
applied as follows:

r0 = N 0 .0 1 0 1
2r0 0 .1 0 1 0 ≥ 1/2 set q1 = 1

Add (−D) + 1 .0 1 0 0
r1 = 2 ∗ r0 − D 1 .1 1 1 0

2r1 = r2 1 .1 1 0 0 ≥ −1/2 set q2 = 0
2r2 = r3 + 1 .1 0 0 0 ≥ −1/2 set q3 = 0

2r3 1 .0 0 0 0 < −1/2 set q4 = 1̄
Add (D) + 0 .1 1 0 0

r4 1 .1 1 0 0 negative remainder and
Add D 0 .1 1 0 0 correction
r4 0 .1 0 0 0 negative remainder and

The quotient generated before correction is Q = 0.1001̄. This is a minimal repre-
sentation of Q = 0.0111 in SD form. Means, minimum number of addition/subtract
operations are performed. The correction of the quotient is made as Qcorrected =
0.0111 − ulp = 0.0110 = 3/8 and the final remainder is 1/2.2−4.

9.3.2 SRT Algorithm Properties

Based on the simulation and statistical analysis, SRT algorithm has the following
properties:

1. The average number of shift operations in SRT division is n/2.67 where n is the
length of the dividend. For example, for n = 24, approximately 24/2.67 ≈ 9 shift
operations are needed.

2. The actual number of operations needed depends upon the divisor D. The smallest
number is achieved when 17/28 ≤ D ≤ 3/4 (approximately 3/5 ≤ D ≤ 3/4)
with an average shift of 3.

In order to reduce the number of add/subtract operations, the SRT method should be
modified when the divisor happens to be out of range (3/5 ≤ D ≤ 3/4). Two ways
to achieve this which are

1. In some of the steps of the division, multiple of D like 2D can be used if D is too
small or D/2 can be used if D is too large. Subtracting 2D or D/2 instead of D
is equivalent to performing subtraction one position earlier or later.

2. The comparison constant K = 1/2 can be changed if D is outside the optimal
range. This change is allowed because the ratio of D/K matters since partial
remainder is compared with K not with D.
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9.4 Iterative Division Algorithms

9.4.1 Goldschmidt Division

The Goldschmidt division [29] is one of the popular fast division methods. It evalu-
ates the division operation by iterative multiplications. The equations which govern
Goldschmidt division are

Fi = 2 − Di−1 (9.12)

Di = Fi × Di−1 (9.13)

Ni = Fi × Ni−1 (9.14)

The major advantage of Goldschmidt division is its low latency. In VLSI imple-
mentation where a designer wants to fasten the design performance then this divider
can be used. The block diagram of this divider is shown in Fig. 9.5. It uses two
multipliers per iteration. One of the disadvantages of this division is that pipeline
implementation is costly. Thus serial implementation is beneficial to use. Another
disadvantage of this divider is its accuracy. The need for the pre-scaling of input
operands makes it not suitable for systems with high accuracy. More iteration means
greater accuracy which again increases cost. Generally 3–5 iterations are sufficient
to attain acceptable accuracy.

9.4.2 Newton–Raphson Division

Newton–Raphson’s iterative algorithm is a very popular method to approximate a
given function. It can be used to compute reciprocal of a given number. The Newton–
Raphson’s iterative equation is

Xi+1 = Xi − f (Xi )

f ′
(Xi )

(9.15)

Fig. 9.5 Goldschmidt
iterative division Di−1

Ni−1

Di

Ni2

+/
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Fig. 9.6 Newton–Raphson iterative reciprocal computation

where f
′
(Xi ) is the derivative of f (Xi ). The function which is used to compute the

reciprocal of a number is f (x) = (1/X) − D, where D is the input operand. The
Newton–Raphson iteration gives

Xi+1 = Xi (2 − D.Xi ) (9.16)

After some finite iterations the above equation converges to the reciprocal of D. It is
very obvious that initial value of X (X0) must be chosen carefully to converge. The
value of D is scaled to be in the range 0.5 ≤ D ≤ 1 to choose the initial guess X0

such that few number of iterations required for computation. In this case, D is shifted
right or left to be in that range. In that interval of D, one must choose initial value
X0 as

X0 = 48

17
− 32

17
D (9.17)

The architecture for Newton–Raphson-based reciprocal computation is shown in
Fig. 9.6. A serial architecture is given here as parallel architecture is costly and most
system architectures use serial architecture. The pulsed control signal start starts the
iteration and x f is the final result. If D is not in the range, pre-processing is required
and at the output a post-processing step is also required.

9.5 Computation of Modulus

Modulo operation is very important in many signal processing algorithms. Computa-
tion of modulus is mostly used in implementation of cryptographic algorithms. The
modulus operation between two operands X and Y can be expressed as

X mod Y = X − �X/Y 	Y (9.18)
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Here, �X/Y 	 indicates that X is divided by Y and the result is floored by removing
fractional part. �X/Y 	 is multiplied by Y and the result is subtracted from X to
compute modulus. An example of modulo operation is shown below:

17mod 5 = 17 − �17/5	5 = 17 − �3.4	5 = 17 − 3 × 5 = 2 (9.19)

Computation of modulus is straightforward if Y is 2 or power of 2. This is achieved
by simple wired shift method. But if the value of Y is not equal to power of 2 then
computation of modulus becomes complex. This is because the modulus operation
involves a division operation. This is why we are discussing modulus operation in
this chapter.

Many algorithms are proposed in literature to compute modulus by avoiding
division operation. One such algorithm is Barrett reduction algorithm [14] which
computes the modulus according to Eq. (9.18). This algorithm states that if the value
of Y is known then the reciprocal of Y can be pre-stored. Storing of 1/Y helps to
avoid the division operation. The computation of modulus is done by the following
equation:

X mod Y = X − �X × (1/Y )	 × Y = X − D × Y (9.20)

Here, D = �X × (1/Y )	. The above equation needs two multiplication operations
and one subtraction operation. One multiplication is constant multiplication and
another is of smaller size. The pre-computed value of 1/Y is accessed as a constant.
The schematic for computation of X mod Y is shown in Fig. 9.7. The value Y may
not be fixed sometimes and in such case an LUT can be used which will store the
pre-defined values of Y .

Another way of computing modulus is by number of addition and subtraction
operations. This technique is based on the works reported in [20]. If X can be repre-
sented as summation of different terms then the modulus operation X mod Y can be
expressed as

X mod Y = (2n−1 + ... + 22 + 21 + 20)mod Y

= ((2n−1mod Y ) + ... + (22mod Y ) + (21mod Y ) + (20mod Y ))mod Y
(9.21)

-

D
1
7
:1

0

10′b0

X

1/Y
Y

O/P

Fig. 9.7 A possible architecture to compute X mod Y
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For example, 100mod 7 operation can be expressed as

100mod 7 = ((64mod 7) + (32mod 7) + (4mod 7))mod 7 = (1 + 4 + 4)mod 7
(9.22)

This technique is also basedonprior knowledgeofY . In order to compute themodulus
operation 100mod 7, modulus values for each term are stored in an LUT. The i th
location of LUT stores 2i mod Y for i = 0, 1, 2..., (n − 1). The modulus values for
n = 8 and Y = 7 are shown below:

X 1 2 4 8 16 32 64 128
X mod 7 1 2 4 1 2 4 1 2

Architecture for the above technique can be easily designed by accessing the mod
values from LUT and adding the mod values. Modulus of the result is computed by
repetitive subtraction. The number of subtraction operations depends on size of both
X and Y . For n = 8 and Y = 7 two subtraction steps are needed.

There are several modifications to this technique which are proposed. First mod-
ification is that, if a partition of X is less than Y then modulus need not to be
computed. This reduces addition steps. For example, 4mod 7 need not be computed
as 4 is already less than 7. Another modification can be applied by grouping parti-
tions for which same modulus values are produced. For example, 4mod 7 = 4 and
32mod 7 = 4 are equivalent. Thus same mod values are stored for both the cases.
An architecture is shown in Fig. 9.8 by combining these modifications.

0 2 4 6 0 1 2 30 4 8

0 1 2 3 0 1 2 30 1 2

Substraction
Steps

Fig. 9.8 Another possible architecture to compute X mod Y



9.6 Conclusion 191

9.6 Conclusion

In this chapter, various division algorithms are discussed and some architectures are
also discussed. In digital systems, generally the array architectures for sequential
division algorithms are preferred. Though the array structures have higher latency
they are easier to implement. SRT algorithms are very critical to implement and also
they sometimes do not support pipeline implementations. The iterative algorithms
have less latency but their pipeline implementation is costly.

In this chapter, some architectures are explained to compute modulus operation
without evaluating division operation as the hardware complexity of a divider is very
high. The modulus architectures assume that the value of Y is known to the designers
and modulus is evaluated with the help of LUTs. But if the value of Y is not known
then these architectures will not be applicable. The readers are encouraged to design
modulus architectures for variable Y .



Chapter 10
Square Root and its Reciprocal

10.1 Introduction

Generally the arithmetic operations like addition/subtraction,multiplication and divi-
sion are used in implementation of signal processing algorithms. But square root and
its reciprocal are other important arithmetic operations which are used in signal
processing algorithms where Gram–Schmidt algorithm-based QR factorization or
Cholesky factorization is used to solve linear equations.

The computational complexity involved in computation of square root and its
reciprocal is similar to that of division operation. Hence, it is always better to avoid
the computation of square root if possible. But not always these operations can
be avoided. Thus we have also discussed some methods in this chapter to design
hardware to compute square root and its reciprocal. Just like division, there are
slow computing methods and also some algorithms for faster computation. A brief
discussion is given in this chapter.

10.2 Slow Square Root Computation Methods

Computation of square root is similar to the division operation. The equation of a
square root operation is

X = Q.Q + R (10.1)

where X is the radicand, Q is the quotient and R is the remainder.
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10.2.1 Restoring Algorithm

The restoring algorithm for square root is similar to the restoring division algorithm.
LetX is the positive radicand and its square root is represented as Qn = 0.q1q2q3...qn ,
when n is the total number of iterations. The bits of Q are generated in n steps, 1 bit
per iteration. The Qi is expressed as

Qi =
i∑

k=0

qk2
−k (10.2)

In restoring algorithm for square root the residual is updated as

ri = 2ri−1 − (2Qi−1 + 2−i ) (10.3)

Initially, r0 is equal to N and the residual at second iteration is updated as

r1 = 2r0 − (0 + 2−1) = 2X − 2−1 (10.4)

The term (2Qi−1 + 2−i ) is equal to the term (0.q1q2q3...qi−101). If the intermediate
remainder is positive then qi = 1 and remainder is passed to the next step. Other-
wise qi = 0 and the remainder ri = 2ri−1. The restoring algorithm for square root
operation can be considered as division operation with varying divisor. The restoring
algorithm for square root computation is shown in Algorithm 10.1. An example of
the square root computation of the radicand X = 0.1011 is shown below. The result
is Q = 0.1101. The value of n is 4 here.

Algorithm 10.1 Restoring algorithm for square root computation
Input: Radicand X and word length n.
Output: Quotient Q and Remainder R.
1: Initialization r0 = X .
2: for i ← 1 to n do
3: ri = 2 ∗ ri−1 − (2Qi−1 + 2−i )

4: if ri ≥ 0 then
5: qi = 1
6: else if ri < 0 then
7: qi = 0
8: ri = 2ri−1
9: end if
10: end for

A simple architecture for the restoring square root algorithm is shown in Fig. 10.1
for 8-bit input operand. This is an array-type architecture similar to the architecture
for restoring division. The architecture of the SB is also shown in Fig. 10.1. An SB
consists of full subtractor and a MUX. The MUX is used for satisfying the restoring
criteria.
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r0 = X 0 .1 0 1 1
2r0 0 1 .0 1 1 0

Add (−(0 + 2−1)) - 0 0 .1 0 0 0
r1 0 0 .1 1 1 0 set q1 = 1
2r1 0 1 .1 1 0 0

Add (−(2Q1 + 2−2)) - 0 1 .0 1 0 0
r2 0 0 .1 0 0 0 set q2 = 1
2r2 0 1 .0 0 0 0

Add (−(Q2 + 2−3)) - 0 1 .1 0 1 0
r3 1 1 .0 1 1 0 R is negative, set q3 = 0

r3 = 2r2 0 1 .0 0 0 0 Restoring
Add (−(Q3 + 2−4)) - 0 1 .1 0 0 1

r4 0 0 .0 1 1 1 set q4 = 1

SB

x70

SB

x61

0

SB SB SB

x50 x41

0

SB SB SB SB

x21

0

SB SB SB SB SB
0

x30
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q1 q2
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1 0

ab
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0
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0
q2

q3
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0

q4

r0 r1 r2 r3 r4

Fig. 10.1 Restoring square root architecture

10.2.2 Non-restoring Algorithm

The Non-restoring (NR) algorithm for square root operation is similar to the NR
operation for division operation. It is similar to the restoring algorithm but it has no
restoring step. In restoring step, the intermediate residue is restored. In non-restoring
algorithm, the quotient values are updated as

qi =
{
1, if 2ri−1 ≥ 0

1, if 2ri−1 < 0
(10.5)

and the residual is updated as

ri = 2ri−1 − qi (2Qi−1 + qi2
−i ) (10.6)
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Algorithm 10.2 Non-restoring division algorithm
Input: Radicand X and word length n.
Output: Quotient Q and Remainder R.
1: Initialization r0 = X .
2: for i ← 1 to n do
3: if 2 ∗ ri−1 ≥ 0 then
4: qi = 1
5: ri = 2ri−1 − (2Qi + 2−i )

6: else if 2 ∗ ri−1 < 0 then
7: qi = −1
8: ri = 2ri−1 + (2Qi − 2−i )

9: end if
10: end for

The NR algorithm for square root operation is shown in Algorithm 10.2. The initial
residual r0 is set to X . In non-restoring square root algorithm, quotient takes value
from the digit set {−1, 1}. At the output, a conversion is needed to get the actual
output in two’s complement format.More about the conversion techniques are shown
in Chap. 9. An example of non-restoring square root is shown below for X = 25/64
(0.011001).

r0 = X 0 .0 1 1 0 0 1
2r0 0 .1 1 0 0 1 0 set q1 = 1 & Q1 = 0.1

Add (−(0 + 2−1)) 0 .1 0 0 0 0 0
r1 0 .0 1 0 0 1 0
2r1 0 0 .1 0 0 1 0 0 set q2 = 1 & Q2 = 0.11

Add (−(2Q1 + 2−2)) 0 1 .0 1 0 0 0 0
r2 1 1 .0 1 0 1 0 0
2r2 1 0 .1 0 1 0 0 0 set q3 = 1̄ & Q2 = 0.111̄

Add (+(2Q2 − 2−3)) 0 1 .1 0 1̄ 0 0 0
r3 0 0 .0 0 0 0 0 0

Thus the output is 0.q1q2q3 = 0.111̄. To get the actual output an on-the-fly conversion
is needed as shown below:

• First mask bits for 1̄. That is Q1 = 0.110.
• Then assign Q2 as Q2 = 0.001.
• Subtract Q2 from Q1 to get actual result. That is Q = 0.101 (0.625)

NR algorithm for square root operation with bipolar Q has paved the way for many
fast algorithms for square root operation. This may require an on-the-fly conver-
sion but the high-speed SRT algorithms are based on the basic NR algorithm. The
restoring and non-restoring algorithms may differ but in implementation of these
two algorithms, both are very similar. A simpler architecture for NR algorithm for
square root is shown in Fig. 10.2. Here, the SB is different than the SB block used
in the restoring architecture.
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Fig. 10.2 Non-restoring square root architecture

10.3 Iterative Algorithms for Square Root
and its Reciprocal

10.3.1 Goldschmidt Algorithm

The Goldschmidt algorithm [29] is one of the popular fast iterative methods. This
algorithm can be used to compute division, square root or square root reciprocal.
The basic version of the Goldschmidt algorithm to compute square root reciprocal
of the radicand X is governed by the following equations. All these equations are
sequentially executed in an iteration.

bi = bi−1 × Y 2
i−1 (10.7)

Yi = (3 − bi )/2 (10.8)

yi = yi−1 × Yi (10.9)

Initially b0 = X , Y0 = a rough estimate of 1√
X
and y0 = Y0. The initial guess of

Y0 can be done by selecting a close value from a pre-defined LUT. The algorithm
runs until bi converges to 1 or for a fixed number of iterations. Finally square root
reciprocal is computed as yn = 1√

X
. Note that this algorithm can be used to compute

both square root and its reciprocal. The square root function can be computed by
multiplying the final value of y by X as xn = X × yn . This algorithm involves three
multiplications and one subtraction per iteration to compute yn . Square root can be
computed by another multiplication at the end.
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Another version of Goldschmidt algorithm is shown below:

ri = 1.5 − xi−1 × hi−1 (10.10)

xi = xi−1 × ri (10.11)

hi = hi−1 × ri (10.12)

Here initially y0 equals to the closest approximation of the function 1√
X
, x0 = X × y0

and h0 = 0.5y0. At the end of the iterations xn converges to
√
X and 2hn converges to

1√
X
. These algorithms run until ri reaches close to 0 or for fixed number of iterations.

This improved version of Goldschmidt algorithm is faster than its previous version
as at output stage no multiplier is needed to compute the square root function. But
number of arithmetic operations per iteration remains the same.

10.3.2 Newton–Raphson Iteration

Newton–Raphson iterative algorithm is a very popular method to approximate a
given function. It can be used to compute square root or square root reciprocal of a
given number. The Newton–Raphson iterative equation is

xi+1 = xi − f (xi )

f ′
(xi )

(10.13)

where f
′
(xi ) is the derivative of f (Xi ). The function which is used to compute

the square root reciprocal of a number is f (x) = (1/x2) − X , where X is the input
operand. The Newton–Raphson iteration gives

xi = 0.5 × xi−1(3 − X × x2i−1) (10.14)

Here x0 is taken as close approximation of 1√
X
. After some finite iterations, the above

equation converges to the square root reciprocal of X. It is very obvious that the value
of x0 must be chosen carefully to converge.

The square root of X can be computed by multiplying the final output xn by X or
directly iterating for square root. The function f (x) = (x2) − X can be used in this
case. Then the iterative equation will be

xi = 0.5 × (xi−1 + X

xi−1
) (10.15)

Similar to the previous algorithmshere also x0 takes the closest approximationof
√
X .

One of the disadvantage of direct computation of square root by Newton’s theorem
is that it involves a division operation which is much complex than a multiplication
operation.



10.3 Iterative Algorithms for Square Root and its Reciprocal 199

10.3.3 Halley’s Method

Halley’s method is actually the Householder’s method of order two. The equation
which governs this algorithm is

yi = X × x2i−1 (10.16)

xi = xi−1

8
(15 − yi (10 − 3yi )) (10.17)

At the final step, xn holds the value of square root reciprocal of x and yn converges
to 1. This method converges cubically but involves four multiplications per iteration.

10.3.4 Bakhshali Method

This method for finding an approximation to a square root or square root recipro-
cal was described in an ancient Indian mathematical manuscript. This algorithm is
quadratically convergent. The equations are

ai = (X − x2i−1)

2xi−1
(10.18)

bi = ai + xi−1 (10.19)

xi = bi − a2i
2bi

(10.20)

The variable an approaches zero and xn holds the value of square root.

10.3.5 Two Variable Iterative Method

This method is used to find square root of a number who’s range is 1 < X < 3.
However the range of X can be increased. This method converges quadratically. The
equations are

ai = ai−1 − 0.5 × c2i−1 (10.21)

ci = 0.5c2i (ci−1 − 3) (10.22)

Initially a0 = X and c0 = X − 1. Finally the variable an holds the final value of
√
X .
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10.4 Fast SRT Algorithm for Square Root

The restoring and non-restoring algorithm for division and square root are very
similar. Thus common hardware may be designed to perform both division and
square root. In Chap. 9, we have discussed that how SRT algorithm can accelerate
the computation of division. The same SRT algorithm can be applied to compute
square root.

SRT algorithm says, if the radicand X satisfies the relation 1/4 ≤ X < 1, then
the quotient Q can be restricted to 1/2 ≤ Q < 1 where q1 is always 1. In this case
the remainder ri−1 (for i ≥ 2) satisfies the condition

− 2(Qi−1 − 2−i ) ≤ ri−1 ≤ (Qi−1 + 2−i ) (10.23)

Here, Qi−1 is partially calculated root at step (i − 1) and expressed as Qi−1 =
0.q1q2..qi−1. The possible rule for selecting the quotient bits is

qi =

⎧
⎪⎨

⎪⎩

1, if ri−1 ≥ (Qi−1 + 2−i−1))

0, if − (Qi−1 − 2−i−1)) ≤ ri−1 ≤ (Qi−1 + 2−i−1))

1, if ri−1 ≤ −(Qi−1 − 2−i−1))

(10.24)

Since (Qi−1 + 2−i−1)) and (Qi−1 − 2−i−1)) are in the range [1/2, 1], the above selec-
tion can be changed as

qi =

⎧
⎪⎨

⎪⎩

1, if 1/2 ≤ 2ri−1 ≤ 2

0, if − 1/2 ≤ 2ri−1 < 1/2

1, if − 2 ≤ 2ri−1 ≤ −1/2

(10.25)

This selection rule is similar to the SRT selection rule for division process. An
example of SRT square root is shown below for X = 0.01111012 = 61/128

The square root is Q = 0.111̄1001 = 0.1011001 = 89/128. The final remainder is
2−7r7 = −113/214.

10.5 Taylor Series Expansion Method

10.5.1 Theory

Taylor series expansionmethod is very popular for computing reciprocal, square root,
square root reciprocal and other elementary functions. Thismethod is according to the
proposed method in [25]. Here input data is restricted to a range as 1 ≤ X < 2. The
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r0 = X 0 .0 1 1 1 1 0 1
2r0 0 .1 1 1 1 0 1 0 set q1 = 1 & Q1 = 0.1

Add (−(0 + 2−1)) - 0 .1 0 0 0 0 0 0
r1 0 .0 1 1 1 0 1 0
2r1 0 .1 1 1 0 1 0 0 set q2 = 1 & Q2 = 0.11

Add (−(2Q1 + 2−2)) - 0 1 .0 1 0 0 0 0 0
r2 1 .1 0 1 0 1 0 0
2r2 1 1 .0 1 0 1 0 0 0 set q3 = 1̄ & Q3 = 0.111̄

Add (+(2Q2 − 2−3)) + 0 1 .0 1 1 0 0 0 0
r3 0 0 .1 0 1 1 0 0 0
2r3 0 1 .0 1 1 0 0 0 0 set q4 = 1 & Q4 = 0.111̄1

Add (−(2Q3 + 2−4)) - 0 1 .0 1 0 1 0 0 0
r4 0 0 .0 0 0 1 0 0 0
2r4 0 0 .0 0 1 0 0 0 0 set q5 = 0 & Q5 = 0.111̄10
r5 0 0 .0 0 1 0 0 0 0
2r5 0 0 .0 1 0 0 0 0 0 set q6 = 0 & Q6 = 0.111̄100
r6 0 0 .0 1 0 0 0 0 0
2r6 0 0 .1 0 0 0 0 0 0 set q7 = 1 & Q7 = 0.111̄1001

Add (−(2Q6 + 2−7)) - 0 1 .0 1 1 0 0 0 1
r7 1 0 .0 0 0 1 1 1 1

length of the input data X is m. The approximation of the functions is accomplished
in three steps which are

1. Reduction : In this step, an n-bit number A deduced from the input operand such
that −2−k ≤ A < 2k . Here, n = 4k and A is obtained as

A = XR − 1 (10.26)

Here, R is the reduction factor which is (k + 1)-bit approximation of reciprocal of
X . The range of A is thus 1 − 2−k ≤ A < 1 + 2k . The value of R can be obtained
from a (k + 1) × k look-up table. This look-up table is named as rb.

2. Evaluation : The evaluation of the function is carried out expanding the Taylor
series and eliminating the terms that are less than 24k . According to the Taylor
series, B = f (A) is evaluated as

f (A) = c0 + c1A + c2A
2 + c3A

3 + ..... (10.27)

Here, the deduced number A can be written as

A = A2Z
2 + A3Z

3 + A4Z
4 + .... (10.28)

Here, z = 2−k and |Ai | ≤ 2k − 1. Then the following final equations are used to
evaluate the functions:

1

1 + A
≈ (1 − A) + A2

2z
4 + 2A2A3z

5 − A3
2z

6 (10.29)
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√
1 + A ≈ 1 + A

2
− 1

8
A2
2z

4 − 1

4
A2A3z

5 + 1

16
A3
2z

6 (10.30)

1√
1 + A

≈ 1 − A

2
+ 3

8
A2
2z

4 + 3

4
A2A3z

5 − 5

16
A3
2z

6 (10.31)

3. Post-processing : The post-processing is required as the number A is deduced by
multiplying R. The final value of the function is obtained as

Y = M × B (10.32)

This multiplication factor varies for different functions as

(a) Reciprocal—M = R.
(b) Square Root—M = 1√

R
.

(c) Square Root Reciprocal—M = √
R.

Themultiplication factor is also obtained from a n × k look-up table. This look-up
is named as ctb.

10.5.2 Implementation

The implementation is also divided into three parts which are reduction, evaluation
and post-processing. The architecture in [25] is implemented with floating point
format but can be implemented using the fixed point format also. Main advantage
of using Taylor series expansion is to use smaller multipliers for computation of the
functions.

The scheme for the reduction step is shown in Fig. 10.3. Here, two LUTs are used
to store values of M and R. One small multiplier is used whose size is n × (k + 1).
The control signal sel selects suitable multiplication factor for reciprocal function.
Output of the multiplier is of 3k bits.

The structure of the evaluation step and post-processing step is shown in Fig. 10.4.
Here, one k × k multiplier is used to compute A2

2, one k × k multiplier is used to
compute A2A3 and another k × k multiplier is used for computation of A3

2. All the
multiplication results are then added by the adder elements. In the post-processing
step, M is multiplied by B to get the final result. Here only one big multiplier
(3k + 1) × (3k + 2) is used. The Taylor series expansion method is very efficient in
terms of resources when double precision is used. Some other functions can also be
computed by these method which are reported in [25].
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Fig. 10.3 Scheme for
reduction step in Taylor
series-based implementation
of different functions
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Fig. 10.4 Scheme for
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10.6 Function Evaluation by Bipartite Table Method

Various functions can be approximated using tables. Bipartite table method [63] is
a very popular method to approximate different functions like reciprocal and square
root reciprocal. The fractional part of the input operand is divided into three parts
viz, x0, x1 and x2 as shown in Fig. 10.5. If the input operand is of n-bits then x0 is of
n0-bits, x1 is of n1-bits and x2 is of n2-bits where n = n0 + n1 + n2.
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Fig. 10.5 Format of the
input operand x0 x1 x2

n0

n

n1 n2

Thismethod is also based on theTaylor series expansion. In thismethod, a function
f (x) is approximated as

f (x) = f (x0 + x1 + x2) ≈ α0(x0, x1) + α1(x0, x2) (10.33)

So, in this method there are two tables used. One table contains the co-efficients of
the function α0(x0, x1) and another table contains the co-efficients of the function
α1(x0, x2). The address line for the first table is (n0, n1) and the address line for the
second table is (n0, n2).

If it is assumed that 0 ≤ x < 1 then following relations are true:

0 ≤ x0 ≤ 1 − 2−n0 (10.34)

0 ≤ x1 ≤ 2−n0 − 2−n0−n1 (10.35)

0 ≤ x1 ≤ 2−n0−n1 − 2−n0−n1−n3 (10.36)

This method is based on the Taylor series expansion of the f (x) around the point
x0 + x1 + δ2 where

δ2 = 2−n0−n1 − 2−n0−n1−n2−1 (10.37)

Then the input function is approximated as

f (x) ≈ f (x0 + x1 + δ2) + f
′
(x0 + x1 + δ2)(x2 − δ2) (10.38)

where the first part is
α0(x0, x1) = f (x0 + x1 + δ2) (10.39)

Since the second term cannot depend on x1, x1 is replaced with δ1. The second part
is

α1(x0, x2) = f
′
(x0 + δ1 + δ2)(x2 − δ2) (10.40)

The value of δ1 is
δ1 = 2−n0−1 − 2−n0−n1−1 (10.41)

In evaluating the reciprocal or square root reciprocal, the input operand is limited as
1 ≤ x < 2. In case of reciprocal of the input operand x , the function is f (x) = 1/x .
Then the approximation equation is

1/x = 1

(x0 + x1 + δ2)
− (x2 − δ2)

(x0 + δ1 + δ2)
2 (10.42)



10.7 Conclusion 205

Fig. 10.6 Architecture for
approximating any function
using look-up tables

Table 1
α0(x0, x1)

Table 2
α1(x0, x2)

x0 x1 x2

n0 n1 n2

Adder

≈ f(x)

The simple architecture for table-based approximation of an unknown function
is shown in Fig. 10.6. Here, this architecture is very simple and has very low
latency. Except the two tables only hardware used here is the adder. Typical val-
ues for reciprocal computation for n-bit data width are n0 = 6, n1 = 4 and n2 = 5
as n0 + n1 + n2 = n − 1.

10.7 Conclusion

In this chapter, we have discussed various algorithms for computation of square
root of a positive operand X . Square root operation is very similar to the division
operation. Thus most of the algorithms for division are also applied to square root
computation. Thus several hardware are reported which can compute both square
root and division.

Initially sequential algorithms like restoring and non-restoring algorithms are
discussed. The architectures of these algorithms are also presented in this chapter.
The array architectures for square root are very popular as they are simple to use.
This chapter also discusses the computation of reciprocal and square root reciprocal
which are also very important arithmetic operations.

In digital systems, the opportunity must be utilized to replace division by recip-
rocal or square root by square root reciprocal to reduce hardware complexity. The
iterative algorithms are very useful in approximating square root, square root recip-
rocal and reciprocal. Serial implementation of iterative algorithms is very efficient
compared to other algorithms.



Chapter 11
CORDIC Algorithm

11.1 Introduction

CO-ordinate Rotation DIgital Computer (CORDIC) algorithm brings revolution in
the field of computer arithmetic. Arithmetic, trigonometric, hyperbolic and many
other functions can be computed by this algorithm. In order to optimize design per-
formance, researchers are using CORDIC algorithm in many fields such as DSP,
image processing, communication or in industrial sectors. In 1956, CORDIC algo-
rithm was conceived by Jack E. Volder [74] thus sometimes it is called as Volder’s
algorithm. CORDIC algorithm paved the way for computing several functions by
same hardware in an iterative fashion. Later several researchers polished and opti-
mized the CORDIC algorithm for different applications.

Basic theory of CORDIC algorithm and its hardware implementation will be
discussed in this chapter. This chapter also describes computation of some basic
arithmetic operations usingCORDIC and their architectures. Several advanced archi-
tectures are developed based on CORDIC algorithm over the last few years. These
developments are also outlined here. Objective of this chapter is to familiarize the
readers with theory of CORDIC and its basic applications.

11.2 Theoretical Background

This section discusses the basic theory behind the CORDIC algorithm. At the end
of this discussion, the basic equations of CORDIC algorithm are formulated. Three
points (x0, y0), (x1, y1) and (x2, y2) on a circular path in the x-y-co-ordinate system
are shown in Fig. 11.1. Distance of all the points from the origin is same as the points
are on the circular path. The distance is r here in this case. Here our objective is to
rotate the point (x0, y0) towards the point (x2, y2) in the anticlockwise direction.

For the point (x0, y0) following equations can be written:
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Fig. 11.1 Rotation on
circular path
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x0 = rcosθ and y0 = rsinθ (11.1)

and following equations can be written for the point (x1, y1):

x1 = rcos(θ + φ0) and y1 = rsin(θ + φ0) (11.2)

If the point (x0, y0) is to be rotated to the point (x2, y2) then total angle in anticlock-
wise direction is (φ0 + φ1). This is achieved in two steps. First, the point (x0, y0)
will be rotated by angle φ0 in anticlockwise direction to reach the point (x1, y1). The
equations for x1 and y1 are expressed in terms of points x0 and y0 as follows:

x1 = rcos(θ + φ0) (11.3)

= rcosθcosφ0 − rsinθsinφ0 (11.4)

= x0cosφ0 − y0sinφ0 (11.5)

= cosφ0(x0 − y0tanφ0) (11.6)

Similar equations can be written for y also

y1 = rsin(θ + φ0) (11.7)

= rsinθcosφ0 + rcosθsinφ0 (11.8)

= y0cosφ0 + x0sinφ0 (11.9)

= cosφ0(y0 + x0tanφ0) (11.10)

Initial angle to be rotated in anticlockwise direction was (φ0 + φ1) = z0. The next
angle to be rotated can be expressed as

z1 = z0 − φ0 = φ1 (11.11)

In the second step, the point (x1, y1)will be rotated to the point (x2, y2). The equations
for x2 and y2 in terms of x1 and y1 are expressed as follows:
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x2 = rcos(θ + φ0 + φ1) (11.12)

= rcos(θ + φ0)cosφ1 − rsin(θ + φ0)sinφ1 (11.13)

= x1cosφ1 − y1sinφ1 (11.14)

= cosφ1(x1 − y1tanφ1) (11.15)

Similar equations can be written for y1 also

y2 = rsin(θ + φ0 + φ1) (11.16)

= rsin(θ + φ0)cosφ1 + rcos(θ + φ0)sinφ1 (11.17)

= y1cosφ1 + x1sinφ1 (11.18)

= cosφ1(y1 + x1tanφ1) (11.19)

and the equation for the remaining angle is

z2 = z1 − φ1 = 0 (11.20)

Now, the general expression of xi+1 and yi+1 is formulated after rotation by certain
angle in anticlockwise direction. The general expression is

xi+1 = cosφi (xi − yi tanφi ) (11.21)

yi+1 = cosφi (yi + xi tanφi ) (11.22)

zi+1 = zi − φi (11.23)

Here, i varies from 0 to n where n is required precision or the total number of
iterations. The above expressions are written in terms of initial point x0 and y0 as

xi+1 =
n−1∏

j=0

cosφ j (......) (11.24)

yi+1 =
n−1∏

j=0

cosφ j (......) (11.25)

In every iteration i , a constant term is associated with the equation of xi+1 and yi+1.
The computation of xi+1 and yi+1 is done without the constant term for the shake
of easy implementation. The actual results are obtained by dividing the final values
(xn and yn) at the output stage by a constant term kn . The expression of kn is derived
below.

The term
∏n−1

j=0 cosφ j is a constant and it is not required to evaluate it at each
iteration. The value of this constant can be evaluated as follows:
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n−1∏

j=0

cosφ j =
n−1∏

j=0

cosφ j√
cos2φ j + sin2φ j

(11.26)

= 1
∏n−1

j=0

√
1 + tan2φ j

(11.27)

= 1
∏n−1

j=0

√
1 + 2−2 j

= 1

kn
(11.28)

Here, tanφ j = 2− j . Every iteration corresponds to an incremental rotation thus angle
representation is very important in this case. Two’s complement data representation
technique is very common to represent angles. The most used angle rotation for n-bit
resolution is

− π
π

21
π

22
π

23
π

24
π

25
......

π

2n−1
(11.29)

Any angle can be represented by this technique. TwoMSB bits represent the location
of the co-ordinate in any quadrant. For example, 45◦ angle can be represented in 16-
bit data format as 16’b0010000000000000, which is in the first quadrant. In this
format, the MSB bit indicates that the elementary angle is positive or negative.

The angles are represented in terms of power of 2. Equations (11.21)–(11.23)
become simpler by putting tanφi = 2−i and avoiding the constant term as

xi+1 = xi − yi2
−i (11.30)

yi+1 = yi + xi2
−i (11.31)

zi+1 = zi − tan−12−i (11.32)

The evaluation of the above equations is easy now as it involves division by power
of 2 and addition or subtraction operations. Division by power of 2 is performed by
wired shift method which needs no hardware. Only hardwares required to evaluate
the above equations are one adder and two subtractors.

The above equations are established assuming that rotation is done only in the anti-
clockwise direction. But in the actual scenario, the target angle rotation is achieved
by successive incremental rotations until the difference between the target angle and
achieved angle becomes zero. These rotations are called as micro-rotations and they
can be anticlockwise or clockwise. These situations are described in Fig. 11.2.

The direction of the next micro-rotation is decided based on the sign of angle
difference (zi ). A new parameter σ is introduced which is evaluated as

σi =
{
1, if zi ≥ 0

−1, otherwise
(11.33)

Another important point is that these micro-rotations do not follow the circular path
because a constant term cosφi is associated with each micro-rotation. To make it
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Fig. 11.2 CORDIC
micro-rotations
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simple, the constant term is not calculated in each iteration. Computation is carried
out without the constant term and computed results are divided by the constant term
after the final iteration. Thus the modified equations are

xi+1 = xi − σi yi2
−i (11.34)

yi+1 = yi + σi xi2
−i (11.35)

zi+1 = zi − σi tan
−12−i (11.36)

The equations for rotating a point (x0, y0)by any angle on circular path are formulated
at the end of the above discussion. This concludes that CORDIC can be used to rotate
a point (x0, y0) in any direction.

The above discussion is restricted to rotation by maximum 90◦ in any direction.
But if we want to rotate a point by an angle more than 90◦ then a different mechanism
has to be adopted. Rotation by other angles can be realized in terms of rotation by
90◦ as per trigonometric rules. Table 11.1 explains this procedure. If any point lies
in 2nd or 3rd quadrant then rotation is done by assuming that it lies in the 4th or 1st
quadrant, respectively. A conditional sign change is required at the output to get the
actual result. Figure 11.3 explains this situation. In order to rotate any point that lies
in the 2nd quadrant, (initial angle θ lies between π/2 ≤ α < π ) the point is assumed

Table 11.1 Quadrant transformation and sign change for CORDIC

Before transformation After transformation

θ15θ14 Range Quadrant θ15θ14 Quadrant Sign change

00 0 ≤ θ < π/2 1st 00 1st No

01 π/2 ≤ θ < π 2nd 11 4th Yes

10 −π ≤ θ < −π/2 3rd 00 1st Yes

11 −π/2 ≤ θ < 0 4th 11 4th No
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Fig. 11.3 Quadrant
transformation for rotation
on circular path [11]
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to be in the 4th quadrant and rotation is done as if the point lies in 4th quadrant.
Output of the final stage is just inverted to obtain actual result.

11.3 Vectoring Mode

In another situation, we have to find the angle where the co-ordinates are given.
This situation is opposite to the above-mentioned rotation mode and this is called
the vectoring mode. In this mode, one of the co-ordinates is nullified and the angle
between them is found at the output. The general equations for this mode are shown
below:

xi+1 = xi − σi yi2
−i (11.37)

yi+1 = yi + σi xi2
−i (11.38)

zi+1 = zi − σi tan
−12−i (11.39)

Generally, the co-ordinate y is nullified and thefinal expressions are xn = kn
√
x2 + y2

and zn = tan−1(y/x). So, at the output we get magnitude and phase. This mode is
useful to compute the magnitude of a complex number or to find the phase angle
between the two co-ordinates. The value of the constant term is same as mentioned
above for the rotation mode. The equation of σi is different here and it is mentioned
below:

σi =
{
1, if yi ≤ 0

−1, otherwise
(11.40)



11.3 Vectoring Mode 213

x = +ve

y = +ve

x = +ve

y = −ve

x = −ve

y = +ve

x = −ve

y = −ve

0

+π/2

+π

−π

−π/2

Fig. 11.4 Vectoring operation [11]

Table 11.2 Sign change for vectoring operation

x15y15 Rotation Sign change (O/P)

00 Clockwise No

01 Anticlockwise No

10 Anticlockwise Yes

11 Clockwise Yes

The co-ordinates x and y can be positive or negative. The sign of the final output and
the computed angle is to be modified accordingly at the output based on their sign.
Figure 11.4 and Table 11.2 explain this situation.

11.3.1 Computation of Sine and Cosine

The general expression of the CORDIC algorithm is expressed as

xi+1 = xi cosφi − yi sinφi (11.41)

yi+1 = yi cosφi + xi sinφi (11.42)

zi+1 = zi + σi tan
−12−i (11.43)
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Fig. 11.5 Rotation on linear
path
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In rotation mode, if initially input y is set to zero and initial value of input x is set to
1
kn

then

x1 = cosφ0 (11.44)

y1 = sinφ0 (11.45)

z1 = φ + σi tan
−120 (11.46)

In the second iteration

x2 = cosφ0cosφ1 − sinφ0sinφ1 = cos(φ0 + φ1) (11.47)

y2 = sinφ0sinφ1 + cosφ0sinφ1 = sin(φ0 + φ1) (11.48)

z2 = z1 + σi tan
−12−1 (11.49)

This way final outputs of CORDIC (xn and yn) hold the value of cosφ and sinφ,
respectively. The initial angle is φ. The value of σi is evaluated as per value of zi .

11.4 Linear Mode

The co-ordinates can also be rotated on linear path. Rotation on linear path is shown
in Fig. 11.5. Final equations of the co-ordinates are obtained by the same way as it
was previously done for circular path. The final equations for the linear mode are

xi+1 = xin (11.50)

yi+1 = yi + σi xi2
−i (11.51)

zi+1 = zi − σi2
−i (11.52)

One of the benefits of rotating on linear path is that the scaling factor kn = 1. Thus
error due to scaling factor multiplication is eliminated in this case. Thus, linear
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version of CORDIC is sometimes used to compensate the constant multiplication
factor involved in circular operation. Linear version of CORDIC also has rotation
and vectoring mode. Two important operations can be performed in this version
which are multiplication and division.

11.4.1 Multiplication

Multiplication is performed in rotation mode and the value of σi is determined by
the same equation as mentioned above for rotation mode. The CORDIC produces
final result as

xn = xin (11.53)

yn = yin + zin ∗ xin (11.54)

Initially y0 is equal to zero, z0 holds the value of multiplier (zin), x0 is set to xin and yn
holds the final multiplication result. Multiplication operation by CORDIC has some
limitations compared to common digital multipliers. The width of the multiplication
result is bounded by the width of x , y and z. This is the disadvantage of this method.
For 18-bit CORDIC, multiplication result will also be limited by 18 bit.

11.4.2 Division

Division is performed in vector mode and the value of σi is determined by the same
equation as mentioned above for vectoring mode. The final expression for division
using CORDIC is

zn = z0 + yin
xin

(11.55)

Initially, z0 is set to zero and zn holds the result of division operation. The major
limitation of performing division operation by CORDIC is that the final result is
bounded to be fit in the data width of input operands. But on the advantage side,
compared to the other fast dividers CORDIC divider has low latency and consumes
less hardware. Accuracy is a concern where high accuracy is needed.

11.5 Hyperbolic Mode

Rotation of co-ordinates can also be done along a hyperbolic path similar to cir-
cular and linear path. This is an extension of the CORDIC algorithm. This type of
rotation mechanism enables computation of several other functions using CORDIC.
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Fig. 11.6 Rotation on
hyperbolic path
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The equations can be derived the same way as they are derived in case of circular
path. Figure 11.6 explains the rotation mechanism on hyperbolic path. The general
expressions for CORDIC for micro-rotations along hyperbolic path are

xi+1 = xi + σi yi2
−i (11.56)

yi+1 = yi + σi xi2
−i (11.57)

zi+1 = zi − σi tanh
−12−i (11.58)

The operation in hyperbolic version of CORDIC is slightly different from the other
two versions. In hyperbolic version, computation starts from iteration 1 as the value
tanh−120 = ∞. In hyperbolic version, convergence is an issue. Some iterations are
repeated to make sure that output will converge. The repetition of the iterations is
done by repeating iterations 4, 13, 40, ..., i, 3i + 1, .... The scale factor in an iteration
i is

kh(i) = (1 − 2−2i )1/2 (11.59)

11.5.1 Square Root Computation

To compute square root operation hyperbolic version of CORDIC is used. In hyper-
bolic CORDIC, the final equations of x and y in vectoring mode are

xn = kh
√

(x2 − y2) (11.60)

In the above equation, if initial value of x = a + 1/4 and y = a − 1/4 then it con-
verges to

xn = kh
√

(4.a.1/4) = kh .
√
a (11.61)



11.6 CORDIC Algorithm Using Redundant Number System 217

It is clear from the above discussion that themicro-rotations inCORDICalgorithm
can be done along circular, linear and hyperbolic path. There exists two modes, rota-
tion and vectoring, for each case. Thus generalized equations for radix-2 CORDIC
algorithm can be written as

xi+1 = xi − mσi yi2
−i (11.62)

yi+1 = yi + σi xi2
−i (11.63)

zi+1 = zi − σi ei (11.64)

Here, a new variable m is introduced which is 1 for circular, 0 for linear and -1
for hyperbolic. The value ei is tan−12−i for circular, 2−1 for linear and tanh−12−i

for hyperbolic. In addition to multiplication, division or square root, several other
functions can be computed usingCORDIC.Computation of all the different functions
using CORDIC algorithm is summarized in Table 11.3.

11.6 CORDIC Algorithm Using Redundant Number
System

Over the past few years CORDIC algorithm has beenmodified by several researchers
to improve its performance. These modifications to the CORDIC are related to either
efficient compensation technique or reducing the latency involved in computation.
The above discussion on CORDICwas for non-redundant conventional radix-2 num-
ber system. Researchers also have used redundant number system to reduce the
latency. CORDIC algorithm using redundant number system is discussed below.

11.6.1 Redundant Radix-2-Based CORDIC Algorithm

The redundant radix-2 CORDIC [52] uses redundant arithmetic to select the value of
σi . The value of the σi is chosen from the set {−1, 0, 1} instead of the set {−1, 1}. The
value of σi = 0 indicates that no rotation is to be performed. The use of redundant
arithmetic enables to reduce some of the iterations. But implementation of this kind
of algorithm is not simple. The sign of the angle cannot be easily determined by
looking the MSB bit. This is because in redundant arithmetic MSB can be one even
for positive numbers. Thus value ofσi is determinedby evaluating fewbits in theMSB
side. This increases hardware complexity. Also, the computation of constant factor
is data dependent as no rotation is performed if σi = 0. This makes computation of
k at each iteration.
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Table 11.3 Evaluation of different functions using CORDIC Algorithm

m Mode Initialization Output

1 Rotation x0 = xin xn = km (xincosθ − yinsinθ)

y0 = yin yn = km (yincosφ + xinsinφ)

z0 = φ zn = 0

x0 = 1/kn xn = cosφ

y0 = 0 yn = sinφ

z0 = φ zn = 0

x0 = 1 xn =
√
1 + a2

y0 = a yn = sinφ

z0 = π/2 zn = 0

1 Vectoring x0 = xin xn = km (xinsin(x0)(x
2
in + y2in)1/2)

y0 = yin yn = 0

z0 = 0 zn = tan−1(yin/xin)

0 Rotation x0 = xin xn = xin
y0 = yin yn = yin + xin .zin
z0 = zin zn = 0

0 Vectoring x0 = xin xn = xin
y0 = yin yn = 0

z0 = zin zn = zin + yin/xin

–1 Rotation x0 = xin xn = km (xincoshφ − yinsinhφ)

y0 = yin yn = kn(yincoshφ + xinsinhφ)

z0 = φ zn = 0

x0 = 1/kn xn = coshφ

y0 = yin , z0 = φ yn = sinhφ, zn = 0

x0 = a xn = aeφφ

y0 = a, z0 = φ yn = aeφφ, zn = 0

–1 Vectoring x0 = xin xn = kn(xinsin(x0)(x
2
in − y2in)1/2)

y0 = a, z0 = φ zn = φ + tanh−1(yin/xin), yn = 0

x0 = a xn =
√
a2 − 1

y0 = 0 yn = 0, zn = coth−1a

x0 = a xn = 2
√
a

y0 = 0 yn = 0, zn = 0.5ln(a)

x0 = a + b xn = 2
√
ab

y0 = a − b yn = 0, zn = 0.5ln(a/b)
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11.6.2 Redundant Radix-4-Based CORDIC Algorithm

The speed of the CORDIC algorithm can be improved by reducing the number of
iterations. This can be achieved by using higher Radix. The CORDIC equations for
Radix-4 are

xi+1 = xi − σi4
−i yi (11.65)

yi+1 = σi4
−i xi + yi (11.66)

wi+1 = wi − tan−1(σi4
−i ) (11.67)

where σi ∈ {−2,−1, 0, 1, 2}. The final x- and y-co-ordinates are scaled by

k =
∏

i≥0

ki =
∏

i≥0

(1 + σ 2
i 4

−2i )
1/2

(11.68)

Here, the scale factor k depends on the values of σi , and hence has to be computed
in every iteration. The range of k is (1, 2.52) for radix-4 CORDIC. In this CORDIC,
the direction of rotation is computed based on the estimated value of wi [6]. The w

path involves the computation of estimatedwi and evaluation of selection function to
determine σi resulting in increase of the iteration delay compared to that of radix-2.
However, the number of iterations required for radix-2 CORDIC can be halved by
employing the radix-4 CORDIC algorithm. It is sufficient to compute the constant
for n/4 iterations.

11.7 Example of CORDIC Iteration

An example to understand the evaluation of the CORDIC micro-rotations is given
below. Objective of this example is to compute the magnitude of a complex number
whose real value is x and imaginary value is y. This function can be evaluated by
rotating co-ordinates along the circular path in vectoring mode. Table 11.4 shows
iteration-wise evaluation. Initially x0 = 5, y0 = 3, z0 = 0 and thus σ = −1. The
final output (xn) is obtained by dividing 9.6022 by kn which is equal to 1.64676. So,
the magnitude value is 5.8310 and value of the angle between them is 30.9641.

11.8 Implementation of CORDIC Algorithms

CORDIC algorithm paved the way for new research ideas in the area of digital
arithmetic. CORDIC is finding its application in every fields. CORDIC shows that
same hardware can be used for computing many functions. Several researchers have
reported different hardware implementations of CORDIC. But generally there are
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Table 11.4 Iteration-wise CORDIC for computation of absolute of x and y

xi yi zi i σ

8 –2 45 0 1

9 2 18.4349 1 –1

9.5 –0.25 32.4712 2 1

9.5313 0.9375 25.3462 3 –1

9.5898 0.3418 28.9225 4 –1

9.6005 0.0421 30.7124 5 –1

9.6012 –0.1079 31.6076 6 1

9.6020 –0.0329 31.1600 7 1

9.6022 0.0046 30.9362 8 –1

9.6022 –0.0141 31.0481 9 1

9.6022 –0.0048 30.9921 10 1

9.6022 0 30.9641 11 1

two kinds of hardware of CORDIC. First one is serial architecture and second one
is parallel architecture.

11.8.1 Parallel Architecture

The parallel implementation of CORDIC [2] shown in Fig. 11.7 is designed with
16-bit fixed point data width. It supports both rotation and vector modes. Each stage
corresponds to a micro-rotation and is having three add/sub units which performs
addition or subtraction based on value of signal σ . ph1 block (Fig. 11.8) computes
the value of σ . Add/sub blocks perform subtraction when σ is 1. Different angles
for micro-rotation are fed to each stage. The rsh blocks are responsible for shifting
data to the right side. These blocks perform wired shifting which is described in
Chap. 3 in detail. For examples, rsh1 block shifts input data to the right side by 1
bit. Multiplication by a constant factor is achieved by a scale factor. The scale block
divides output of the last stage by kn by constant multiplication technique. This block
is also illustrated in Chap. 3. An inversion stage is added at the last stage to invert the
outputs of the scale block conditionally. ph2 block (Fig. 11.8) generates the control
signal for the add/sub units at the inversion stage.

11.8.2 Serial Architecture

A CORDIC architecture can be bit-serial or word-serial. Both types of serial archi-
tectures are based on computing each step by the same hardware and thus cannot
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support pipelining. Bit-serial architectures [74] are very slow and thus not suitable
for high-speed applications. Word-serial architectures [77] are also mainly used in
low-frequency applications. But these architectures are hardware efficient than the
parallel architecture.

The word-serial architecture of CORDIC is depicted in Fig. 11.9. The serial archi-
tecture is similar to any one stage of the parallel CORDIC architecture. Scaling and
inversion stages are similar to those which were in the parallel CORDIC architecture.
This architecture is of 16 bit. The different angles for micro-rotations are pre-stored
in an LUT. Total number of 16 angles are stored in that LUT and a 4-bit counter is
used to fetch those angles. The VRSH block stands for variable right shift and used
to shift the input operands by variable number of bits. Details of this block can be
found in Chap. 3. The f dc block is a controlled register block which stores data
based on an enable signal. The control signal add/sub is similar to that of parallel
CORDIC architecture. Data-width and precision decide number of iterations of the
serial CORDIC block.

11.8.3 Improved CORDIC Architectures

Over the past few years many improvements are proposed in literature to improve the
latency of the basic non-redundant radix-2 CORDIC architecture without increasing
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the hardware and without hampering the accuracy. CORDIC architectures can be
classified as non-redundant architectures and redundant architectures. Redundant
architectures also can be classified as redundant radix-2 architecture and redundant
radix-4 architecture. The classification of the CORDIC architectures is shown in
Fig. 11.10.

Most obvious modification to the non-redundant radix-2 CORDIC architecture
is proposed in [3, 8] to reduce the latency. This modification is based on linear
approximation of the rotation when the angle is too small. For example, if the angle
θ is too small then sinθ ≈ θ and cosθ ≈ 1. Here, evaluation of the iterations up to
(n/2 + 1)th iteration follows the basic CORDIC equation. But in the (n/2 + 1)th
step the iterations are evaluated as

xn = x(n/2+2) = k(n/2+2)(x(n/2+2) − φr y(n/2+2)) (11.69)

yn = yn/2+2 = k(n/2+2)(φr x(n/2+2) + y(n/2+2)) (11.70)

whereφr = z(n/2+1) and k(n/2+2) is the constant according to the (n/2 + 1)th iteration.
Thus this implementation needs only (n/2 + 2) iterations compared to n iterations
of conventional CORDIC algorithm.

11.8.3.1 Constant Scale Factor Redundant CORDIC Using SD
Arithmetic

In redundant CORDIC architectures, primary objective is to keep the multiplica-
tion factor constant so that additional hardware does not increase. There are some
architectures proposed in literature which have constant multiplication factor and use
SD representation. These CORDIC architectures are double rotation method [70],
correcting rotation method [70], branching method [24] and double step branching
method [55]. The implementation of redundant CORDIC with constant scale factor
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using signed arithmetic results in an increase in the chip area and latency by at least
50% compared to redundant radix-2 CORDIC.

11.8.3.2 Constant Scale Factor Redundant CORDIC Using CS
Arithmetic

Due to the disadvantages of SD arithmetic operation in improving the efficiency of
the Constant Scale Factor Redundant CORDIC architectures, Carry Save arithmetic
is used in some of the architectures proposed in literature. These architectures are
LowLatency Redundant CORDIC [71] andDifferential CORDIC [23] architectures.

11.8.3.3 Higher Radix Redundant CORDIC Architectures

Higher Radix CORDIC architectures reduce the number of iterations and thus
improve latency and throughput. The generalized CORDIC algorithm for any Radix
and its pipeline implementation using SD arithmetic for m = 1 in rotation mode are
presented in [18]. A redundant radix 2-4 CORDIC architecture is presented in [5]
which combines non-redundant radix2 with redundant radix-4 algorithm. A redun-
dant radix-4 CORDIC algorithm is proposed using CS arithmetic in [7].

11.8.3.4 Direction Prediction-Based CORDIC Architectures

In the CORDIC theory, the angle φ can be represented in terms of set of elementary
angles φi as

φ = σ0φ0 + σ1φ1 + σ2φ2 + .... + σn−1φn−1 (11.71)

where φi = tan−1(2−i ) and σi = {−1, 1} satisfying the convergence theory

φi −
n−1∑

j=i+1

φ j < φn−1 (11.72)

The value of σi is evaluated sequentially. The speed of the CORDIC architectures
can be improved if the sequential computation of σi can be avoided. Thus some
architectures are reported in literature based on predicting the value of σi in parallel.
The architectures based on pre-computation of σi are LowLatencyRadix-2CORDIC
[71], P-CORDIC [38], Hybrid CORDIC Algorithm [78], Flat CORDIC [28], Para-
CORDIC [73] and Semi-Flat CORDIC [33].
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11.9 Application

CORDIC algorithm has many applications in developing digital hardware for the
algorithms. Few important applications are outlined below:

• CORDIC-based calculator is one example where CORDIC algorithm is used to
calculate all the mathematical operations.

• In application-specific applications, CORDIC is used to approximate arithmetic
functions. Division or finding reciprocal of a number is example of these functions.

• Rotation of co-ordinates can be performed using CORDIC. This property is used
to develop hardware for FFT, DCT, Wavelet, Curve-let, etc.

• CORDIC can be used to solve linear equations. Performing QR decomposition
using CORDIC algorithm is one example. This is based on finding magnitude of
a complex number using CORDIC algorithm.

• Sinusoidal signals can be generated easily by CORDIC. This helps developing
CORDIC-based Digital Controlled Oscillator (DCO).

11.10 Conclusion

In this chapter, the theoretical background of the CORDIC is discussed in detail. Fur-
ther the non-redundant radix-2 CORDIC architectures in circular, linear and hyper-
bolic paths in x − y-co-ordinate are discussed. Evaluation of some of the major
functions are discussed in detail. Architecture for word-serial and parallel CORDIC
is explained in detail. In addition to the non-redundant radix-2 architectures based
on two’s complement arithmetic, many other CORDIC algorithms are discussed.
The redundant radix-2 and radix-4 CORDIC algorithms aim to reduce the latency of
the CORDIC by reducing the iterations. A brief overview on the different CORDIC
architectures is also presented in this chapter.



Chapter 12
Floating Point Architectures

12.1 Introduction

In the previous chapters,we have discussed the fixed point architectures. Themajority
of FPGA-based architectures are fixed point based. In the fixed point architectures,
the number of bits reserved for integer and fractional part is fixed. Thus there is a
limitation in representing a wide range of numbers. This limitation results truncation
error in the output. Accuracy can be increased by increasing the word length but this
in turn increases hardware complexity. At some point further increase in word length
cannot be tolerable.

A solution to this problem is to use floating point representation as discussed in
Chap. 1. But the usage of floating point representation in real-time implementations
is limited. The reason behind this fact is that implementation of floating point archi-
tectures is complex. Due to higher complexity, floating point architectures are not
suitable for rapid prototyping. On the other hand, floating point architectures provide
better accuracy than fixed point architectures.

The objective of this chapter is to discuss the basics of floating point representation
and the basic architectures for floating point arithmetic operation. A floating point
number can be represented in binary as shown in Fig. 12.1 So, a floating point
number has three fields, viz., sign field (S), exponent field (E) and mantissa (M).
The exponent field is added to a bias component to differentiate between negative
and positive exponents. The decimal equivalent of this representation is

S.M.2E+bias (12.1)

In this chapter, first the standards in floating point representation are discussed and
then different architectures for floating point arithmetic operation are presented.
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Sign Bit
S

Biased Exponent
E (8-bits)

Unsigned Mantissa
M (23-bits)

Fig. 12.1 IEEE floating point data format

12.2 Floating Point Representation

There are two standard formats according to IEEE 784which are single precision and
double precision data format. IEEE single precision data format for floating point
numbers is shown in Fig. 12.2. The double precision format accommodates even
higher range of numbers. Double precision data format is shown in Fig. 12.3 In the
floating point number representation, there are different representations for the same
number and there is no fixed position for the decimal point. There may be loss of
precision for a fixed number of digits in performing arithmetic operations. But for
a fixed number of digits, the floating point representation covers a wider range of
values compared to a fixed point representation. Data represented in this format are
classified into five groups.

• Normalized numbers,
• Zeros,
• Subnormal (denormal) numbers,
• Infinity and not-a-number (NAN).

The exponent field is calculated by adding a bias component. The value of the bias is
(28 − 1) in single precision format. The valid range of exponents for single precision
is from 1 to 254. The value of 0 and 255 are reserved for special numbers. This gives
the range of data from 2127 to 2−126. The interpretation of these numbers is shown
in Table 12.1. The maximum number that can be represented in the single precision
format is

0_11111110_111111..... = 1.99999988 × 2127 ≈ 3.4028 × 1038

Sign Bit
S

Biased Exponent
E (8-bits)

Unsigned Mantissa
M (23-bits)

Fig. 12.2 IEEE floating point single precision data format

Sign Bit
S

Biased Exponent
E (11-bits)

Unsigned Mantissa
M (52-bits)

Fig. 12.3 IEEE floating point double precision data format
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Table 12.1 Data interpretation in floating point representation

Single precision Data types

Exponent Mantissa

0 0 ±0

0 Nonzero ± Subnormal number

1–254 Anything ± Normalized number

255 0 ± ∞
255 Nonzero NaN

and the minimum number that can be represented in this format is

0_00000001_000000..... = 1 × 2−126 ≈ 1.1754 × 10−38

Both the numbers can be negative or positive depending on the status of sign bit. The
above range of data is shown for normalized data only. If they are subnormal then
the minimum value will be

0_00000000_0000.....001 = 1 × 2−126−23 = 1 × 2−149 ≈ 1.4012 × 10−45

Maximum subnormal number will be

0_00000000_1111.....111 = 0.99999988 × 2−126 ≈ 1.1754 × 10−38

Due to the presence of the subnormal numbers, there are 223 numbers within the
range [0.0, 1.0 × 2−126). The smallest difference between two normalized numbers
is 2−149. This is same as the difference between any two consecutive subnormal
numbers. The largest difference between two consecutive normalized numbers is
2104. This implies that the numbers in floating point representation are non-uniformly
distributed. Also there are two zeros (±) in the IEEE representation. The similar type
of analysis can be done for IEEE double precision format.

The condition overflow occurs when the true result of an arithmetic operation is
too large that it cannot be represented with the given data format. On the other hand,
underflow is a conditionwhen the number is too small to be represented. The overflow
condition in system design cannot be ignored, where the underflow condition can
be checked by checking if the result is zero or not. The floating point architecture
should be designed in such a way that overflow never occurs.

The data formats according to IEEE 754 standards are suitable for general pur-
pose controllers. The single precision or double precision formatsmay lead to costlier
designs. Thus designers should go for trade-offs between high hardware complexity
and high accuracy. Thus any word length can be used for implementing a system
depending on requirement of accuracy. In this chapter, 16-bit word length is con-
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sidered for designing the architectures. In this 16-bit format, 4 bits are reserved for
biased exponent and 11 bits are reserved for mantissa part.

12.3 Fixed Point to Floating Point Conversion

Generally the FPGA-based architecture or ASIC-based implementations are fixed
point arithmetic based. But the majority of dedicated controllers are floating point
based. It may require to interface a FPGA to a micro controller and then a fixed point
to floating point conversion unit will be required. In order to discuss the floating
point architectures, first the scheme for conversion from fixed point to floating point
is discussed. The steps of converting a fixed point number to a floating point number
are

1. Invert the number if the number is negative or if the MSB is logic 1.
2. Count the leading zeros present in the number.
3. Value of the mantissa is computed by left shifting the number according to the

leading zeros present in the number.
4. Subtract the leading zero count from (m − 1) where m represents the number of

bits which are reserved for integer including the MSB bit.
5. Add the result to the bias value to get the exponent.
6. Sign of the fixed point number is the sign of the floating point number.

Example: Fixed Point to Floating Point Conversion

• The input fixed point number is a = 001000_0010000000 whose decimal value
is 8.125 for m equal to 6 bits.

• As this number is positive so no inversion is required
• There are two leading zero present in the number so it is left shifted by two bits.
The result of shifting is 100000_1000000000.

• The value of the mantissa is M = 00000_100000 by choosing 11 bits from MSB
and excluding the MSB.

• The leading zero count is subtracted from (m − 1) and the result is (5 − 2) = 3.
• The result is added to the bias to get the exponent (E = (7 + 3) = 10).
• Thus the floating point number is 0_1010_00000100000.

An simple scheme of fixed point to floating conversion is shown in Fig. 12.4. Here
two 4-bit adder/subtractor blocks are used to determine the exponent and one 16-
bit adder/subtractor is used for inversion if necessary. The VLSH block stands for
variable left shift according to the leading zero count. The leading zeros are counted
by a block called leading zero counter. This block is discussed in the next section
in detail. The operation of the architecture can be understood easily by following
the steps mentioned above. In the mantissa computation path, 11 bits are taken as
mantissa to form a 16-bit floating point output. This 16-bit representation cannot
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Fig. 12.4 A basic
architecture for fixed point to
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represent all the numbers which are represented in the 16-bit fixed point representa-
tion. For example, in the 16-bit format the numbers which are less than 2−4 cannot
be represented for exponent value of 4. The circle at VLSH block output line stands
for concatenation operation.

12.4 Leading Zero Counter

In a binary number, leading zeros are the zero digits in the most significant positions
of data, up to the position in which the first one is present. Leading zero counter is a
very important combinational circuit in designing the floating point architectures to
do the normalization operation.

Here a design of a 16-bit leading zero counter is presented. A simple modular
architecture is presented in [51]. In [51], authors designed higher order leading zero
counter using 4-bit leading zero counters. In a binary number (x), the leading zero
count (q) varies from 0 to 3. If all the bits are zero then it generates a signal (a) to
indicate that the number is zero. The truth table for 4-bit leading zero counter (LZC-
4) is shown in Table 12.2. Using the K-map optimization technique the Boolean
expression for the outputs of LZC-4 can be obtained and these are

q0 = x3.x2 + x3.x1 (12.2)

q1 = x3 + x2 (12.3)

The architecture of the LZC-4 is shown in Fig. 12.5. It outputs the leading zero count
z = {q1, q0} and also outputs a signal a which indicates that all the bits are zero.
Higher order leading zero counters can be designed using the basic LZC-4 blocks.
The four bits are together called as nibble. A 16-bit binary number has four nibbles.
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Table 12.2 Truth table for 4-bit leading zero counter

x3 x2 x1 x0 q1 q0

0 0 0 0 X X

0 0 0 1 1 1

0 0 1 X 1 0

0 1 X X 0 1

1 X X X 0 0

Fig. 12.5 A basic
architecture for 4-bit leading
zero counter

x3
x2
x1
x0

a

q1

q0

Table 12.3 Truth table for 16-bit leading zero counter

a0 a1 a2 a3 q3 q2 {q1, q0}
0 X X X 0 0 z0
1 0 X X 0 1 z1
1 1 0 X 1 0 z2
1 1 1 0 1 1 z3

The outputs ai (All zero) and zi (zero count) are generated by the i th nibble from
the MSB side. Lets consider to design an 8-bit leading zero counter. In this case,
the count will vary from 0 to 7. If a0 = 0, the zero count value depends on z0 and
if a0 = 1 the overall zero count value is {a0, z1}. The truth table for 16-bit leading
zero counter (LZC-16) is shown in Table 12.3.

TheLZC-16 is designed using the basic LZC-4 block. The upper bits of the counter
are evaluated by a block which takes the inputs ai from the LZC-4 blocks. This block
is called as leading zero encoder (LZE-4) which is shown in Fig. 12.6. The logical
expressions for the outputs of this block are decided by Table 12.3. Using K-map the
logical expressions are defined as

q2 = a0.(a1 + a2.a3) (12.4)

q3 = a0.a1.(a2 + a3) (12.5)

Finally the overall architecture of LZC-16 is shown in Fig. 12.7. There are four
LZC-4 blocks used here and one LZE block is used. The output of the LZE-4 block



12.5 Floating Point Addition 233

q3

q2

a0
a1
a2

a3

Fig. 12.6 A basic architecture for 4-bit leading zero encoder

LZC (4-bit) LZC (4-bit) LZC (4-bit) LZC (4-bit)

LZE (4-bit)

a0 z0 a1 z1 a2 z2 a3 z3

0 1 2 3

q1:0q3:2

Fig. 12.7 A basic architecture for 16-bit leading zero counter

which are the upper bits of the counter selects the lower bits through a MUX. This
leading zero counter block is an extra burden to the floating point architectures
and it also increases the critical path. Some of the floating point architectures [69]
adopted anticipation of leading zeros which anticipates leading zeros in parallel to
the arithmetic operation on Mantissa.

12.5 Floating Point Addition

Compared to a fixed point adder, a floating point adder is more complex and hard-
ware consuming. This is because exponent field is not present in case of fixed point
arithmetic. A floating point addition of two numbers a and b can be expressed as

Sa .Ma .2
Ea + Sb.Mb.2

Eb = S.2Eb(Ma + M∗
b ) (12.6)
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Here, it is considered that Ea > Eb. In this case, M∗
b represents the right shifted

version of Mb by |Ea − Eb| bits. Similar operation can be carried out for Ea < Eb.
Thus floating point addition is not as simple as fixed point addition. The major steps
for a floating point addition are

1. Extract the sign of the result from the two sign bits.
2. Subtract the two exponents Ea and Eb. Find the absolute value of the exponent

difference (E) and choose the exponent of the greater number.
3. Shift the mantissa of the lesser number by E bits considering the hidden bits.
4. Execute addition or subtraction operation between the shifted version of the man-

tissa and the mantissa of the other number. Consider the hidden bits also.
5. Normalization for addition: In case of addition, if carry is generated then the result

is right shifted by 1-bit. This shift operation is reflected on exponent computation
by an increment operation.

6. Normalization for subtraction: A normalization step is performed if there are
leading zeros in case of subtraction operation. Depending on the leading zero
count the obtained result is left shifted. Accordingly the exponent value is also
decremented by the number of bits equal to the number of leading zeros.

Example: Floating Point Addition

• Representation: The input operands are represented as a = 0_1001_00100000000
(4.5) and b = 0_1000_11100000000 (3.75).

• Sign extraction: As both the numbers are positive then the sign of the output will
be positive. Thus S = 0.

• Exponent subtraction: Ea = 1001 and Eb = 1000. Thus the result of the subtrac-
tion is E = 0001.

• Shifting of mantissa of lesser number: The mantissa Mb = 1_11100000000 is
shifted by 1 bit right and the result is Mb = 0_11110000000.

• Result of themantissa addition is 000010000000 and generates a carry. Thismeans
the result is greater than 1.

• The output of the adder is right shifted and the exponent value is incremented to
get the correct results. The new mantissa value is now 00001000000 choosing the
last 11 bits from the LSB and exponent is 1010.

• The final result is 0_1010_00001000000 which is equivalent to 8.25 in decimal.

Example: Floating Point Subtraction

• Representation: The input operands are represented as a = 1_1010_00100000000
(−9) and b = 0_1000_11111000000 (3.9375).

• Sign extraction: As sign of a is negative and a is greater than b thus S = 1.
• Exponent subtraction: Ea = 1010 and Eb = 1000. Thus result of the subtraction
is E = 0010.
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• Shifting of mantissa of lesser number: The mantissa Mb = 1_11111000000 is
shifted by 2-bit right and the result is Mb = 0_01111110000.

• Result of the mantissa subtraction is 010100010000. This leading zero indicates
that the result is lesser than 1.

• The output of the adder is left shifted by 1 bit as there is one leading zero and
the exponent value is decremented by 1-bit to get the correct results. The new
mantissa value is now 01000100000 choosing the last 11 bits from the LSB and
the exponent is 1001.

• The final result is 1_1001_01000100000 which is equivalent to −5.0625 in deci-
mal.
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Fig. 12.8 A basic architecture for floating point addition
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A simple architecture of a floating point adder is shown in Fig. 12.8. In this archi-
tecture, three 4-bit adders are used for computing the exponent, and a 12-bit adder
is used for adding or subtracting the mantissa part. Two MUXes before the mantissa
computation path selects the mantissa of the lower number for shifting. The shift
operation is carried out by a VRSH block. This block shifts the mantissa according
to the exponent difference. The addition or subtraction is done by Two’s complement
method. Thus a comparator is used to detect the smaller mantissa for inversion. The
leading zero counter is for normalizing the result in case of subtraction operation
when the mantissa part contains the leading zeros. This block has no meaning in case
of addition operation. The VLSH block is a variable left shifter like VRSH block.

12.6 Floating Point Multiplication

Floating point multiplication is comparatively easy than the floating point addition
algorithm but hardware consuming. Major hardware block is the multiplier which is
same as fixed point multiplier. This multiplier is used to multiply the mantissas of
the two numbers. A floating point multiplication between two numbers a and b can
be expressed as

Sb.Mb.2
Eb × Sa .Ma .2

Ea = (Sa ⊕ Sb).Mb × Ma .2
(Eb+Ea)−bias (12.7)

Thus it can be said that in a floating point multiplication, mantissas are multiplied
and exponents are added. The major steps for a floating point multiplication are

1. Extract the sign of the result from the two sign bits.
2. Add the two exponents (E). Subtract the bias component from the summation.
3. Multiply mantissa of b (Mb) by mantissa of a (Ma) considering the hidden bits.
4. If the MSB of the product is “1” then shift the result to the right by 1-bit.
5. Due to this, the exponent is to be incremented according to the one bit right shift.

Floating point multiplication can be more clearer with an example. Lets discuss a
multiplication operation between two numbers a = 6.5 and b = 3. The result of the
multiplication operation is 19.5.

Example: Floating Point Multiplication

• Representation: The input operands are represented as a = 0_1001_10100000000
and b = 0_1000_10000000000.

• Sign extraction: As both the numbers are positive then sign of the output will be
positive. Thus S = 0.

• Exponent addition: Ea = 1001 and Eb = 1000. Thus result of the addition is
E = 10001. The bias is subtracted from this value. Thus new value of E is 1010.
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• Mantissa multiplication: Multiply the mantissas by any multiplicative algorithms
used in the fixed point arithmetic. The width of the product is 24 bits but the final
output is truncated to 11 bits. The 13 bits of the product starting from the MSB is
1001110000000.

• Generally the 11 bits from the LSB are the required result but here the MSB is “1”
this indicates that the result is greater than “1”. Thus this value is shifted right by
1-bit and the new result is 0100111000000. The final value of the mantissa (M) is
00111000000 excluding the hidden bit.

• This normalization step must reflect on exponent correction. The value of the
exponent is corrected by an increment corresponding to a right shift. The new
value of the exponent (E) is 1011.

• The final result is 0_1011_00111000000 which equivalent to 19.5 in decimal.

A simple architecture of a floating point multiplier is shown in Fig. 12.9. The addition
of the exponents is done by a 5-bit adder as addition result can be greater than 15. The
subtraction of the bias element can be done by another 5-bit adder. There is another
4-bit adder used in the design which is actually an incrementer. The major hardware
block is the multiplier block. The multiplier used here is a 12-bit unsigned multiplier
and that can be any multiplier circuit as discussed in Chap. 8. If MSB of the product
is “1” then the output is normalized by right shifting. Here this right shift is simply
achieved by usingMUXes. In this case, as the hidden bit is also considered, the result
will be always less than 4. Thus only the MSB is checked. Pipeline registers also
must be inserted according to the pipelining stages of the multiplier.
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delay

delay delay

1 1
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Fig. 12.9 A basic architecture for floating point multiplication
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12.7 Floating Point Division

Performing division is a difficult task aswehave seen in case of fixed point arithmetics
also. Divider architectures are complex to implement. Floating point division is
nothing but a fixed point division with some extra hardwares to take care of the
exponents. This extra hardware makes the divider circuit more complex. A floating
point division where a number a divides another number b can be expressed as

Sb.Mb.2Eb

Sa .Ma .2Ea
= (Sa ⊕ Sb).

Mb

Ma
.2bias+(Eb−Ea) (12.8)

Thus it can be said that in a floating point division, mantissas are divided and expo-
nents are subtracted. The major steps for a floating point division are

1. Extract the sign of the result from the two sign bits.
2. Find the magnitude of the difference between two exponents (E). Add E to the

bias if Eb > Ea or subtract E from the bias if Eb < Ea .
3. Divide mantissa of b (Mb) by mantissa of a (Ma) considering the hidden bits.
4. If there is a leading zero then normalize the result by shifting it left.
5. Due to the normalization, the exponent is to be decremented according to the

number of left shifts.

Floating point division can be more clearer with an example. Lets discuss a division
operation between two numbers b = 3 and a = −15.5. The result of the division
operation is −0.1935.

Example: Floating Point Division

• Representation: The input operands are represented as a = 1_1010_11110000000
and b = 0_1000_10000000000.

• Sign extraction: As one of the number is negative then sign of the output will be
negative. Thus S = 1.

• Exponent subtraction: Ea = 1010 and Eb = 1000. Thus magnitude of their differ-
ence is E = 0010.As Eb < Ea thus the resulted exponent is 0111 − 0010 = 0101.

• Mantissa division: Divide themantissas by any division algorithm used in the fixed
point arithmetic. Considering the hidden bits, the division operation is restricted
to 12 bits. The result of the division is 01100011000.

• There is a leading zero in the result thus a left shift can be applied to normalize the
result. Thus the new result is 11000110000. The final value of the mantissa (M)
is 1000110000 excluding the hidden bit.

• The action of normalization step must reflect on exponent correction. The value
of the exponent is corrected by a decrement corresponding to a left shift. The new
value of the exponent (E) is 0100.

• The final result is 1_0100_1000110000. The decimal value of this is −0.1933.
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Fig. 12.10 A basic architecture for floating point division

A simple architecture of a floating point divider is shown in Fig. 12.10. There are
three 4-bit subtractors used in the divider architecture, two for exponent subtraction
and one for correction of exponents. The major hardware block is the divider block.
The divider used here is a 12-bit unsigned divider and that can be any divider circuit
as discussed in Chap. 9. If the result of the divider contains any leading zero then
normalizing step is executed. But here in this case, as the hidden bit is also considered
thus the result cannot go below 0.5. Thus there will be maximum of one leading zero
present in the result. This is why only theMSB of the result (q) is considered and left
shift block shifts only by one bit. Pipeline registers also must be inserted according
to the pipelining stages of the divider.

12.8 Floating Point Comparison

Floating point comparison is similar to the comparison of two numbers in fixed
point arithmetic. The same architecture can be used here also. Yet this architecture
is discussed here to have a clear idea about floating point comparison. The steps
involving the comparison of two floating point numbers a and b are
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Fig. 12.11 A basic architecture for floating point comparison

1. Compare the sign bits. If both are of same sign then proceed to the next step.
2. Compare the exponents. If both exponents are also equal then go to the next step.
3. Compare the mantissas. Generate three outputs (<,= and >).

Here we have shown a comparator for two 16-bit floating point numbers a and b.
Two sign bits are compared using a simple 1-bit comparator. Here we will use the
opposite of the convention used in case of 1 bit comparator. This is because, here
if the sign bit is “1” then the number is negative and thus lesser. If sign of both the
numbers are same then the exponents are compared. Here a 4-bit comparator is used
to compare the exponents. If both the numbers have same sign and their exponents
are also equal then at the last step mantissas are compared. The two mantissas are
compared using an 11-bit comparator. The architecture of the comparator is shown
in Fig. 12.11.

12.9 Floating Point Square Root

The architecture for square root computation can also be designed in the same way
the other architectures are designed. Various fixed point square root architectures
are discussed in Chap. 10. There are some modifications needed to convert a fixed
point square root architecture to a floating point architecture. This modification is
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mainly related to handling of the exponent field. Square root operation in floating
point arithmetic can be expressed as

√
0.Ma .2Ea = 0.

√
Ma .2

Ea/2 (12.9)

Here the sign field is logic zero which means the square root block always expects
positive numbers. The square root operation is carried out only on the mantissa part
and this can be achieved by any square root algorithm mentioned in Chap. 10. The
exponent part is divided by 2 which means right shifting by one bit. The steps for
square root operation are

1. Subtract the bias component from the exponent and find the absolute difference.
2. Right shift the result by one bit then compute the final exponent.
3. Find the square root of the mantissa with considering the hidden bit.

Example: Floating Point Square Root

Floating point square root operation can be more clearer with an example. Lets
discuss a square root operation for a = 8.

• The input data a is represented as 0_1010_00000000000 in 16-bit format.
• The absolute difference between the exponent and bias is 3 (1010 − 0111 = 0011).
As E > bias, the number is greater than 1.

• This result is right shifted by 1-bit and this resulted an extra bit (rs) which is 1.
• Concatenate the hidden bit with mantissa. Thus the square root block gets
100000000000 as input.

• As the input data is greater than or equal to 1, the input is right shifted by 1 bit so
that the fractional square root block can give accurate result.

• The output of the square root block is 101101010000. Thus the value of the man-
tissa part is M = 01101010000.

• The new exponent is 0111 + 0001 = 1000.
• Thus the final result is 0_1000_01101010000.

A basic scheme of floating point square root computation is shown in Fig. 12.12. Here
the architecture is self-explanatory. The VRSH1 block is control right shift block.
The square root block is capable of computing square root of fractional numbers.
In the exponent computation path there is a MUX placed which selects between
bias and the exponent of the input number. This is due to the fact that in the square
root process exponent of the fractional number should increase with respect to the
original exponent.
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Fig. 12.12 A basic
architecture for floating point
square root computation
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12.10 Floating Point to Fixed Point Conversion

The floating point to fixed point conversion is necessary to interface a floating point
processor to a fixed point implementation. So that theremaintains a smooth transition
from one type of architecture to another. The steps involved in this conversion are

1. Concatenate the hidden bit and add leading zeros according to the fixed point
length.

2. Find the absolute difference between the exponent of the floating point number
and bias.

3. If E > bias left shift the input number by their absolute difference. Otherwise if
E < bias right shift is executed.

4. Finally, invert the number if sign bit is 1.

Example: Floating Point Square Root

• Input data is represented in floating point as a = 0_1011_01000000000.
• Prepare the data as 0000_1_01000000000 for 16-bit fixed point representation
with 6 integer bits.

• The difference between exponent and bias is 1011 − 0111 = 0100 and exponent
is greater than the bias.

• Left shift the number by 4-bit. Result is 1010000000000000.
• As the sign bit 0, no need of inversion. Discard the LSB and concatenate the sign
bit at the MSB side. The final output is 0101000000000000.
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Fig. 12.13 Scheme for floating point to fixed point conversion

In this above example, the LSB is discarded to fit the result in 16-bit format. Thus
there exists error in the conversion process. Only a certain range of floating point
representation can be represented in fixed point for sameword length.An architecture
for floating point to fixed point conversion is shown in Fig. 12.13. Here two variable
shifters are used, viz., VLSH and VRSH. VLSH does the right shifting like the
VRSH block. Two 4-bit adder/subtractors and one 16-bit adder/subtractor are used.
This architecture can be adopted for any word length.

12.11 Conclusion

In this chapter, various floating point architectures are discussed. Though mainly
fixed point representation is used in this book, designers may choose floating point
data format to achieve high accuracy. This chapter focuses on how floating point
architectures can be designed for custom word length. This eliminates the use of
single or double precision word lengths as per IEEE standard. Basic floating point
architectures for addition, multiplication, division and square root are covered in this
chapter. Readers are suggested to read more articles on efficient architectures.



Chapter 13
Timing Analysis

13.1 Introduction

The digital systems are designed using some software tools and then simulated by
giving input test vectors. The designs may work at logic simulation level but may not
work when these designs are implemented on hardware. This is because, practical
aspects like routing delay, process variations are ignored at logic simulation level.
Timing verification of digital systems is very important as without timing verification
one cannot proceed towards fabrication. Timing verification increases the yield of
good ICs.

There are two types of timing verification which can be carried out to verify a
design. First one is Dynamic Timing Simulation (DTS) and the second one is Static
Timing Analysis (STA). In the DTS, set of input test vectors which covers all the
possible input combinations are given as input and output is verified. This process is
slow as huge number of input vectors are to be checked. But this timing verification
method can be very accurate. Some of the platforms of performing DTS are VCS,
SPICE, ACE, etc.

STA is a processwhich performs the timing verification statically and independent
of input test vectors applied at input pins. STA is a fast process as huge set of test
vectors is not required for verification. STA gives better analysis checks when timing
requirement is given. But STA can be less accurate when there are false paths or
asynchronous designs. Thus timing exceptions are also needed to specify.

STA is the most accepted technique in the industry for timing verification. Tools
to perform STA are Synopsys Primetime, Cadence Tempus, etc. STA is performed
in three steps which are

1. Overall design is divided into set of timing paths
2. Delay of each path in each set is calculated
3. Path delays are checked to see if timing constraints have been met.
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In this chapter, a basic theoretical background on how STA is performed is discussed.
First the definitions related to the STA are discussed and then different criteria for
timing checks are discussed.

13.2 Timing Definitions

Adigital system can be combinational or sequential. Most of the complex designs are
sequential and very few small designs are combinational. A sequential design can be
synchronous or asynchronous. In a synchronous design, data propagates with respect
to clock and in asynchronous designs signal transition can occur irrespective of clock.
These definitions regarding the system design are important to understand the timing
verification process. Different other timing related definitions are discussed below.

13.2.1 Slew of Waveform

The slew rate of a signal is defined as the rate of change of that signal. This is also
can be defined as the time taken by the signal to switch from one specified level to
another level. Larger transition time means slower slew rate. The slew can be of two
types, viz., fall slew and rise slew. If a signal falls from 70% to 30% of its maximum
value, then it is called fall slew. Similarly, the rise slew is defined. The slew of a
waveform is explained in Fig. 13.1.

13.2.2 Clock Jitter

The clock signal is generated by real physical devices and thus there is no ideal clock
signal. Every real clock has some finite amount of jitter. The jitter is defined as a
window within which the clock edge can occur. This is responsible for amount of
cycle-to-cycle variation in a clock period. This uncertainty in clock signal is shown

Ideal Clock

Practical Clock

Fig. 13.1 Slew of the clock signal
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window

a b c

Fig. 13.2 Clock jitter window

in Fig. 13.2. Here, the second rising edge can be started from point a, b or c due to
any disturbances in the clock source. The sink flip-flops receive a faster clock due to
this jitter. The window during which the clock edge can occur is called jitter window.

13.2.3 Clock Latency

Clock latency is defined as the time taken by the clock signal to reach the sink flip-
flops from the clock source like Phase Locked Loops (PLLs). The clock signal at the
source is defined as Master Clock (clkM ) and the clock signal at the sink flip-flops is
defined as Sink Clock (clkS). Sometimes the Master clock signal is passed through a
clock divider circuit to produce generated clock (clkG). The concept of clock latency
is explained in Fig. 13.3. Clock latency can be divided into two parts, viz., Clock
Source Latency and Clock Network Latency.

Clock Source Latency

Source latency is defined by the delay between the clkM and the clkG . In situations
where the requirement of generated clock is not required, clock latency is defined as
the delay between the clkM and the clock signal at the definition point.

Clock
Source

Clock
Divider

Flip-
Flop

Path
Delay

clkM clkG clkS

Clock Definition Point Top Chip

Fig. 13.3 Definition of clock latency
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Clock Network Latency

The Network latency is defined as the delay between the clkG and the clkS . In
situations where clkG is absent, the Network delay is defined as the delay between
the clock signal defined at clock definition point and the clkS . This is an internal delay
due to the clock tree from the clock definition point to all the clock sinks. Sometimes
another term insertion delay is defined to indicate the delay of clock signal from
external source to the sink flip-flop.

13.2.4 Launching and Capturing Flip-Flop

In a digital system, data propagates from one flip-flop to another. In a synchronous
system, this propagation is achieved through edge triggering. One flip-flop launches
a data and another flip-flop captures the data. This concept is shown in Fig. 13.4.
Here same clock is connected to both FF1 and FF2. At the first rising edge, FF1 is
launching the data. That is, the D value causes a change in Q of FF1. So, FF1 is called
as launching flip-flop for this timing path and the first rising edge is launching edge.
This signal will be captured at FF2 after one cycle. So FF2 becomes the capturing
flip-flop and 2nd rising edge becomes capturing edge.

13.2.5 Clock Skew

The latency of the sink clock (clkS) at the two different flip-flips can be different.
This latency difference is called as the clock skew which is due to the delay involved
in the respective clock tree path. The clock skew is explained in Fig. 13.5. Here, the
clock signal from the clock definition point goes through the three sink flip-flops.
The difference between the latency of any two clocks among clka , clkb or clkc is
clock skew. In a circuit, the maximum possible clock skew is considered to meet the
timing.

FF1
D Q

FF2
D Q

CLK

Comb
Circuit

Launching Edge Capturing Edge

Fig. 13.4 The concept of launching edge and capturing edge for a flip-flop
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Fig. 13.5 Definition of clock skew

Here, the definition of ideal clock tree is important. A clock tree is ideal when
it can drive infinite drives with zero delay. This means that the clock skew is zero
for ideal clock tree. If capture clock comes late than launch clock then it is called
positive skew. If capture clock comes early than launch clock it is called negative
skew. Clock skew can be defined in other words as the difference in arrival of clock at
two consecutive pins of a sequential element. Global skew is defined as the difference
between max insertion delay and the min insertion delay of any flops

13.2.6 Clock Uncertainty

The uncertainty in the clock signal can be account from several factors. But mainly
in timing verification clock jitter and clock skew are considered as clock uncertainty.
Additional margins are also considered to meet timing. The clock uncertainty can be
specified separately for setup and hold check ups.

13.2.7 Clock-to-Q Delay

The clock-to-Q delay time (tc2q ) is the time measured between the clock edge and
flip-flop output (Q) for an edge triggering flip-flop. This timing parameter of a flip-
flop can beminimum andmaximum. Theminimum amount of time after which the Q
signal might be unstable or starts changing is called minimum clock-to-Q delay time
(tcc2q ). This minimum clock-to-Q delay time is also called as contamination delay
for clock-to-Q delay. On the other hand, the maximum amount of time after which
the Q signal is guaranteed to stable or stops changing is called maximum clock-to-Q
delay time (tpc2q ). This minimum clock-to-Q delay time is also called as propagation
delay for clock-to-Q delay. The concept of clock-to-Q delay is shown in Fig. 13.6.
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13.2.8 Combinational Logic Timing

Similar to the output timing characteristic of the flip-flops, timing of the combina-
tional logic gates also can be defined. Minimum mount of time from when an input
changes until the output starts to change is called contamination delay (tcd ) of a logic
gate. It is also called as minimum delay of a logic gate. Similarly, maximum amount
of time from when an input changes until the output is guaranteed to reach its final
value (i.e. stop changing) is called propagation delay of a logic gate. It is also simply
called as maximum delay of a logic gate. The concept of these two delays is shown
in Fig. 13.7.

13.2.9 Min and Max Timing Paths

The path delay is defined as the delay that is required for a logic to propagate through
a logic path. This path delay accounts for both delay through logic cells and delay
due to nets. Theremay bemultiple paths from the source to the destination. The delay
associated with each path is different. The max path has the largest delay and the
min path has smallest delay. These two paths are very important in timing analysis.
A path is called as critical if the path violates any timing constraints. A critical path
can be a max path or a min path.
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13.2.10 Clock Domains

Aclock signal can be connected tomultiple sink flip-flops. The set of flip-flops which
is connected to a clock is called domain of that clock. In a complex design there may
be many clock signals used. For example, clka can be connected to 100 flip-flops
and clkb can be connected to 50 flip-flops. The concept of clock domain is shown in
Fig. 13.8. Here, in this design there are two clock domains and each clock domain
there are three flip-flops. Two clock domains can be connected in two ways. Firstly,
a data path can start in domain of clka and end up in domain of clkb. Secondly, there
may be a clock synchronizer placed between the two clock domains.

13.2.11 Setup Time

Setup time (Tsu) is the minimum amount of time during which the data signal should
be held steady before the clock event so that the data can be reliably sampled by
the clock. This applies to synchronous circuits such as the flip-flop. This implies the
amount of time during which the synchronous input (D) must be stable before the
active edge of the Clock. The time within which the input data is available and stable
before the clock pulse is applied is called Setup time. The concept of setup time is
shown in Fig. 13.9.

13.2.12 Hold Time

Hold time (Th) is the minimum amount of time during which the data signal should
be held steady after the clock event occurs so that the data can be reliably sampled.
This applies to synchronous circuits such as the flip-flop. This implies the time during
which input (D) of the synchronous flip-flop must be stable after the active edge of



252 13 Timing Analysis

Clk

D

Setup Time
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Fig. 13.10 The concept of Hold time for a flip-flop

the clock. The time after clock pulse within which the data input is held stable is
called hold time. The concept of hold time is shown in Fig. 13.10.

13.2.13 Slack

Slack is the difference between the desired arrival times and the actual arrival time for
a signal. Slack determines if a design isworking at a desired frequency or not. Positive
Slack indicates that the design is meeting the timing and still it can be improved. Zero
slack means that the design is critically working at the desired frequency. Negative
slack means, design has not achieved the specified timings at the specified frequency.
Slack has to be positive always and negative slack indicates a violation in timing.
Setup and Hold slack are calculated as

SetupSlack = Requiredtime − Arrivaltime (13.1)

Holdslack = Arrivaltime− Requiredtime (13.2)
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13.2.14 Required Time and Arrival Time

Required time is the time within which data is required to arrive at internal node
of flip-flop. Required time is constrained by the designers. The time in which data
arrives at the internal node is the arrival time. It incorporates all the net and logic
delays in between the reference input point and the destination node.

13.2.15 Timing Paths

The different kinds of paths when checking the timing of a design are as follows.

1. Flip-flop to flip-flop timing path.
2. External input device to on-chip flip-flop timing path.
3. On chip flip-flop to external output devices.
4. External input device to external output device through on-chip combinational

block.

13.3 Timing Checks

There may be two types of paths which can cause timing violation, one is max
path and the second one is min path. Two types of timing checks are needed to be
performed one is hold check for min path and setup check for max path. These two
checks are explained below.

13.3.1 Setup Timing Check

In a setup timing check, the timing relationship between the clock and the data pin
of a flip-flop is checked to observe that the setup timing requirement is met or not.
The setup check ensures that the data is stable for a certain amount of time, which
is the setup time of the flip-flop, before the active edge. This is done to ensure that
the capture flip-flop correctly captures the data. Figure 13.11 illustrates the setup
condition. The condition for setup check can be written as

Tlaunch + Tpc2q + Tpd < Tcapture + Tcycle − Tsu (13.3)
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Fig. 13.11 The concept of setup timing check for a sequential circuit

13.3.2 Hold Timing Check

A hold timing check is performed to ensure that the hold specification of flip-flop is
met. According to the hold specification of a flip-flop, the data should be stable for
a specified amount of time after the active edge of the clock. The Fig. 13.12 shows
the concept of hold timing check.

Tlaunch + Tcc2q + Tcd > Tcapture + Th (13.4)

13.4 Timing Checks for Different Timing Paths

The different types of paths are already discussed above. Now, setup and hold check-
ups are to be performed for each type of path. In this section, the timing checks are
performed for different types of paths.
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Fig. 13.12 The concept of Hold timing check for a sequential circuit

13.4.1 Setup Check for Flip-Flop to Flip-Flop Timing Path

In a flip-flop to flip-flop timing path, both the flip-flops can be connected to same or
different clock signal. Figure 13.6 demonstrates this timing path. Here, the data is
launched by the launchflip-flop and reaches another flip-flop through a combinational
circuit.

13.4.1.1 Computation of Setup Slack

In this case the required time and the arrival time are defined as

Required Time = Tclock + Tcapture − Tsu (13.5)

Arrival Time = Tlaunch + Tpc2q + Tlogic + Tnet (13.6)

Lets consider an example to understand the setup slack calculation for flip-flop timing
path.

Example 13.1 The launching active clock edge occurred at 4.30 ns with Tlaunch =
0.20 ns. The clock signal has the period of 10 ns and Tcapture = 0.50 ns. The total
data path delay is 6.50 ns and the setup constant can be considered as Tsu = 0.46 ns.
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Fig. 13.13 The setup slack computation for flip-flop to flip-flop timing path

Solution: If the clock was ideal, the launching edge would have started at 4.10
ns. The setup slack is computed as

Setup Slack = (10+ 0.50− 0.46)− (0.20+ 6.50) = 10.04− 6.70 = 3.34
(13.7)

The setup slack is positive, it means the design met the timing requirement and the
design can tolerate combinational delay up to 3.34 ns. This example is explained
graphically in Fig. 13.13.

13.4.1.2 Computation of Hold Slack

Similarly the hold slack can be computed for this timing path. The required time for
this is

Required Time = Tcapture + Th (13.8)

The arrival time is calculated as

Arrival Time = Tlaunch + Tcc2q + Tlogic + Tnet (13.9)

For the above example, the hold slack can be computed as for hold timing constant
of 0.4 ns as
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Fig. 13.14 The hold slack
computation for flip-flop to
flip-flop timing path
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Hold Slack = Arrival time− Required Time

= (6.5+ 0.20)− (0.50+ 0.40) = 5.8 (13.10)

This situation is explained in Fig. 13.14 for computation of hold slack.

13.4.2 Setup and Hold Check for Input to Flip-Flop Timing
Path

In this timing path, input signal from an off-chip external device is fed to an on-chip
sequential block or flip-flop. This path is shown in Fig. 13.15. Here, a combinational
path is considered before the sequential block which is connected to the master clock
(clkm). The external input device can also be sequential or combinational. The timing
analysis is carried out by considering that an external sequential device is used to
feed the input signal. In this case, the external sequential device is connected to a
virtual clock (clkv). Using this virtual clock the timing analysis is carried out. The
total delay in this path is

Total Path Delay = off-chip delay or external I/P delay+
the combinational path delay before the first on-chip flip-flop.

(13.11)
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Fig. 13.15 The hold slack computation for input to flip-flop timing path

13.4.3 Setup Check for Flip-Flop to Output Timing Path

The timing analysis for this path is carried out in the same way as done in case of
flip-flop timing path. Here also the off-chip output device can be connected to virtual
clock or actual clock. The output data is taken from a flip-flop which is called the
launching flip-flop. The external flip-flop can be considered as capturing flip-flop.
In between these two on-chip and off-chip flip-flops the data path delay is due to the
delay of combination block and the external o/p delay. This timing path is shown in
Fig. 13.16. This path delay is

Total Path Delay = On chip combinational path delay after the last

on-chip flip-flop+ External O/P delay (13.12)

13.4.4 Setup Check for Input to Output Timing Path

This data path can start from an external input device and can end up in external
output device after propagating through some on-chip combinational path. This path
is possible when designer wants to verify the complete combinational design. In such
cases it is assumed that both sequential blocks for input and output are connected to

Flip-
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Td

Top Chip
clkM

External
O/P Delay

Flip-
Flop

clkv

Tlaunch

Fig. 13.16 The concept of flip-flop to output device timing path
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Fig. 13.17 The concept of timing path between input device to output device

same virtual clock. This timing data path is shown in Fig. 13.17. The total data path
delay in such cases is

Total Path Delay = External I/P delay+ On chip combinational path delay

+Output external delay
(13.13)

13.4.5 Multicycle Paths

In implementations of complex digital systems, some special cases may arise where
the combinational path between two flip-flops has delay of the order ofmultiple clock
cycles. In these special cases, these special paths are called as multicycle paths. In
other cases, data is captured in every clock cycles but for multicycle paths data are
captured after specified number of clock cycles. This situation is explained with the
help Fig. 13.18. Here, the combinational path has delay of 3 clock cycles. The capture
edge for timing analysis is now changed.

Fig. 13.18 The concept of
multicycle path
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Fig. 13.19 The concept
false path
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13.4.6 False Paths

Some paths in a design are not real and termed as false paths. These paths should be
excluded from the timing analysis otherwise the timing verification process will take
unnecessarily extra time and storage. The false paths exist physically in a design but
they are not logical or functional. Examples of such false paths are, path from one
clock domain to another clock domain, from a clock pin to input of a flip-flop, paths
which are never selected, paths which are not sensitized under any input conditions.

Figure 13.19 shows an example of a false timing path. Here, two MUXes are
connected to same control line. Any of the three inputs A, B and C are connected
to the output line Y based on the status of signal S. There is no chance that the
path B-T-Y is selected by the control input S. This path is a false path and must be
excluded from the timing verification process.

13.4.7 Half Cycle Paths

A design can use both negative edge triggered flip-flops and positive edge triggered
flip-flops. In such designs, half cycle paths can exist. The half cycle path exists
between the positive edge triggered flip-flop to negative edge triggered flip-flop or
vice-versa. The concept of half cycle is shown in Fig. 13.20. The data has to propagate
within the half cycle period in such cases.
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Fig. 13.20 The concept of
half cycle path
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13.5 Asynchronous Checks

Asynchronous circuits are generally not suitable for complex designs as performing
STA for asynchronous circuits is difficult. Flip-flops can have asynchronous set or
reset inputs. A path from any type of pin to these set or reset inputs is a asynchronous
path. The functionality of set/reset pin is independent from the clock edge. These
pins are level triggered and can function at any point of time. An example of this
type of path is shown in Fig. 13.21. Though these paths are asynchronous, timing
checks are needed to be performed so that the active edges of the flip-flops become
unaffected. These checks are explained below.

13.5.1 Recovery Timing Check

The recovery time is aminimumamount of timewhichmust be spent between the time
instant when the asynchronous control signal becomes inactive and the next active
clock edge. A recovery timing check ensures that recovery timing is maintained. This
check ensures that after the asynchronous signal becomes inactive, there is adequate
time to recover so that the next active clock edge can be effective. The concept of
recovery timing is shown in Fig. 13.22. Here, the asynchronous control signal is rst
which is become inactive before the recovery time. This timing check is similar to
max path timing check in case of synchronous designs.

Fig. 13.21 The concept of
asynchronous path
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Fig. 13.22 The concept recovery timing check
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Fig. 13.23 The concept of removal timing check

13.5.2 Removal Timing Check

The removal timing check is performed to ensure that there is adequate time spent
between the release of the asynchronous control signal and the active clock edge.
This time gap is called as removal time. The removal time ensures that active edge
has no effect as the asynchronous control signal is still active. In other words, the
asynchronous control signal is released (becomes inactive) well after the active clock
edge so that the clock edge can have no effect. This is illustrated in Fig. 13.23 where
the asynchronous control signal is rst which is an active low signal. Like hold path
check in case of synchronous circuits, removal check is min path check.

13.6 Maximum Frequency Computation

Data in synchronous designs are propagated with respect to clock edge. The sequen-
tial devices can be either positive edge triggered or negative edge triggered. Some-
times, both the edges are used for faster response. Maximum frequency of clock
signal or minimum period of time is an important parameter to estimate a design’s
performance. Estimating this parameter one can say that the design is howmuch fast.
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Fig. 13.24 Example for
computation of maximum
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Thus this parameter must be estimated and estimation of minimum clock period can
be done using the following relation.

Tclock = Tpc2q + Tlogic + Tpath + Tsu + Tskew (13.14)

Here, the skew can be positive or negative. Maximum frequency computation for an
example circuit is shown in Fig. 13.24. Here, an XOR gate is used as a combinational
circuit. The input D0 is connected to Vdd. Input D0 is reflected in Q0 after delay
of Tpc2q . Then after the delay of XOR gate (Txor ) the D1 is evaluated. There are
two paths, one from Q1 to Q2 and another path is from Q2 to Q2. The maximum
frequency for the first path is

Tclock = Tpc2q−FF1 + Txor + Tsu (13.15)

The maximum frequency computation as per the second path will be

Tclock = Tpc2q−FF2 + Txor + Tsu (13.16)

13.7 Maximum Allowable Skew

The clock skew affects the maximum frequency computation. There should be a
maximum allowable clock skew which can be tolerated in a design. Estimation of
this parameter can tell the designers that how the clock trees can be designed or how
the buffers can be placed. Two cases can arise in estimating maximum allowable
skew. The first case is for positive skew where Tcapture is greater than the Tlaunch .
This means that clock at the capture flip-flop has greater delay than the clock signal
at launch flip-flop. Thus situation is depicted in Fig. 13.25. Another case may arise
for negative skew where the clock at launch flip-flop has more delay than the clock
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Fig. 13.25 Maximum
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at capture flip-flop. This situation is shown in Fig. 13.26. The maximum allowable
skew can be estimated using the following equation

Tcc2q > Tsk + Th (13.17)

From this the derivation for Tsk is

Tsk < Tcc2q − Th (13.18)

Example 13.2 Analyse the circuit shown in Fig. 13.27 for setup and hold check.
Find for any setup and hold violation. If there is any violation then suggest a method
to fix the timing violation. Consider the following parameters about the circuit.

1. tcc2q = 30ps
2. tpc2q = 50ps
3. tsu = 60ps
4. th = 70ps
5. tcd−xor = 35ps
6. tpd−xor = 25ps.
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Fig. 13.27 A example
circuit for timing analysis
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Solution: In order to analyse the above circuit, the first job is to compute the mini-
mum and maximum combinational delay of the circuit. The minimum delay of the
circuit is tcd = tcd−xor = 35ps corresponding to minimum path (D-Y) and the maxi-
mum combinational delay is tpd = 3× tpd−xor = 75ps corresponding to maximum
path (A-Y). After computing these two parameters setup and hold checks can be
performed.

Lets find out the maximum frequency in order to check for setup. The maximum
frequency for this circuit will be

Tclock = tpcq + tpd + tsu = (50+ 105+ 60)ps (13.19)

Thus the circuit can operate at maximum frequency of f = 1/Tclock = 4.65GHz.
The hold check up is performed by satisfying the following hold criteria

tccq + tcd > th (13.20)

According to the data available following equation can be written

(30ps + 25ps) < 70ps (13.21)

Thus the circuit fails to meet the holding timing constraint.
The circuit can be improved tomeet the holding timing constraint. In order tomeet

the hold criteria, the contamination delay of the circuit must be increased. This can be
donebyplacing buffers before theXORgates in the shortest paths. Insertion of buffers
is shown in Fig. 13.28. Here, assume the buffers has same amount of contamination
delay and then the overall contamination delay is tcd = 2× 25ps = 50ps. Then the
above hold equation can be written as

(30ps + 50ps) > 70ps (13.22)

Hence, the optimized circuit is now meets the hold criteria by adding buffers.
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Fig. 13.28 Optimized
circuit for Fig. 13.27 for
meeting hold criteria
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13.8 Frequently Asked Questions

Q1.What are setup and hold checks for clock gating and why are they needed?
A1. The clock gating circuits should be carefully designed such that the shape of the
clock is not harmed and no glitch is produced. A scheme of clock gating is shown in
Fig. 13.29. In order to avoid glitches, the enable signal has to be asserted in advance of
the clock rising edge. This way the rising edge of the clock is protected. This is called
as clock gating setup or clock gating default max check. Similarly, the disabling of
the enable signal must be done in such a way that the falling edge is unharmed. This
is called as clock gating hold or clock gating default min check.

Q2. Why hold time is not included in the calculation for the maximum fre-
quency?
A2. Setup check fails when the clock period is less than the maximum timing path.
Thus setup failure is frequency depended. But hold check is frequency independent
and thus not included in maximum frequency calculations.

Q3. One chip which came back after being manufactured fails setup test and
another one fails a hold test. Which one may still be used how and why?
A3. Setup failure is frequency dependent. If certain path fails setup requirement,
you can reduce frequency and eventually setup will pass. This is because when you
reduce frequency you provide more time for the flop/latch input data to meet setup.
Hence we call setup failure a frequency dependent failure. While hold failure is not
frequency dependent. Hold failure is functional failure.
Q4. Perform the hold analysis for the example circuit shown in Fig. 13.30?

Fig. 13.29 An simple
scheme of clock gating
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enable

Gated clock

clock
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Fig. 13.30 Example circuit
configuration for timing
check
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A4. In case of the example circuit shown in Fig. 13.30 tool can report hold violation
or not. Hold violation normally arises when the generated and the sampling clock
are different. But in this circuit both the clocks are same. This timing path will not
have a real hold violation as same clock edge is referred here. This path would never
have a real hold violation as we are referring to the same CLK edge. We will never
have a hold violation as long as combined delay for tc2q , tbu f and tmux is more than
the intrinsic hold requirement of the flip-flop.

Q5. What is WNS and TNS in case of timing analysis?
A5.Worst Negative Slack (WNS) is a parameter which is checked to see if the design
meets timing or not. A positive value of WNS indicates that the design meets tim-
ing. On the other hand Total Negative Slack (TNS) is summation of all the negative
slacks. If it is zero then the design meets timing. It is better to target TNS instead of
WNS as TNS reduces all slack of all the paths.

Q6. Give a example of a simple timing constraint file (SDC file)?
A6. A simple example of timing constraint file which is generally uses the extension
of .sdc as shown in Fig. 13.31 for a simple counter.

Fig. 13.31 Timing constraint file for a simple up counter
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13.9 Conclusion

In this chapter, basic of timing verification of digital system designs is discussed.
STA is a popular technique for timing verification. First different terms related to STA
are explained and then criteria for setup and hold check-ups are discussed. Timing
verification is very important to guaranty a successful hardware implementation.
There are many topics on STA which cannot be covered in this chapter but readers
are advised to cover those topics also to have a very clear view on STA.



Chapter 14
Digital System Implementation

14.1 Introduction

In the previous chapters, we have discussed the theoretical details of different digital
architectures. In this chapter, details of implementation platforms will be discussed.
The algorithms in the field of signal processing, image processing or in the field of
communication must be implemented on some hardware platforms to achieve faster
execution speed. These implementations must be optimized in terms of power and
area to save battery life and cost, respectively.

Initially the algorithms are preferred to be implemented on Central Processing
Units (CPU) (e.g. Intel Processors). The use of multi-core processors improves the
execution time. Researchers propose the use of Graphics Processing Units (GPUs)
(e.g. NVIDIA GPUs) to further increase the execution speed. It is reported that
performance of GPU-based implementations has better speed compared to CPU-
based implementations. It is further reported in literature that themulti-core controller
units can be used as accelerators for GPU-based implementations. Details of these
implementation platforms can be found in [16, 39, 40].

The above-mentioned platforms are still not suitable for many real-time applica-
tions because of high demand of processing speed. Further speed can be achieved by
using greater parallelism and this can be achieved using dedicated Integrated circuits
(IC). The ICs can be broadly classified as

1. Custom ICs
2. Semi-Customs ICs
3. Standard Cell-Based ICs
4. Gate array-based ICs.

In this chapter, we will discuss a brief theoretical background on FPGA implemen-
tation and ASIC implementation using standard cells.
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14.2 FPGA Implementation

As the name suggests, FPGA contains arrays of reconfigurable logic blocks arranged
as a matrix. The reconfigurable logic blocks are programmed in such a way that a
logic expression is realized. Any logic functions can be realized using FPGA which
can be executed in parallel. FPGAs do not have any operating system like dedi-
cated processors. In dedicated processors, the organization or the connectivity of the
resources is fixed. But in FPGA, an user connects the wires with some program-
ming technology to implement a logic function. User can reprogram or modify the
connectivity according to the logic to be implemented. Based on the techniques of
programming, FPGA devices can be classified as

1. Anti-fuse Based: Initially all the contacts are open and selected locations are
conduct when programmed. This One time Programmable (OTP) technique is
non-volatile and does not use a standard CMOS process.

2. SRAM Based: In Static RAM (SRAM) based FPGAs, static memory cells act as
the basic cells. Presently most FPGA makers use SRAM-based technique. Here
SRAM cells serve the following purposes

(a) Programming of the Configurable Logic Blocks (CLBs) to implement a logic
function.

(b) Programming the connectivity or routing to connect the CLBs according to
a logic function.

3. E2ROM or Flash based: Flash-based programming is non-volatile and area effi-
cient than SRAM-based programming. But flash-based FPGA devices cannot be
configured infinite times and also flash-based devices use non-standard CMOS
process.

14.2.1 Internal Structure of FPGA

A simplified structure of an FPGA device is shown in Fig. 14.1. An FPGA consists
of three major components which are.

1. Configurable Logic Blocks (CLB), which implement logic functions.
2. I/O blocks (IOB), which are used to make off-chip connections.
3. Programmable Routing (interconnects), which connects I/O blocks and CLBs.

Configurable Logic Block

CLBs inside the FPGA device are used to realize any logic expression. A CLB
can be based on basic logic gates, MUX based or LUT based depending upon the
technology. A term granularity is defined to indicate size of a CLB (basic unit) and
depending on this, reconfigurable devices can be of following types.
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Fig. 14.1 Simplified architecture of an FPGA device

1. Fine Grained—Universal gates like NAND or AND-OR-NOT are basic blocks.
2. Middle Grained—CLBs are either based on MUX or ROM/RAM.
3. Coarse Grained—A processor (like FFT) work as a basic unit.

Trade offs: Fine grain FPGAs are having more interconnection overhead whereas
coarse grain FPGA devices are application specific. Two types of CLBs are shown
in Fig. 14.2 which implements the function

op = x ⊕ y ⊕ z (14.1)

The major element of a CLB is a Look-up Table (LUT) which implements a logic
function using its truth table.Memory elements also can be implemented usingLUTs.
Fast arithmetic operations can be implemented using inbuilt carry and control logic.
CLB also contains flip-flopswhich are required to implement sequential logic blocks.
Each CLB of Spartan 3E (xc3s500e) FPGA has four slices, as shown in Fig. 14.3.
These slices in Spartan 3E FPGA are grouped in two pairs which are SLICEM and
SLICEL. SLICEM which is also the left side pair supports both logic and memory
functions (RAM16 and SRL16). The right side pair (SLICEL) supports only logic
functions. Slice of the Spartan 3E FPGA device has two 4-input LUT function gener-
ators (G and F) and two programmable storage elements with other control circuitry.
Both SLICEM and SLICEL have the following common functionalities:
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(b) LUT based CLB construction.

Fig. 14.2 Different ways of constructing CLBs
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Fig. 14.3 Spartan 3E CLB architecture

1. Two 4-input LUT function generators (F and G)
2. Carry and arithmetic logic
3. Two storage elements
4. Two wide-function multiplexers.
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The SLICEM supports two additional functions:

1. Two 16-bit shift registers (SRL16).
2. Two 16×1 distributed RAM blocks (RAM16).

Realization of a half-adder with inputs a and b is shown in Fig. 14.4 for slice of
Spartan 3E FPGA. The summation output (sum) of the half-adder is computed by G-
LUT and carry out (co) output is computed by F-LUT. The dotted lines are connected
to realize the half-adder. A ‘Logic Cell’ is defined as combination of a storage
element and a LUT.

Input/Output Block

Input/Output Block (IOB) connects a package pin to the internal logic of the FPGA.
IOBs are programmable and can be unidirectional or bi-directional with various
interacting techniques. A block diagram of Spartan 3E IOB is shown in Fig. 14.5.
IOB has three main signal paths which are output path, input path and 3-state path.

1. Data from the outside world (IO pad) enters the FPGA through the input path. A
programmable delay block placed to delay the input signal as per the requirement.
There are two registered inputs which are I Q1 and I Q. Both the flip-flops have
separate clock signals. These flip-flops can be used for logic also through pin
T DDRI N .

2. Through output path, data from the FPGAdevice exits the FPGA IC and terminate
on an external pad. Similar to the input path, registers are also can be placed
before exiting the FPGA IC. Output signals can be passed through DDRMUXes
or buffered.

3. This path is for controlling output path and the high impedance state of the output
path is determined by this path. This path is also can be registered or non-registered
just like the output path.

Programmable Interconnect

Apart from the CLB and IOB, programmable Interconnect is the another major
block in an FPGA chip. Programmable interconnect connects all the CLBs and IOBs
inside the chip. These connections are programmable through any of the techniques
mentioned above but generally the SRAM-based programming is mainly used. Pro-
grammable interconnect hasmainly two sectionswhich are Programmable Switching
Matrix (PSM) and Interconnect Lines. These are discussed below

1. Programmable Switch Matrix (PSM): The major element of the programmable
interconnect in the FPGA is the PSM.All the CLBs, IOBs or DCMs are connected
through the PSM. PSM directs a connection from one direction to another. The
basic scheme of the PSM is shown in Fig. 14.6. Here input/output signals of the



274 14 Digital System Implementation

Fig. 14.4 Architecture of slice of Spartan 3E CLB
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Fig. 14.5 Spartan 3E IOB architecture

CLB can be connected through any of the PSM. PSM is programmed through
various pass transistors as shown in Fig. 14.6. PSM along with other different
interconnect lines form the programmable interconnect.

2. Interconnect Lines: The interconnect lineswhichmake the connectivity in a FPGA
are Long lines, Hex lines, Double lines and Direct connections. Programmable
interconnect consists of many sets of long lines which spans the entire die. These
lines can be horizontal or vertical. These lines have low capacitance and thus
suitable to carry high frequency signals with minimum loading effect. Global
clock connections can be done through these lines to have low skew. In case
of Hex lines signals can be started from one end only. Double line covers the
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Fig. 14.6 A possible connection for programmable switch matrix

majority of connections and has more flexibility than Long and Hex lines. Direct
connections are for local connections among CLB, PSM and IOB.

14.2.2 FPGA Implementation Using XILINX EDA Tool

In this section, FPGA implementation of digital systems using XILINX EDA tool is
discussed. A simplified version of FPGA-based design flow according to XILINX
EDA tool is given in Fig. 14.7.

Design Entry

There are different techniques for design entry.

1. Schematic based.
2. Hardware Description Language (HDL).
3. Combination of both.

Designer can choose any of the methods for design entry. Initially, all the EDA tools
were offering schematic-based design entry. But nowadays as digital circuitries are
getting more complex, language-based design entry is the only option available to
the users. But schematic-based entry has certain advantages like it gives designer
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more idea about hardware. But for complex designs language-based designs are
better suitable. There are three popular HDL languages which are VHDL, Verilog,
and System Verilog. HDL-based entry is faster but lags in performance and density.
Some EDA tool offers state machine-based design entry where a system is broken
into series of states. But this method is very rare. In this book, we have followed
design entry using Verilog or System Verilog.
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Synthesis

Synthesis is a process which receives the HDL code and translates into a netlist file
where the design is realized with actual hardware elements like gates, flip-flops, etc.
Sometimes a complex design might have more than one sub designs. For example,
in order to implement a processor we need CPU as one design element and RAM as
another design element. Netlist for each design element is generated in the synthesis
process. In the synthesis step, syntax and hierarchy of the design are checked. Logical
optimization also can be performed in this step. The resulting netlist(s) is saved to
a Native Generic Circuit (NGC) file (for Xilinx Synthesis Technology (XST)). The
synthesis step gives an estimate of the hardware utilization in terms of LUT and
registers consumed. Implementation step gives more accurate hardware utilization
report.

Implementation

This process consists of a sequence of three steps

1. Translate process—In the translate process, all the input netlists and constraints
files are combined to a logic design file. A Native Generic Database (NGD) file
saves this information. This is done using NGD Build program. There are mainly
two kinds of constraints which are hardware and timing constraints. In hardware
constraints, ports in the design are connected to the physical components like
pins, switches, buttons, etc. All the timing requirements for the design are written
as the timing constraints. These constraints are written in file formats like User
Constraints File (UCF) or Synopsys Design Constraint (SDC) file.

2. Map process—In theMap process, the design that contains the logical elements is
subdivided into subblocks such that they can be fitted into the FPGA logic blocks.
Map process tries to fit the logic defined by the NGD file into targeted FPGA
elements (CLB, IOB) and also generates a Native Circuit Description (NCD)
file. NCD file physically represents that the design is mapped to the components
of FPGA. All the constraint related information is saved in another file called
Physical Constraints File (PCF).

3. Place and Route (PAR)—It is a combination of two processes, place and route.
The first process tries to place the subblocks generated from the Map step into
the logic blocks according to the constraints defined in the constraint file. The
route process tries to build connection between the subblocks or between physical
buttons to input/output ports. PAR process tries to place and route the design in
such a way that design meets timing requirements mentioned in the constraint
file. For example, if a sub block is placed in a logic block which is very near to
I/O pin, then it may save the time but it may affect some other constraint. So, a
trade off between all the constraints is taken into account by the PAR process. The
PAR tool takes the mapped NCD file as input and produces a completely routed
NCD file as output. The routing information is saved in output NCD file.
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Hardware utilization summery is generated after the synthesis process and a more
detailed summery is generated after Map process. Several optimization algorithms
are run during the Map process which can trim or remove irrelevant, duplicate and
unused logic elements. EDA tools compute maximum frequency at which the design
can be operated. Maximum frequency post-synthesis process and post-Map process
can be the same or different depending on the complexity of the design.

Device Programming

Once the implementation process is done, the next step is to load the design to
an FPGA target. The design after the Map process is converted to a format that is
acceptable to FPGA. A BITGEN program takes the routed NCD file and converts
it to a bit stream file (.bit file). This file is then loaded to the FPGA device using
programming cables.

14.2.3 Design Verification

Verification can be done at different stages of the implementation process.

1. Behavioural Simulation (RTL Simulation): In this step, behaviour of the design
is tested. The design that is needed to be tested is selected as top module. This top
module is also called as unit under test (UUT). Some input test vectors are given
to the UUT and output is observed in a test bench simulation window. If outputs
are satisfactory then we can say that the design is correct. But this step does not
reveal anything about timing constraints and thus it does not guarantee that the
design will work when implemented on FPGA.

2. Functional simulation: Functional simulation gives information about the logic
operation of the design. Designer can verify the functionality of the design using
this process after synthesis and implementation step. Functionality of designmust
be checked as both synthesis and implementation step run some optimization
algorithm to optimize the design. In this optimization process, functionality of
the design may be changed. If functionality is not as expected, then designer has
to make changes in the code and again follow the implementation steps.

3. Timing simulation: A designmay not give correct results even though behavioural
and functional simulation are giving satisfactory results. This is because timing
constraints are not checked in the previous simulations. Timing simulation can
be done after synthesis and implementation step. In this simulation, all the timing
constraints are analysed. This generates reports if there is any timing violation.
This timing analysis is sometimes called as static timing analysis (STA). STAhelps
designer to achieve higher maximum frequency and also in troubleshooting.
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14.2.4 FPGA Editor

FPGA Editor is a graphical tool for displaying and configuring FPGAs. The FPGA
Editor reads from and writes to NCD files, macro files (NMC) and PCF files. Fol-
lowing functions can be performed using FPGA Editor.

1. Place and route critical sub-modules before running the automatic place and route
tools.

2. Finish PAR process if the routing program does not completely route your design.
3. Add probes to the design to examine the signal states of the targeted device.

Designers use probes to route the value of internal nets to an IOB to analyse the
design during the debugging process.

4. Run the BitGen program and download the generated bit streamfile to the targeted
device.

5. View and change the nets that are connected to the capture units of an Integrated
Logic Analyzer (ILA) core in your design.

6. Create an entire design manually (advanced users).

Figure 14.8 represents a fully routed implementation of a simple half-Adder. The
bigger rectangles are the PSMs. Total four number of IOBs are used where IOB-I
stands for input and IOB-O are for output. Out of four SLICES of a CLB, only one
SLICE is occupied.

14.3 ASIC Implementation

In the earlier section, FPGA implementation steps are discussed. FPGA based hard-
ware platform is very useful for rapid prototyping of digital circuits. But if FPGA is
used for application specific implementation, then FPGA has the following limita-
tions

1. The area is fixed for simple to complex circuits.
2. Custom input/output ports cannot be available.
3. Limited number of input/output ports.
4. Slow speed if same technology used for FPGA and custom IC design.
5. Problem in interfacing with mixed-style designs.

Thus ASIC implementation of digital systems is important for application specific
designs. Standard cell-based design methodology is suitable for complex digital
circuits. In FPGA implementation using EDA tools like Vivado, tool takes care of
every design issues. But in case of ASIC implementation, designer has to address
many design related issues even though there are tools for automatic implementation.
The tools used for ASIC level design are Cadence, Synopsys, Mentor-graphics, etc.
In this work, we will discuss the Cadence tool-based ASIC implementation. The
standard cell-based ASIC implementation can be divided in two following major
processes
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Fig. 14.8 Placed and routed
design of half-adder
observed using FPGA editor

IOB-I

IOB-O

SLICE

1. Simulation and Synthesis
2. Placement and Routing.

14.3.1 Simulation and Synthesis

Simulation

Verilog files are simulated by the same way as they were simulated in case FPGA
implementation but in this case standard cell libraries are invoked. The simulation
can be failed if there are syntax errors. Linting is a process of checking syntax errors
in case of ASIC design. Another important operation to perform is code coverage
which tells that how well the design is exercised or covered by the test bench.
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Synthesis

Synthesis step is performedonlywhen the behavioural simulation of the design shows
correct result. This process is almost same as that in case of FPGA implementation
flow and Fig. 14.9 shows the synthesis process. Two types of files are required in
synthesis process to proceed. First typeoffiles are libraryfiles and secondfile contains
the timing constraints. Library files carry the specifications about the standard cells.
In an SDC file, timing constraints are written which is mentioned in the previous
chapter. Design for testability (DFT) analysis can be performed by inserting scan
cells to the design in this step. Figure 14.10 shows a simple example of testing a
sequential design. In this example, the path from input to any flip-flop can be seen at
output when the scan_en signal is high. This technique is popularly known as MUX
based scanning. Here, three extra inputs and outputs along with four multiplexers
are included. This extra logic overhead must be considered if a design is to make

Linting
(Super Linting App)

Error

Simulation
(Incisive Simulator)

Error

Code Coverage
(Incisive Metrics Center)

Check

Synthesis
(Genus Tool)

Success

Logical Equivalence Check
(Conformal LEC)

Timing Constraints
(SDC File)

Standard Cell
Library

(LIB File)

Modify the Design

Modify the Design

Modify the Design

Modify the Design

Scan Definition

NetlistSDFSCANDEF
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To PnR Tool

Modify the Designno

Design File (.v)

Fig. 14.9 Simulation to synthesis flow using Cadence EDA tool
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Fig. 14.10 An example of MUX-based scanning for a simple up counter

testable. Automatic Test Pattern Generator (ATPG) can also be used to verify the full
functionality during synthesis process. This ATPG testing is performed by Cadence
Modus Test tool. The synthesis process generates the following three kinds of files

• Design Netlist—Netlist file gets the same extension that the original design file
has. Netlist file implicates how the design is mapped using the actual standard
cells.

• SDF files—Timing related data of the original design are stored in a Standard
Delay Format (SDF) file.

• SCANDEF Files—The scandef file keeps the information about scan cells and the
ordering of the scan chains. This file is used in the PnR stage.

Design performance parameters like logic count, area, and power are estimated at
synthesis process and separate reports can be generated. Pre-placement timing anal-
ysis is performed during the synthesis step based on the timing constraints. Design
should meet timing requirements and the tool may optimize the design for meeting
timing checks. Another step called Logic Equivalence Check (LEC) is performed
after synthesis. This step checks the similarity between the original design and the
netlist file that is generated after synthesis process.

14.3.2 Placement and Routing

Placement and routing of the design can be done only after the synthesis process
is successfully executed. Placement and routing using Cadence Innovus tool is dis-
cussed in this section. Figure 14.11 shows the overall flow for placement and routing.
Each step is explained one by one below.

Design Initialization

The first step of the design initialization is to import the design files. The Netlist file
that is generated after the synthesis process is the main design file to the PNR tool.
Only the post-synthesis netlist file is not enough for the PNR tool. There are some
other files which should be imported along with the Netlist file. These files are
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Fig. 14.11 Flow chart for placement and routing (PnR) for ASIC implementation

1. LEF Files: Library Exchange Format (LEF) contains the physical layout infor-
mation of an IC in ASCII format. Abstract information about the standard cells or
I/O pads and design rules for layout are stored in LEF files. Three kinds of LEF
files are mentioned below

(a) Technology LEF File
(b) Standard Cell LEF file
(c) I/O LEF file

2. I/O Assignment File: I/O assignment file is used for custom assignment of I/O
pads and corner cells (for example counter.io).

3. Multi Mode Multi Corner (MMMC) View Definition File: The MMMC view
definition file (for example counter.view) holds pointers to two type of files which
are

(a) Liberty Timing Models LIB Files: The information of a cell, e.g. name of the
pins, name of the cell, loading information of the pins, and cell area are stored
in the liberty files. These files also carry the necessary conditions for meeting
timing check-ups such as maximum transition time of a net. These libraries
also contain different wire load models and operating conditions along with
Design Rule Constraints (DRC).

(b) Synopsys Design Constraints (SDC): Different timing constraints are written
in the SDC file to perform the STA.

Three types of LIB files can be available which are fast-fast, slow-slow and
typical for both IO and standard cells. Considering these libraries along with
SDC files and PVT variations two different timing libraries can be set which are
MIN andMAX. Considering different RC values two different RC_CORNERS
are set which are RC_WRORST and RC_BEST . Two types of delay models
MI N_T I M I NG and MAX_T I M I NG are created by considering the above
mentioned RC_CORNERS and timing libraries. Thisway twodifferent analysis
views are formed which are setup and hold.
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4. Power Management Files: In low power designs, we need another file to achieve
low power which is Common Power Format (CPF). Different power saving tech-
niques and power constraints are defined in this file. Multiple power domains
according to multiple supply voltages are also mentioned in this file.

Create and Load Floor Plan: If the design files are loaded then the area can be
automatically calculated or can be customized. Logic area is automatically calculated
based on core utilization factor. This factor is defined as the ratio of the area of the
design (area of standard cells + area of macro cells) to the core area. In custommode,
designers have to specify the dimension for floor plan.

Figure 14.12 shows a simplified floor plan where it is divided into two areas
which are the core area and the I/O ring around the core area. Rings are required to
carry supply (Vdd) and ground (Gnd) signals around the core area. The stripes take
connection of Vdd and Gnd inside the core area. Each cell in the core area gets Vdd
and Gnd connection via the power rails. I/O ring is also shown in Fig. 14.12. The
blocks at the four corners are termed as corner cells. Different orientations of the
corner cells are available in the I/O library. I/O pads are placed for metal tape-outs
and I/O filler cells are placed between the I/O pads.

Power
Rings

Power
Stripes

Special
Route

I/O Pad

I/O Filler

Corner cell

Core Area

Fig. 14.12 A simplified floor plan for a standard cell-based digital IC
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Pre-CTS Flow

In this flow, scan path functionality of the design is checked first. Scan cells are
generally defined in the timing libraries but they can be defined during this flow
also. In the synthesis stage, scan cells and the scan chains are inserted in the netlist.
Designer can change the scan chain order in this flow. This means designer can
change the order of how the flip-flops are connected along the scan chain for a single
scan group or for all the scan groups. This process changes the connection constraints
regarding the scan cells not the placement constraints. The reordering of scan chains
can be performed in the following two ways

• Native ScanReorderingApproach—If scandef file is not available then thismethod
is applicable. In this approach, the designers have to specify information regarding
the scan cells, scan paths, and scan chains.

• Scandef Method—This approach takes the help of scandef file to reorder the scan
chains. Cadence prefers these methods as it is more easier to execute.

The design can be placed once the scan cells are configured. The tool offers various
optimization steps for the design. Placement of the design can be donewith orwithout
optimization. Once the optimization step is completed, the design is checked for
timing. Timing checks are performed to see whether the design meets the setup and
hold criteria. Design should satisfy the timing checks otherwise modification has to
be performed in the Pre-CTS flow or designer can change the design. If design meets
the timing then Post-CTS flow can be started.

Post-CTS Flow

Clock Tree Synthesis (CTS) is an important step that must be successfully executed.
CTS is a process of building physical structure between all the sink flip-flops and the
clock source. CTS is always performed after placing and fixing the location of the
standard cells. CTS is performed to ensure that the clock signal is distributed evenly
to all the sequential elements.

The goal of the CTS is to meet the followings

1. DesignRuleChecks (DRC)—DRCare satisfied in suchway to optimize transition
delay, fan out and load capacitance.

2. Targets of Clock—The objective of clock tree distribution is to optimize clock
skew and clock latency.

CTS ensures the following parameters

• Minimum clock skew.
• No pulse width and duty cycle violation.
• Minimum clock latency.
• Minimum clock tree power by minimizing the transition and latency.
• Minimum signal cross talk.
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Fig. 14.13 Regular tree type clock distribution schemes

CTS chooses a suitable clock tree configuration out ofmany configurations to achieve
these targets. These configurations are

1. Tree Structures: Tree structures are buffered as buffers restore the signal for better
slew rates. Total insertion delay and total switching capacitance are less in case
of tree structures. Following types of tree structures are there

(a) H-Tree: H-Tree (Fig. 14.13a) provides equal timing path from source clock
to destination flip-flop. Very low skew is guaranteed in case of H-tree but has
very low floor plan flexibility.

(b) X-Tree: X-Trees (Fig. 14.13b) are similar to the H-trees but not rectilinear.
(c) Method of Mean and Median: This is an efficient algorithm to achieve H-tree

by proper partitioning the module.
(d) Geometric Matching Algorithms: Flip-flips are not symmetrically located

and thus regular H-tree structure is difficult to achieve. Hence this algorithm
gives an efficient way to obtain tapered tree (Fig. 14.14b).

(e) Pi Configuration: In Pi configuration (Fig. 14.14a), total number of buffers
inserted in a level is multiple times the buffers at previous level. This is a
balanced configuration.

2. Mesh type: Initially, along the whole module a grid is formed and wire is laid
along the grid lines. Figure 14.15 shows this type of clock distribution. Here, clock
skew is determined by grid density and everywhere clock signals are available.
Mesh type clock tree produces low value of clock skew and is tolerant to PVT
variations. This clock distribution needs huge amount of wiring and power but
they have good floor plan flexibility.

3. Spine type: Spine type clock distribution (Fig. 14.16) is a hybrid type of clock
distribution which combines mesh type with tree structures. This type of tree
structures have medium floor plan flexibility and medium capacitance but have
higher skew.
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(a)  -type clock tree. (b) Tapered H-type clock tree.

Fig. 14.14 Other type of tree type clock distribution techniques

Fig. 14.15 An example of mesh type clock distribution

The clock tree optimization techniques are

1. Buffer and Gate Relocation—Timing performance can be improved by relocating
buffers and gates. The arrangement shown in Fig. 14.17b is the modified version
of the arrangement shown in Fig. 14.17 an after relocation. No new clock tree
hierarchy is introduced in this operation.
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Fig. 14.16 An example of
spine type clock distribution

Spines

2. Buffer and gate sizing—Size of the buffers and the gates can be increased or
decreased to improve skew and insertion delay as shown in Fig. 14.17c. Clock
tree hierarchy is unchanged here.

3. Delay Insertion—Delay insertion for shorter paths is also a solution as shown in
Fig. 14.17d. Here clock hierarchy is changed as new buffers are inserted.

4. Level Adjustment—In level adjustment (Fig. 14.18), level of the clock pins can
be adjusted to upper or lower level. No new clock tree hierarchy is introduced.

5. Reconfiguration—Sequential elements can be clustered and then buffers can be
placed as shown in Fig. 14.19.

6. Dummy load insertion—Insertion of dummy loads helps in load balancing.
Dummy loads can be added to fine tune the clock skew by increasing the shortest
path delay.

Timing checks are again performed after execution of the CTS. The design meets the
setup timing criteria based on the delay of the critical path. CTS step takes care that
the critical path does not get much delay. Host criteria depend on the minimum path
of the design. CTS tries to fix the hold problem by inserting buffers in the minimum
paths. Fixing the hold slack can violate the setup condition and vice-versa. If all
the timing checks are met, then routing can be started or the previous steps can be
executed again and again.

Post-Route Flow

Physical connections are made between the cells in the routing flow based on the
logical connectivity. The objective of the routing is that all the paths should meet the
timing constraints. Three types of routing processes are there which are

1. Power Routing—In the floor planning stage, routing of power nets is partially
done but connection of Vdd and Gnd pins of a cell is done in the routing flow.
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Fig. 14.17 Clock tree before CTS and after CTS optimization
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Fig. 14.18 Clock tree before CTS and after level adjustment
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Fig. 14.19 Clock tree before CTS and after reconfiguration

2. Clock Routing—During the CTS flow, clock tree is formed and reorganized. Leaf
nodes in tree are connected to clock signal in the routing stage.

3. Signal Routing—All the signal nets are routed in routing stage and critical nets
can be routed in a special way if mentioned as exception.

The overall routing job is executed in the following three steps

1. Global Routing—Overall design is partitioned in small routing regions like
tiles/rectangles in this step. Region-to-region paths are decided in a way to opti-
mize the wire lengths and timing. Planning of the routing is actually done in this
stage and no actual routing is done.

2. Track Assignment—In this step, metal layers replace the routing tracks assigned
by the global stage in the previous stage. Tracks are assigned in vertical and
horizontal directions. Re-routing is performed if overlapping has occurred.

3. Detailed Routing—Some paths still can violate the setup and hold criteria even if
the metal layers are laid. In this stage, the critical paths are identified and fixed.
This is an iterative process and iterations will continue until all the constraints are
met.

Signing Off Flow

Post-route timing checks are performed after routing step. The timing constraints
can be met or not met by a small margin. The signing off stage can be executed after
the route step and this is the last stage of ASIC implementation. Filler cells are added
in the core area and in the I/O ring and various sizes of filler cells are available in the
library. Following checks are performed in this stage
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1. Logical Checks—Two types of logical checks are performed and they are

(a) Logic Equivalence Check (LEC)—LEC is again performed to check the logi-
cal similarity between the Netlist generated after post-route optimization and
the actual Verilog file.

(b) Timing Checks—Timing checks are again performed to check if the design
violates any timing constraints (setup, hold or transition).

2. Physical Checks—Mandatory physical checks are

(a) Layout Versus Schematic (LVS) Check—Actual devices are identified by
checking shape and connectivity of a layout.

(b) Design Rule Checks (DRC)—Layout should be generated as per the specified
layout related rules otherwise DRC violation will occur.

(c) Electrical Rule Checks (ERC)—ERC is performed to verify connections of
all the power nets.

(d) Antenna Check—The antenna effect is caused when a particular net gains
higher potential than the operating voltage of the chip. This happens due to
charge accumulation on an isolated node. There are techniques available to
remove antenna errors.

3. Power Checks—The power checks are

(a) Dynamic IR—IR drop is the difference of potential in the metal layers which
constitutes the power grid.

(b) Electromigration (ER)—TheEDA tools take care of theERchecks and ensure
it never occurs.

The design is ready for fabrication once all the physical checks are successfully
verified. The layout of the IC can now be generated in the GDSII format. This format
is sent to the foundry for fabrication.

14.4 Frequently Asked Questions

Q1. What are the checks performed by a linting tool?
A1. In general, a linting tool checks for following

1. Undriven and Unconnected ports
2. Port/net size mismatches
3. Unsynthesizable constructs
4. Case statement style issues
5. Unintentional latches
6. Incorrect usage of blocking and non-blocking assignments
7. Unused declarations
8. Driven and undriven signals
9. Race conditions
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10. Incomplete assignments in subroutines
11. Set and reset conflicts
12. Out-of-range indexing.

Q2. Explain the common Logic optimization errors and warnings that arise
during the implementation of a Verilog design?
A2. In this section, some of the common logical errors and warnings which arises
when a digital system is checked using a linting software or while synthesis process
is discussed. The errors must be addressed in order to proceed to the next step but one
can proceed to the next state without addressing the warnings. But these warnings if
not addressed can lead to significant logic trimming and unwanted logic optimization.
In the end the implementation will fail. These errors and warnings are

1. Error: Signal t1 in unit siso is connected to following multiple drivers: The
net t1 is driven by multiple inputs in the logic block siso. This error occurs as the
net t1 is output of two logic blocks.

2. Net < t2 > does not have a driver.: This type of warning is generated when the
net t2 is defined but not assigned in the code. These type of warnings must be
taken care of as the tool can trim or discard the logic block which has t2 as input.

3. FF/Latch < m2/q > has a constant value of 0 in block < siso >. This
FF/Latch will be trimmed during the optimization process.: This type of
warning is very critical. If a logic block faces constant input either logic 1 or
0 is optimized automatically by the tool. This is because the block can be simply
replaced by either a connection to Vdd or Gnd. The implementation can give
incorrect results if this type of optimization occurs.

4. Line 26: Size mismatch in connection of port< q >. Formal port size is 1-bit
while actual signal size is 4-bit.: This warning arises due to the mismatch of the
size of the wires. Size of all the wires must be defined correctly otherwise the tool
will generate warnings.

5. Assignment to q ignored, since the identifier is never used: The tool will never
assign to a wire or net which is not used in the design.

6. All outputs of instance< m1 > of block< DFF > are unconnected in block
< siso >.Underlying logic will be removed.: If the output of a logic block is not
used in a design, then the underlying logic responsible for assigning that output
net are removed.

7. < m3 > is already declared.: This warning arises when same name for module
instantiation is used.

8. Mix of blocking and non-blocking assignments to variable < out > is not a
recommended coding practice.: This warning is self-explaining and directs user
not to mix up blocking (=) and non-blocking (<=) assignment operators.

9. Procedural assignment to a non-register out is not permitted, left-hand side
should be reg/integer/time/genvar: This warning arises as the reg and wire
operators are mixed up. In Verilog language practice, these two operators should
be correctly used.

Trouble shooting of complex digital system is very critical. All the warnings and
errors must be addressed so that the implementation will give correct results. The
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overall design should be broken into several smaller sub-modules so that block wise
trouble shooting can be done.

Q3. What is Timing-driven placement?
A3. The objective of all the placement algorithms is to reduce the delay associated
with a net by reducing its length. Timing-driven placement (TDP) algorithms focus
on timing the critical path. Generally one cell can be connected to multiple cells.
If the critical path from one cell to another cell is targeted, it may be possible that
any other path originated from that cell can become critical. Thus TDP should be
carefully applied.

Q4. What is SI driven routing?
A4. Signal Integrity (SI) driven routing algorithms aim to reduce the interference
between two wires and thus try to reduce the noise. The timing driven routing algo-
rithms on the other hand are based on reducing the critical path.

Q5. How power measured in FPGA implementations?
A5. In order to measure power, a design must be completely routed without any
warnings and the design meets all the timing constraints. In case of XILINX ISE
14.7 tool, power measured using XPower analyzer tool. The files required for power
measurement are Design file (.ncd), settings file (XML format), constraints file (.ucf)
and simulation activity file (Value Change Dump (VCD) or Switching Activity Inter-
change format (SAIF)). Simulation activity file can be created by inserting the fol-
lowing section in the test bench file.

initial begin
$dumpfile ("test_design.vcd"); // Change filename as
appropriate.
$dumpvars(1, test_tb.uut); //Test Bench name ...
end

Q6. Mention the major blocks that an FPGA IC can contain?
A6. The advanced FPGA devices contain many advanced blocks along with CLB,
IOB and Programmable Interconnect and these are

1. Static RAM (SRAM) blocks for BRAMS.
2. DSP Blocks
3. PLL for clock generation.
4. Clock Managers
5. General Purpose Input Output (GPIO) banks
6. High-speed serializer/deserializer (SERDES) blocks
7. Hard Processor Cores
8. Peripherals (UART, CAN, I2C, SPI, USB, etc.).

Q7. Mention the XILINX architectural evolution from FPGA to SoCs?
A7. Over the past few years XILINX has offered several advanced FPGA devices.
Its journey from a simple FPGA device to multi-core SoCs is
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Fig. 14.20 Different FPGA offering by XILINX

1. FPGA—Only programmable fabric
2. System on Chip (SoC)—FPGA programmable fabric with a single hard core

processor (e.g. ZYNQ SoC).
3. MPSoCs—FPGA programmable fabric with a multiple hard core processors.
4. RFSoCs—MPSoCs with RF capability
5. ACAPs—Adaptive Compute Acceleration Platforms.

Q8. Mention different FPGA Vendors who offer high performance FPGA
devices?
A8. Different Vendors for FPGA devices are

1. XILINX FPGAs
2. Altera FPGAs (acquired by Intel)
3. Atmel (acquired by Microchip Technology)
4. Efinix, Lattice Semiconductor
5. Microsemi (acquired by Microchip Technology).

Q9. Mention different FPGA offerings by XILINX?
A9. Figure 14.20 shows the various FPGA offerings by XILINX and it also shows
how performance is improved over the years in terms of speed and area.

14.5 Conclusion

In this chapter, we have discussed implementation of digital systems on FPGA plat-
form and for ASIC. A brief theory about the internal structure of the FPGA, pro-
gramming of the FPGA and FPGA implementation flow. The SPARTAN 3E FPGA
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device is considered here for demonstrating basic operation of the FPGA device. The
implementation flow is explained with the help of XILINX tool.

In this chapter, we have also discussed the ASIC implementation steps. The ASIC
implementation steps are explained with the help of CADENCE EDA tool for stan-
dard cell-based system design. There are two major steps in ASIC implementation,
viz., Synthesis and Placement and Routing process. The placement and routing flow
is explained here step by step using the INNOVUS tool. At the end, some errors and
warnings are explained for hassle free trouble shooting.



Chapter 15
Low-Power Digital System Design

15.1 Introduction

Design for low-power consumption is as important as design for less area and high
speed. Low-power digital system design is not new to researchers as there are many
research works reported in literature on techniques to achieve low-power consump-
tion. A separate chapter is included here to familiarize the readers with the basic
concepts of the power consumption reduction techniques.

In an integrated IC, there may be two types of power consumption, viz., peak
power consumption and time average power consumption. Peak power consumption
above a certain limit can instantly cause harm to an IC. The time average power
consumption is very critical as it is directly proportional to the size of an IC and it
also decides the life of the power source.

The power consumption of a digital system can be reduced at various levels.
Hierarchy of these levels is given in Fig. 15.1. There are opportunities at each level
to reduce power consumption. In the present scenario of the VLSI technology, there
are more scopes of power reduction in the higher levels than in the lower levels.
Initially, different sources of power in a digital circuit will be discussed and then
various techniques for power reduction are briefly discussed.

15.2 Different Types of Power Consumption

In the section, different sources of power consumption will be discussed. The overall
average power consumption has four components

Pavg = Pswi tching + Pshort−circuit + Pleakage + Pstatic (15.1)

A brief discussion on all the components of power consumption is given below.
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15.2.1 Switching Power

The switching power in a circuit is due to the switching activities at different nodes
of an IC. The term switching activity means transition of signal value from 0 to 1 or
1 to 0. During these switching activities, circuit draws energy from the power supply
to charge output load capacitance. The expression for the switching power can be
expressed as

Pswi tching = α.CL .V .Vdd . fclk (15.2)

Here, fclk is the clock frequency at which the sequential circuits operate, Vdd is the
power supply voltage and V is the voltage swing. In most cases, V is equal to Vdd .
CL is the load capacitance and this capacitance can be expressed as

CL = Cgate + Cdi f + Cint (15.3)

where Cgate is the gate capacitance, Cdi f is the diffusion capacitance and Cint is the
interconnect capacitance. α is the node switching activity factor and indicates the
average number of times a node makes switching per sample clock.

The switching activity in a circuit can have two components which are

1. Static Component: This component doesn’t take timing behaviour into account
and only depends on logic block structure and input signal behaviour. This switch-
ing activity on a node of a logic block depends on the type of logic function, type of
logic style, signal statistics and inter-signal correlations. The probable switching
activity can be estimated at the output of logic gate as

p0→1 = p0.p1 = p0.(1 − p0) (15.4)
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Table 15.1 Probability of output transition for various logic gates

Logic Gates p0→1

AND (1 − pa pb)pa pb
OR (1 − pa)(1 − pb)(1 − (1 − pa)(1 − pb))

XOR (1 − (pa + pb − 2pa pb))(pa + pb − 2pa pb)

Here, p0→1 indicates the probability of transition from 0 to 1, p0 is the probability
that the output is at logic 0 state and p1 indicates the probability that the output
is at logic 1 state. The transition probability for N input gate can be expressed as

p0→1 = N0

2N
.
N1

2N
= N0.(2N − N0)

22N
(15.5)

Here, N0 is the number of zero entries in the truth table, N1 is the number of ones
in the truth table and 2N represented the number of possible sets for N inputs.
Here, inputs are considered as independent and equi-probable. The value of p0→1

for two-input NOR gate is 3/16 and that of a two-input XOR gate is 1/4.
In the above discussion, the inputs are considered as equi-probable means in a
two-input gate both the inputs a and b have 50% probability of getting logic 1.
But in the actual case, input can be logic 1 at any probabilities. In the case of a
two-input NOR gate, the probability that the output node will be at logic 1 is

p1 = (1 − pa)(1 − pb) (15.6)

Here, pa is the probability of the input a and pb is the probability of the input b.
The p0→1 can be estimated as

p0→1 = (1 − (1 − pa)(1 − pb))(1 − pa)(1 − pb) (15.7)

The expression of p0→1 for other different types of logic gates are shown in
Table 15.1.
Till now, input signals are considered as independent. But in complex digital
systems signals are interrelated.Let us consider in a two-input gate inputb depends
on input a. In such cases, concept of conditional probability must be taken into
account. Thus, the p0→1 for the output signal is expressed as

p0→1 = p(a = 1|b = 1).p(b = 1) (15.8)

A logic expression can be implemented using either static CMOS configuration
or dynamic logic configuration. The logic style has a great effect in determining
switching effect. For example, the value p0→1 in the dynamic logic style is 3/4
compared to that using the static CMOS configuration.
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2. Dynamic Transitions: A node in circuit topology can have multiple transitions
before it settles to a stable state. These extra transitions are due to circuit topol-
ogy, logic depth, signal skew and signal patterns. These extra transitions are
sometimes called glitches. The example of glitch generation can be explained by
chain typology shown in Fig. 15.2 to compute z = a.b.c.d .
The chain topology can generate glitches in the circuit if signal skew is present.
The generation of glitch is shown in Fig. 15.3 where signal c has skew. The stable
value of z is logic 1 but before reaching the stable state one extra transition is
observed. This generation of glitch can be avoided by using balanced tree topology
which is shown in Fig. 15.2b.
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15.2.2 Short Circuit Power

The short circuit power consumption is due to the creation of short circuit path in
the static CMOS-based digital circuits. This component of power consumption can
be expresses as

Pshort = Vdd .Isc (15.9)

Here, Isc is the short circuit current in the circuit.

15.2.3 Leakage Power

The leakage power consumption is due to the existence of leakage current (Ileakage)
in the circuit. The leakage current can be due to reverse biasing of the P–N junctions
or from the sub-threshold effects. This component of power consumption can be
expressed as

Pleakage = Vdd .Ileakage (15.10)

This component mainly depends on the technology parameters.

15.2.4 Static Power

The fourth component of power is static power consumption and it is expressed as

Pstatic = Vdd .Istatic (15.11)

Here, Istatic is the static current that flows continuously in circuit between the power
rails. Ideally, the static current should be zero in CMOS circuits. However, there is a
small amount of static power consumption due to the reverse-bias leakage between
diffused regions and the substrate.

In the above section, all the components of power consumption are discussed.
Switching power consumption is the major issue in digital circuits. According to Eq.
(15.1), the switching power can be reduced by operating the circuits at lower speed
or by reducing the operating voltage or by reducing the switching activity. Switch-
ing activity can be reduced either by algorithmic modifications or by architectural
modifications. In further sections of this chapter, we will discuss these techniques
to reduce the switching power consumption by all means. But only the gate level or
architecture level techniques will be discussed in this chapter.
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15.3 Architecture-Driven Voltage Scaling

Selection of suitable architectures can allow designers to reduce the voltage. The
reduction in voltage means the circuit will operate at a slower speed. Thus the chosen
architecture should allow the designers to reduce voltage at affordable throughput.
Three types of architectures are used to implement a system which are Serial Archi-
tecture, Parallel Architecture and Pipeline Architecture. All these architectures are
investigated below in terms of power consumption.

15.3.1 Serial Architecture

A simple serial architecture to compute mean of eight 18-bit data samples is shown
in Fig. 15.4. Here the execution unit is a simple 18-bit adder (RSH3 is a wired
shift block). Register is placed before and after the combinational path. The desired
throughput is one mean sample per unit clock cycle with period 8Tsr . Thus the
registers should be connected to a high speed clock with period Tsr . In eight clock
cycles, first mean is computed. The overall capacitance switched in this circuit per
cycle is

Csr = Cregin + Ccomb + Cregout (15.12)

Here,Cregin is the capacitance involved in the input register,Cregout is the capacitance
of the output register and the Ccomb is capacitance of the combinational path. The
serial architectures are hardware efficient but may not be suitable for lower power
consumption as a high frequency clock is needed to be applied for desired throughput.

Fig. 15.4 Serial architecture
for mean computation

reg

regRSH3

b[17 : 0]

a[17 : 0]

s
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Fig. 15.5 Parallel
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15.3.2 Parallel Architecture

In a parallel architecture, several execution units are used to compute a function.
Here, a parallel architecture is shown in Fig. 15.5 for the same example of mean
computation. In this parallel architecture, seven execution units or adders are used.
The advantage of the parallel architecture is that the adders can add the samples by
accessing the samples in parallel.

The clock period need not to be at higher rate as in the case of serial architecture.
Thus, the clock period is Tpar = N .Tsr and one mean sample is computed in each
clock cycle. The reduction of clock frequency allows designers to lower the operating
voltage as long as the critical path delay is less than the clock period. If the relation
Tpar = N × critical path delay is true, then the voltage can be approximately reduced
as Vpar = Vsr/N , where Vsr is the operating voltage of the serial architecture.

The total power in parallel mean architecture can be expressed as

Ppar = Cpar .Vpar . f
2
par = (8.Cregin + 7.Ccomb + Cregout).Vpar . f

2
par (15.13)

In the parallel architecture, overhead capacitance must also be included in computa-
tion of Cpar . This overhead capacitance is due to routing paths, input/output MUXes
or capacitance due to control circuits. Thus, the parallel architectures can be power
efficient as long as the overall capacitance is not dominating the power equation.
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Fig. 15.6 Pipeline
architecture for mean
computation
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15.3.3 Pipeline Architecture

The major drawback of the parallel architectures is its high critical path delay. This
delay is reduced by inserting pipeline registers in the parallel architectures and the
resulting architectures are called pipeline architectures. The pipeline architecture
for mean computation is shown in Fig. 15.6. Here, the clock period is same as
Tpipe = Tpar for fixed throughput.

In a pipeline architecture, the critical path is reduced by a factor of p for p
pipeline stages. Thus, the circuit can operate at slower speed and the voltage (Vpipe)
can be reduced by a factor of p. The power for the pipeline mean architecture can
be expressed as

Ppipe = Cpipe.Vpipe. f pipe = (8.Cregin + 6.Cregpipe + Cregout ).V
2
pipe. f pipe (15.14)

15.4 Algorithmic Optimization

Choice of efficient algorithm is very important decision in designing a low-power
digital system. An efficient algorithm can reduce maximum power by the reduction
in complexity, algorithmic transformations, by improving concurrency or by giving
flexibility to choose power-efficient data representation.
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15.4.1 Minimizing the Hardware Complexity

Solving a linear equation is very important in signal processing applications like
compressed sensing-based solutions. A simple linear equation is y = φx where y ∈
Rn×1 is the output vector, φ ∈ Rn×n is the system matrix and x ∈ Rn×1 is the input.
This equation can be solved in many ways. The solution of this equation is x =
φ−1y. Most common ways to solve this equation are by Gaussian Elimination (GE)
technique [61],ModifiedCholesky Factorization (MCF) [56] andQRDecomposition
(QRD) [62].

GE is the most common technique to solve a linear equation. In this method, a
newmatrix is formed as

[
φ y

]
. Then this matrix is converted into an upper triangular

matrix as
[
U Y

]
. Here,U is an upper triangular matrix. The solution is computed as

x̂ = U−1y where x̂ is the estimation of x .
MCF is a modified version of Cholesky factorization. MCF does not need square

root operation as compared to Cholesky factorization. In this method, φ is factorized
as φ = LDLT where L is the lower triangular matrix with unit diagonal and D is
a diagonal matrix. The matrix inverse is computed as φ−1 = (L−1)

T
D−1L−1. Then

φ−1 is multiplied with y to compute x̂ .
QRD is another technique to solve this equation. The φ matrix can be written as

φ = QR where R is an upper triangular matrix and Q is an orthonormal matrix. The
matrix inverse is computed as φ−1 = R−1Q. This is then multiplied with y to get
the final output. QR decomposition can be performed by three different techniques
which are Gram–Schimdt algorithm, Givens Rotation algorithm and Householder
algorithm. Here, a modified Gram–Schimdt algorithm is used.

A comparison of computational complexities for the above-mentioned solution
techniques is shown in Table 15.2. Computational complexity is a measure of how
many arithmetic operations are needed for evaluation of the function. The compu-
tational complexity is very important to measure the performance of an algorithm.
Higher complexity can result in higher area or low speed. Low computational com-
plexity is desired to achieve high SNR. Algorithms with low computational com-
plexity enable power reduction either by reducing area or by reducing word length.

GE has less multiplication complexity than the other methods but it has high
division complexity. Division operation is most critical to perform as discussed in
Chap. 9. Thus, GE is computationally inexpensive but parallelism is difficult to

Table 15.2 Comparison of computational complexity of different solution techniques for linear
equation

Operations GE MCF QRD

Multiplication n2(n − 1)/2 (10n3 + 6n2 − 10n)/6 (5n3 + 3n2 + n)/3

Addition/subtraction n2(n + 1)/2 (n3 + 3n2 − 4n)/6 (10n3 − 5n2 − 7n)/6

Division n(n + 1)/2 n n(n − 1)/2

Reciprocal 0 0 n
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adopt. MCF has less computational complexity than QRD and is also suitable for
systolic-type architectures.

15.4.2 Selection of Data Representation Techniques

In communication between two chips or between amaster and a slave in an embedded
system, transition activity on the bits can be reduced by choice of data representation.
The concept is to increase the correlation between two samples. Various techniques
to achieve this are discussed below.

One-Hot Coding

One-hot coding technique is very powerful in reducing switching activity. This can
be used in digital systems to reduce dynamic power. One-hot coding technique, a
redundant coding scheme, is sometimes used in finite state machines to define states.
In the inter-chip communication, this coding scheme can be used. The one-hot coding
scheme is a one-to-onemapping between the n-bit datawordswhich are to be sent and
them-bit data words which are transmitted. Here,m wires are connected between the
transmitter chip and the receiver chip. The parameter m and n are related asm = 2n .
The one-hot coding scheme is shown in Table 15.3.

Here, ‘1’ is placed in the i th place where 0 ≤ i ≤ (2n − 1) and ‘0’ is placed in
the (m − 1) places. In one-hot coding scheme, one 1 → 0 and one 0 → 1 transi-
tion occur between two data words. Thus, this scheme reduces a huge amount of
switching activity. But this technique uses 2n number of wires which increases the
wiring overhead. One-hot coding sometimes becomes impractical for the exponen-
tial increases in the wiring overhead. For example, 75% switching activity is reduced
for n = 8 but m = 256 number of wires are required.

Gray Coding

Gray coding is a powerful coding strategy which reduces the switching activity
[68]. In Gray coding, only 1-bit transition is occurred between two words. Table

Table 15.3 One-hot coding
scheme

2-bit data words 4-bit coded words

00 0001

01 0010

10 0100

11 1000



15.5 Architectural Optimization 307

3.7 in Chap. 3 shows the binary representation and Gray code representation for
decimal numbers 0–15. Gray codes are often used for assigning states in designing
FSM-based systems. Gray code also can be used for fetching address and data from
memory elements.

Bus Inversion Coding

Bus Inversion Coding (BIC) [66] is another coding technique to reduce dynamic
power. In BIC n-bit data word which is to be sent is encoded in m-bit (where m =
n + l) data which is transmitted. Here, l denotes the extra bits which are sent. BIC is
based on sending either x or x̄ depending upon which will results in less switching
activity.

Now receiver has to be informed that which data is transmitted and thus an extra
polarity bit (p) is also sent. Thus, the total number of bits will be m = n + 1. The
transition on the polarity bit is also taken into consideration while sending x or x̄ . For
a 32-bit bus, 33-bits are transmitted for one polarity bit. It is also possible to divide
the 32-bit bus into smaller groups of width n and add polarity bits to each group.

BIC works better when the value of n is small but smaller value of n increases the
value of extra polarity bits (l). Thus, smaller value of n increases wiring overhead.
For example, switching activity is reduced by 11.3% if 32-bit data is sent with a
single polarity bit but switching activity is reduced by 18.3% if 32-bit data is sent by
dividing it into four groups with l = 4.

15.5 Architectural Optimization

15.5.1 Choice of Data Representation Techniques

Choice of data representation can also reduce switching activity. Two most used
data representation techniques are Two’s complement data representation and signed
magnitude data representation. Two’s complement data representation is most pre-
ferred in implementation of signal processing algorithms as addition and subtraction
operations can be easily performed.

Two’s complement data representation can produce significant switching activity
due to its technique of sign extension. The transition on the MSB bits occurs when
data transitions from positive to negative. In transition from –1 to 0, all the bits
switched from 1 to 0. Situation becomes worse when the signal frequently switches
around 0 and entire bandwidth is not used.

Signed magnitude representation is another technique to represent data. Here,
only one bit (mostly MSB) is used to represent the polarity of data. Now if the data
change from –1 to 0, then only one bit will change. Even if the entire bandwidth is
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Fig. 15.7 Example of operation re-ordering for low transition activity

not used, transition due to sign change occurs at one bit. Thus, signed magnitude
representation is a good alternative to reduce power.

15.5.2 Ordering of Input Signals

The switching activity can be reduced by optimizing the order of operations in a
design. This can be illustrated by taking the example of constant multiplication.
Details of constant multiplication is shown in Chap. 3. The output (y) evaluated as
y = x(20 + 2−6 + 2−8). The basic implementation of this multiplication is shown
in Fig. 15.7a. Here, RSH blocks are wired shift blocks as discussed in Chap. 3. The
input signal has large variance which covers the entire bit-width. But the shifted
signals are scaled and thus have lower dynamic range. Thus, the signals y1 and y
have very similar transition activity due to their dependence on x . An alternative
structure is shown in Fig. 15.7b. In this structure, the signal y1 will have lower signal
transition rate than the signal y. This is because y1 is now function of scaled signals
not of x .

15.5.3 Reducing Glitch Activity

A node in a design can have multiple transitions in a single clock cycle before
settling to the correct logic level. These extra transitions are called glitches. These
glitches increase the power consumption. To minimize these glitches, it is important
to balance all signal paths and reduce the logic depth. An example of glitch reduction
by balanced structure is shown in Fig. 15.2b.
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Table 15.4 Average number of gate transitions per addition [19]

Adder type 16-bit 32-bit 64-bit

Carry look ahead 90 182 366

Carry look ahead 100 202 405

Carry skip 108 220 437

Carry select 161 344 711

Conditional sum 218 543 1323

15.5.4 Choice of Topology

Choice of topology of the basic arithmetic blocks like adder, multiplier, divider or
square root is very important to design a low-power digital system. The topologies
can be selected based on trade-off among the design metrics like area, speed and
power consumption. Table 15.4 shows a comparison of different adder topologies.
Though the ripple carry adder has the low average gate transitions per addition, the
look-ahead adder performs better among all these topologies in terms of speed and
power consumption.

15.5.5 Logic Level Power Down

Power consumption can be reduced by deactivating or disabling execution units
which are not in operation at a certain period of time. This shutting down of the
executionunits can save lots of power.Thismethod includes control enablingmemory
elements or disabling the clock for an execution unit. If a memory element is not
participating in an executing step then it can be disabled and can be again enabled
when needed. Clock can be disabled by using clock gating techniques which are
discussed in the FAQ section.

Consider an example of a 4-bit comparator architecture shown in Chap. 3. An
alternative architecture is shown in Fig. 15.8. The comparator structure is divided
into two parts, one for lower 2-bits and one for upper 2-bits. If the upper 2-bits are
not equal, then the comparator for lower 2-bits can be deactivated. Thus, transition
activity for comparator 2 is reduced. This is a simple way to show power-down
mechanism which also serves the purpose of pipeline register insertion.

15.5.6 Synchronous Versus Asynchronous

In synchronous circuits, everyoperation is performedwith respect to clock. Switching
power depends on switching activity within a clock cycle. The power can be reduced
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by deactivating the execution unitswhich are not operating. This deactivation requires
implementation of extra logic. On the other hand, asynchronous circuits do not follow
the clock. Deactivation of execution units can be done easily. But, asynchronous
designs on the other hand is not suitable for very complex designs due to timing
synchronization problems.

15.5.7 Loop Unrolling

Efficient implementation of the digital systems which have feedback path are very
challenging. This is because pipelining and parallelism can not be applied if there
is a feedback path in a system. An example of such system is IIR filters. There are
techniques by which pipelining and parallelism can be applied to these IIR filters
(Chap. 16). But loop unrolling is an efficient technique to introduce pipelining as
well as to reduce power consumption of these recursive systems.

Let’s consider the case of a simple first-order IIR filter. The timing difference
equation of this IIR filter is shown below:

y(n) = x(n) + c0.y(n − 1) (15.15)

The architecture according to equation 15.15 is shown in Fig. 15.9a. Similarly, the
following timing difference equation can also be written by replacing n by (n − 1):

y(n − 1) = x(n − 1) + c0.y(n − 2) (15.16)

This equation can be substituted in equation 15.15 and the resulting timing difference
is written as

y(n) = x(n) + c0x(n − 1) + c20.y(n − 2) (15.17)



15.5 Architectural Optimization 311

x y

c0

Z−1

Z−2

x(n)
Z−1

c20

c0

Z−1
x(n− 1)

c0

y(n)

y(n− 1)

Fig. 15.9 Example of loop unrolling for first-order IIR filter

The basic concept of loop unrolling is to compute multiple samples per clock against
multiple inputs and to allow application of slower clock for fixed throughput. Here,
two output samples are computed concurrently. Thus, loop unrolling reduces power
consumption. The IIR filter structure after loop unrolling is shown in Fig. 15.9b.

Loop unrolling reduces the power consumption by allowing slower clock. But
this technique increases hardware resources as three multipliers are used in place of
one multiplier. The use of extra resources increases the overall capacitance. Thus, a
trade-off should be maintained while applying the loop unrolling.

15.5.8 Operation Reduction

Operation reduction is an obvious way to reduce switching capacitance or to reduce
power consumption. If any algorithm is to be implemented, then the designer must
investigate to reduce the number of operations. A simple example of operation reduc-
tion can be shown by implementing the following polynomial:

f (x) = x2 + c1.x + c2 (15.18)

Direct implementation of this polynomial is shown in Fig. 15.10a. This implemen-
tation uses two multipliers and two adders. This polynomial can also be written
as

f (x) = x(x + c1) + c2 (15.19)

Implementation of this form of polynomial is shown in Fig. 15.10b. Here, one multi-
plication operation is reduced. This reduction automatically reduces the total switch-
ing events. There are many examples of operation reduction in implementations. For
example, if the integer part in a division operation is limited to fewer bits then some
stages in a non-restoring divider can be removed. In constant multiplication pro-
cess, use of dedicated constant multipliers instead of complete multipliers is another
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Fig. 15.11 Example of operation reduction for a third-order polynomial

example of operation reduction. Dedicated reciprocal or square root reciprocal units
based on iterative algorithms like Newton–Raphson or Gold-Smith reduce lots of
operation.

Sometimes, operation reduction method may increase critical path. This can be
understood by implementing the polynomial

f (x) = x3 + c1.x
2 + c2.x + c3 (15.20)

The straightforward implementation of this equation is shown in Fig. 15.11a. It has
two multipliers and two adders on its critical path. Reduced equation is

f (x) = x .(x2 + c1.x
2 + c2) + c3 (15.21)

This reduction of operations is shown in Fig. 15.11b. The critical path has an extra
multiplier. This will affect the execution speed of the design. Thus, designers have
to carefully apply the operation reduction methodology.
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15.5.9 Substitution of Operation

Operation substitution is another method to reduce the power consumption in a
design. This technique replaces the logic blocks which consume high energy with
the blocks which consume lower energy. This statement is explained with the help
multiplication of two complex numbers (a + ib) and (x + iy). The direct imple-
mentation of this multiplication is shown in Fig. 15.12a which is according to the
following equation:

(a + ib) × (x + iy) = c + id = (ax − by) + i(bx + ay) (15.22)

The above equation can be rewritten as

c + id = {a(x + y) − (b + a)y} + i{(b − a)x + (x + y)a} (15.23)

In this equation, complexmultiplier is implemented using substitutingmultiplication
by addition and subtraction operation. This implementation is shown in Fig. 15.12b.

The implementation in Fig. 15.12b has less overall capacitance than the earlier
implementation.But the second implementation has a longer critical path. Thismeans
the second path will achieve less maximum frequency. Thus, care should be taken in
case of operation substitution.

In the above example, multiplier is substituted by adders to reduce overall capac-
itance. The constant multiplication operation can also be replaced with shift and add
operations. The theory of constant multiplication is already discussed in Chap. 3.
Now, if a signal is multiplied by two or more constants then two power reduction
techniques can be applied. The first one is operation substitution and the second one
is resource reduction. This can be explained with the help of design of a simple FIR
filter whose timing difference equation is
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y(n) = c0x(n) + c1x(n − 1) (15.24)

Direct implementation of this equation is shown in Fig. 15.13a. Let the word length
is 16-bits and 8-bits are reserved for fractional part. The values of the constants are as
c0 = 00000000_10100110 and c1 = 00000000_01100110. Here, both the constants
have ones at positions 3, 6 and 7. Thus, resource sharing can be applied. Themodified
structure is shown in Fig. 15.13b.

15.5.10 Re-timing

Energy consumption depends on the number of resources used per clock cycle. If
resources increase then the energy consumption will also increase. The usage of
resources per clock cycle can be reduced with the help of re-timing of the design.
Re-timing is nothing but placing the registers at suitable places without affecting the
circuit functionality.

The concept of re-timing can be explained with the help of a simple second-order
IIR filter. A Biquad structure of IIR filter in the Direct Form II is shown in Fig. 15.14.

Twodesigns are obtained by introducing the re-timing and these circuits are shown
in Fig. 15.14. Both the structures improve the frequency performance of the IIR filter.
The structure shown in Fig. 15.15a has five multipliers and two adders in the critical
path. The second structure shown in Fig. 15.15b has three multipliers and two adders
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Fig. 15.14 Simple biquad
structure in the direct form
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in the critical path. Thus, there are a lesser number of resources switched in the
second structure and thus less power is consumed in the second structure.
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15.5.11 Wordlength Reduction

In an implementation, effect of word length reduction on power consumption is
significant. If the word length is reduced, then hardware resources are reduced and
so the overall capacitance. Thus, reduction in word length reduces the power. But
how far the word length can be reduced? Word length reduction directly affects
the accuracy of an implementation. Thus, a trade-off should be maintained so that
reduction in word length does not hamper accuracy significantly.

The choice of algorithms or architectures can afford a significant reduction in
word length. The algorithms which have low computational complexity show better
accuracy with lesser word length. For example, modified Cholesky decomposition
results better SNR than QR decomposition in computation of pseudoinverse matrix.
Some architectures have better immunity towards the word length change. For exam-
ple, parallel and cascade structures of FIR filters are capable of showing better results
at lower word length.

15.5.12 Resource Sharing

Resource sharing is a very promising technique to reduce power consumption in
complex digital systems. In implementations of any complex algorithm, there is
always scope of sharing hardware resources. Resource sharing is important as the
area constraint permits parallelism up to a certain limit. In some cases where the steps
of an algorithm must be executed sequentially, resource sharing technique must be
adopted to reduce the overall capacitance.

The concept of resource sharing can be understood using the example of imple-
mentation of vector arithmetic operations. Signal processing algorithms involve
many vector arithmetic operations such as scalar–vector multiplication and vector–
vector multiplication. An algorithm may involve sequential execution of both these
two types of operations. In such cases, execution unit can be designed such a way
that it can perform both the operations. Separate execution units may not be fea-
sible because of area constraint. The common execution unit to perform both the
operations is shown in Fig. 15.16 for vector length 4.

In the architecture shown in Fig. 15.16, there is a control signal s which selects
between two operations. The inner product operation or vector–vector multiplication
is performed when s = 0. The scalar–vector multiplication and accumulation are
performed when s = 1. Here, one extra adder and four MUXes are used but four
sets of multipliers, adders and registers are saved. Thus, overall capacitance can be
reduced using resource sharing. The switching activity will increase due to control
circuitry.
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Fig. 15.16 A shared architecture to perform both scalar–vector multiplication and vector–vector
multiplication

15.6 Frequently Asked Questions

Q1. What is clock gating and its advantage in reducing power of a circuit?
A1. Clock gating is a very power full technique in sequential circuits to reduce
dynamic power. Switching activity of the clock signal accounts for major power
consumption in a complex digital system. But there are scopes to reduce power due
to clock distribution in such circuits. Clock gating is a technique of gating the clock
or disabling the clock signal for the modules which are idle or not functioning for a
certain period of time. Thus, majority of dynamic power saved by clock gating.

Q2. Mention different clock gating techniques?
A2. Different clock gating techniques are

1. Gate-based clock gating
2. Latch-based clock gating
3. Flip-flop-based clock gating
4. Synthesis-based clock gating
5. Data-driven based clock gating
6. Auto-gated clock gating [67]
7. Look-ahead-based clock gating [80].



318 15 Low-Power Digital System Design
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Q3. Explain Gate-based clock gating technique and its problems?
A3. The gate-based clock gating technique is shown in Fig. 15.17. Gate-based clock
gating can be achieved by either an AND gate or an OR gate. The problem with
gate-based clock gating is that glitches can be generated if the enable signal is not
properly aligned.

Q4.How the glitch generation problemwith gate-based clock gating scheme can
be avoided?
A4. The glitch generation in the gate-based clock gating scheme can be avoided by
generating the enable (en) signal using a negative edge triggered flip-flop as shown
in Fig. 15.18.

Q5. Explain the Latch-based clock gating scheme.
A5. The latch-based clock gating scheme is shown in Fig. 15.19. Here, there is
no need of generating the enable signal through a negative edge-triggered flip-flop
to avoid glitch generation. Similarly, flip-flop-based clock gating technique can be
designed by replacing the latch with a flip-flop.



15.7 Conclusion 319

Fig. 15.20 Clock-gated
clock gating cell
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Q6. Clock gating schemes like latch-based lock gating schemes reduce dynamic
power but the clock gating circuit itself consumes power. Give an example of
one such scheme which reduces the power of clock gating circuit?
A6. One such scheme is shown in Fig. 15.20. When the en signal is low then the
output of the latch is also low. This makes output of the EX-NOR gate high. The
output of the EX-NOR gate disables the clock to the latch of the clock gating circuit.
This circuit further reduces the dynamic power but glitch can be generated at the
output of the OR gate. These glitches do not affect the clock-gated output but can
cause silicon failure.

15.7 Conclusion

In this chapter, various techniques to reduce dynamic or switching power consump-
tion in a digital system are discussed. Switching power can be reduced by reducing
the operating voltage or by reducing operating frequency or by reducing switching
activity. All the techniques discussed in this chapter are either gate level or algorith-
mic level.

Algorithmic-level power reduction is most important in implementing an
algorithm-based system. In the algorithmic level, designers must try to reduce the
computational complexity and to increase the concurrency. Reduction in computa-
tional complexity will reduce overall load capacitance and gives designers a choice
to use less number of bits. More concurrency in an algorithm means the architecture
can adopt parallel architectures.

The second most important step is to reduce power at architecture level. Here,
gate-level reduction techniques are discussed. Parallelism and insertion of pipeline
registers are very important steps to reduce power. Operation reduction, operation
substitution, choice of data representation, re-timing and unrolling are some of the
techniques to reduce power. The techniques discussed above must be applied by
considering the other design metrics which are speed and area. Thus, a trade-off
should be maintained.



Chapter 16
Digital System Design Examples

In this chapter, we will discuss FPGA implementation of some of the digital sys-
tems to give an idea to the readers how complex signal, video or image processing
algorithms can be implemented. These architectures are implemented using Verilog
HDL and mainly structural programming procedure is followed. All the systems are
implemented using XILINX 14.7 EDA tool.

Designs must be functionally verified before loading the bit-stream to the FPGA.
Smaller designs can be verified easily by giving inputs directly through the FPGA
inputs. The verification of complex designs is critical. The digital system may take
input data from an analog system. In such cases, verification of the complete system
needs an interface of XILINX and MATLAB environment which models the analog
system. This verification environment is shown in Fig. 16.1.

The MATLAB environment simulates the analog design in integer format. But
the XILINX accepts the binary data either in fixed or floating format. Thus, the data
which are to be imported from MATLAB to XILINX should face a data conversion
step. This data conversion step takes care of the data width variation. The result of
the FPGA implementation also can be verified in the MATLAB by taking it back to
MATLAB. The steps which are followed to verify a design are shown in Fig. 16.2.
All the architectures are designed with fixed point data format and two’s complement
data representation is used. Simple Verilog instructions are used to implement the
arithmetic blocks instead of special fast hardware to simply the implementation.
Performance of all the designs is estimated in terms of timing complexity, hardware
complexity and power consumption.
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16.1 FPGA Implementation FIR Filters

In signal processing applications, mainly two types of digital filters are used. The
first type is Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR)
filters are the other types of digital filters. If impulse response of any filter is of finite
duration, then the filter is of FIR type. So, in the case of FIR filters, impulse response
settles to zero in finite duration. There is no feedback in FIR filters unlike IIR filters
and thus FIR filters are always stable. FIR filters can produce linear phase and this
property is used in many applications. Compared to IIR filters, implementation of
FIR filters is straightforward.
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In many applications, FPGA is nowadays preferred as hardware platform and
FIR filters are very often required to implement on FPGA. Many literatures reported
different kinds of FPGA implementations for FIR filters over the past few decades.
FIR implementations are so popular and frequently used that FPGA manufacturers
are providing inbuilt advanced features for rapid prototyping of FIR filters. Advanced
digital signal processing (DSP) blocks that are capable of doing several functions
are used as basic building blocks for FIR filters. DSP blocks made implementation
of FIR filters an easy job.

Different aspects of FPGA implementation of FIR filters are discussed in this
work. Different structures for implementation of a simple low-pass FIR filter are
discussed here. The usage of advanced DSP blocks to implement the FIR filters
is also shown here. Lastly, design performances of all kinds of architectures are
compared in terms of parameters like resource utilization, latency and maximum
frequency.

16.1.1 FIR Low-Pass Filter

Design of a low-pass filter (LPF) is taken as an example to describe the implemen-
tation of FIR filter. The frequency response of an ideal LPF is

H (ejw) =
{
1 for − π

2 ≤ w ≤ π
2

0 for − π
2 ≤ |w| ≤ π

(16.1)

Here, w = π
2 denotes the cutoff frequency in radian and w is the normalized fre-

quency. Many techniques can be used to realize this low-pass FIR filter as illustrated
in [10]. Here, Hamming window-based design is followed.

The transfer function H (z) = y(z)/x(z) of a N tap FIR filter can be written as

H (z) =
N−1∑
n=0

cnz
−n (16.2)

Here, z−n denotes the delay by n samples and cn is the co-efficients of the transfer
function. Here, n can take both even or odd values. In time domain, the low-pass FIR
filter for N = 13 can be expressed as

y = x.(c0 + c1.z
−1 + c2.z

−2 + c3.z
−3 + c4.z

−4 + .... + c12.z
−12) (16.3)

Here, N co-efficients and (N − 1) delay elements are present. Figure 16.3 shows the
frequency plot of the low-pass FIR filter.
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16.1.2 Advanced DSP Blocks

Advanced FPGAs are providing high-speed arithmetic blocks to perform different
operations using hardware sharing technique. These blocks are known as DSP blocks
and different FPGAs are different architectures for these DSP blocks. DSP48 [83]
blocks inside theARTIX7FPGAdevice are example these kind of blocks. Operations
like addition, subtraction, multiply, multiply-accumulate or shifting, etc., can be
done by a same DSP block based on a multi-bit select signal. Figure 16.4 shows
a simple block diagram of a DSP block. The DSP block shown in the figure is
capable of performing specific operations which are required for FIR filters. A DSP
block includes a pre-adder and a multiplier and an ALU. Various functions can
be realized using ALU but it performs only subtraction and addition operations.

P

P

P P

P P

P

P P P

d

a

b

c

p

Fig. 16.4 A simplified architecture of a DSP block
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DSP block has a sel control signal based on which DSP block performs various
functions. The functions, p = c ± a × b and p = c ± (a + d) × b can be evaluated
by the DSP block shown in the figure. Pipeline registers can be inserted or removed
and the number of pipeline registers is programmable. These DSP blocks are faster
compared to LUT-based counterparts as they are inbuilt to the FPGA devices.

16.1.3 Different Filter Structures

Different structures [10] to implement FIR filters are reported in literature and these
are

1. Direct Form Structures
2. Linear Phase Structures
3. Polyphase Structures
4. Cascaded Structures
5. Lattice Structures

Here, an LPF is implemented using Direct Form, Linear Phase Form, Polyphase
Form and Cascaded Form. In speech processing, lattice structures are extensively
used but they are costly. Thus, it is avoided here but other structures are discussed in
detail along with their FPGA implementation.

Direct Form Structures

In direct form structures, co-efficients of the transfer function are same as the multi-
plier co-efficients. In an N-tap FIR filter,N multipliers and (N − 1) two-input adders
are required. The direct form structure for the LPF is shown in Fig. 16.5 and it is
known as the Direct Form 2 structure. Here, pipeline registers and discrete delay
elements are shown separately. Pipeline registers are shown by ‘P’ . Here, the max-
imum operating frequency is limited by the delay in the multiplier and adder path.
Combination of an adder and a multiplier can be realized using high-speed DSP
blocks as shown in Fig. 16.5 by the dotted rectangular box.

The Direct Form 2 structure (Fig. 16.5) has a latency of 12 clock cycles. The same
filter structure can be realized in another way as shown in Fig. 16.6. This is called
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c2 c12c0

Fig. 16.5 Direct form architecture of the FIR low-pass filter
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Fig. 16.6 Another implementation of the direct form architecture of the FIR low-pass filter
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Fig. 16.7 Transpose of the direct form architecture of the FIR low-pass filter

Direct Form 1 structure and this structure has less latency. Output of the multipliers
are fed to an adder tree and the adder tree has less latency. Same number of adders
and multipliers are used in this architecture but has a latency of only three clock
cycles. The DSP blocks (Fig. 16.4) also can be used here.

In Fig. 16.6, FIR filter is directly implemented following its equation but the
architecture shown in Fig. 16.5 is a systolic array type architecture. An inverted
architecture of the same FIR filter is possible and it is shown in Fig. 16.7. This
inverted structure is known as Direct Form 3 and it has less latency compared to other
two structures mentioned above. The major advantage of this inverted structure is
that pipeline registers are not required.

Linear Phase Structures

FIR filters can be more efficiently implemented if the transfer function is symmetric
or anti-symmetric. The symmetry or anti-symmetry property can be written as

cn = ±c(N−1−n) (16.4)
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Fig. 16.8 Linear phase architecture of the FIR low-pass filter
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Fig. 16.9 Transposed linear phase architecture of the FIR low-pass filter

The above property can be used to reduce the number of multipliers by half of that
in the direct form implementations. According to the above property, the transfer
function can be written as

H (z) =
⎧⎨
⎩

∑ N−2
2

n=0[z−n + z−(N−1−n)], When N is even.

c( N−1
2 )z

−(N−1)/2 + ∑ N−3
2

n=0[z−n + z−(N−1−n)], When N is odd.
(16.5)

The LPF implemented using the linear phase structure is shown in Fig. 16.8 and this
is called Linear Phase 1 structure. The critical path of a multiplier and an adder is
retained here and thus more pipeline registers are required to achieve high frequency.

Linear Phase 2 structure (Fig. 16.9) is developed by modifying the architecture
shown in Fig. 16.8. Linear Phase 2 structure can be called transposed architecture of
the previous linear phase architecture. Hence, less pipeline registers are required and
the critical path is adder–multiplier–adder. Lesser maximum frequency is achieved
for this structure compared to other linear structures. DSP blocks can be used to
realize this structure to improve its timing performance. This new version of linear
phase filter using DSP blocks is called Linear Phase 3 structure.
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Fig. 16.10 Polyphase structure of the FIR low-pass filter

Polyphase Structures

The transfer function of an FIR filter can be written as the summation of two terms
where the first term contains all the odd indexed co-efficients and the second term
contains all the even indexed co-efficients. For example, the transfer function of the
LPF can be expressed as

H (z) = (c0 + c2z
−2 + c4z

−4 + ... + c12z
−12) + (c1z

−1 + c3z
−3 + ... + c11z

−11)

(16.6)
This equation can be re-written as

H (z) = (c0 + c2z
−2 + c4z

−4 + ... + c12z
−12) + z−1(c1 + c3z

−2 + ... + c11z
−10)

= P0(z
2) + z−1P1(z

2) (16.7)

In the above equation, there are two branches but, in general, there can be more
number of branches. Each branch can be realized using direct form. This type of
filter structure is popularly known as polyphase structure and is shown in Fig. 16.10
(Polyphase 1). In multi-rate signal processing, these polyphase filters have many
uses and also they have less latency than direct form realizations. Another type of
polyphase structure (Polyphase 2) is shown in Fig. 16.11 which has shared delay
elements.

Cascade Structures

Higher order FIR filters are realized efficiently using the cascaded form. In this form,
lower order FIR sections are cascaded to realize a higher order transfer function. Each
lower order FIR section may be realized using either a first-order or second-order
transfer function. An FIR transfer function of higher order can be written as
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H (z) =
{

(c10 + c11z−1)
∏ N

2
n=2(cn0 + cn1z−1 + cn2z−2), When N is even.∏ N−1

2
n=1(cn0 + cn1z−1 + cn2z−2), When N is odd.

(16.8)

Here, the higher order transfer function is factorized into second-order transfer
functions. Hardware realization of the second-order transfer function is shown in
Fig. 16.12. Overall, cascaded realization of the LPF is shown in Fig. 16.13. Here,
total (N + 5)multipliers and (N − 1) adders are used. In the cascade implementation,
the co-efficients are modified unlike in other implementations. Cascade structures
are less sensitive towards the word length.
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16.1.4 Performance Estimation

Implementation Issues

In hardware implementation of FIR filters, three major blocks are used, which are
adders, multipliers and delay elements. Multiplier is the major block here which
is used to do multiplication operation using known constants. Constant multipliers
can replace complete multipliers in this application. Constant multipliers use add
and shift method to do multiplication by a known constant. This customization of
multipliers may be useful in ASIC implementation but in FPGA implementation,
DSP blocks optimize themselves according to the operands.

Both serial or parallel architecture for FIR implementation is possible. All the
possible parallel architectures arementioned in this work. But serial implementations
may be useful in some specific applications. Maximum achievable frequency of an
architecture is an important parameter to measure performance. Pipeline registers
may be inserted to achieve high frequency for high-speed applications, but if speed
of operation is low, then these registers must be removed to save hardware.

Performance of FIR filter also degraded due to quantization error which occurs
because of insufficient data format, repetitive multiplication and scaling. Both fixed
point data format and floating point data format can be used. Floating point format
achieves high accuracy compared to fixed point format for same data width, but the
design of floating point digital blocks is complex and expensive. Increasing the data
width will increase accuracy but will also increase hardware. Thus, a trade-off is to
be maintained between hardware and acceptable accuracy.

Design Performance

A 13-tap FIR LPF is implemented on NEXYS DDR2 artix7 FPGA development
board (xc7a100t-3csg324) in this work. The LPF is verified by taking a multi-tone
signal as input. This multi-tone signal is created by mixing two sinusoidal signals of
frequencies 22 and 20 KHz. The sampling frequency is set at 100 KHz and thus the
cut-off frequency of the LPF is 25 KHz. A tone of 2 KHz is the output of the LPF
which is shown in Fig. 16.14b. The LPF output obtained from MATLAB and the
FPGA implementation output is compared in Fig. 16.14. A 20-bit fixed point data
width is used where 12-bits are reserved for the fractional part. Here, the metric Root
Mean Squared Error (RMSE) measures the design performance. RMSE is computed
as

RMSE =
∥∥(ŷ − y)

∥∥
2

‖y‖2
(16.9)

Here, ŷ is FPGA output and y is MATLAB-based filtered output. An RMSE of
0.0006728 is achieved using a data width of 20-bits.
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(a) Input signal to the FIR filter
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(b) Output of the low pass filter

Fig. 16.14 Input and output signal of the filter

Table 16.1 Performance comparison of different structures

Structures CLKmin (ns) Slice reg Slice LUT DSP48 Occupied
slices

Power (W)

Direct form
1

5.5 432 327 11 155 0.048

Direct form
2

5.7 631 337 11 283 0.048

Direct form
3

5.5 259 273 11 83 0.044

Linear
phase 1

5.5 533 347 6 125 0.044

Linear
phase 2

7.5 390 302 6 159 0.048

Linear
phase 3

6 352 168 7 70 0.064

Cascaded 5.5 290 279 16 105 0.036

Polyphase 1 6 542 309 11 261 0.051

Polyphase 2 5.5 522 334 11 212 0.053

Comparison of the Different Structures

A comparison of different FIR filter implementations is shown in Table 16.1. The
parameters which are used to measure design performances are hardware utilization
(consumption of slice registers, LUTs, DSP blocks and occupied slices), maximum
achievable frequency and dynamic power. Dynamic power is computed at maximum
frequency. Transposed direct form architecture is better than the other direct form
structures as it does not need pipeline registers. If the co-efficients are symmetrical
then linear phase structures can be used. Linear phase 2 architecture achieves less
maximum frequency as its critical path is long. Linear phase 3 architecture imple-
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ments same linear phase 2 structure but with DSP blocks. Linear phase 3 structure
achieves higher maximum frequency, consumes less resources but consumes higher
power. This is an advantage of using the inbuilt DSP blocks. Cascaded and polyphase
structures are not frequently used but they have other advantages which is not in the
scope of discussion.

16.1.5 Conclusion

FPGA implementation of different FIR filter structures and a comparison of the
performances is presented here. Here, an LPF is designed using different struc-
tures to demonstrate the difference in implementation. FIR transfer functions are
directly implemented by direct form structures and these are systolic architectures.
Transposed structures don’t need the pipeline registers and thus they are popular.
Linear phase structures are only used when the transfer function is symmetric or
anti-symmetric. Cascaded structures are useful to ignore the effect of word length
but need more hardware. The DSP blocks can efficiently increase the performance
of these filter structures.

16.1.6 Top Module for FIR Filter in Transposed Direct Form

module LPF_FIR_rv ( start , clk , reset , t25 ) ;
input start , clk , reset ;
output [ 19 :0 ] t25 ;
wire [ 19 : 0 ] t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 , t11 , t12 , t13 , t14 ,
t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22 , t23 , t24 , t25 , t26 ;
parameter c1 = ’ d2 , c2 = ’ d3693 , c3 = ’d1048561 ,
c4 = ’ d1025100 , c5= ’ d78 , c6= ’d122466 , c7 = ’ d204799 ;
parameter c13 = ’ d2 , c12 = ’ d3693 , c11 = ’d1048561 ,
c10 = ’ d1025100 , c9= ’ d78 , c8 = ’d122466 ;
wire [ 7 : 0 ] adb ;
wire [ 19 : 0 ] x_o , x , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 , x12 ,
x13 , x14 , x15 , x16 , x17 , x18 , x19 , x20 , x21 , x22 , x23 , x24 , x25 ;
/////Reading the input data from a ROM. . . . . . . . .
ym1 mem( clk , 1 ’ b1 , adb , x_o ) ;
count8 cnt ( adb , 8 ’ b00000000 , tc , enb , clk , reset , tc , ’ d202 ) ;
pg pg1 ( start , tc , enb , clk , reset ) ;
reg18 rgw( x , clk , reset , x_o ) ;
/////////////////////////
mult mu( x , c13 , t1 ) ;
reg18 rg1 ( t2 , clk , reset , t1 ) ;

MAC m1(x , c12 , t2 , clk , 1 ’ b0 , reset , t3 ) ;
reg18 rg2 ( t4 , clk , reset , t3 ) ;
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MAC m2(x , c11 , t4 , clk , 1 ’ b0 , reset , t5 ) ;
reg18 rg3 ( t6 , clk , reset , t5 ) ;

MAC m3(x , c10 , t6 , clk , 1 ’ b0 , reset , t7 ) ;
reg18 rg4 ( t8 , clk , reset , t7 ) ;

MAC m4(x , c9 , t8 , clk , 1 ’ b0 , reset , t9 ) ;
reg18 rg5 ( t10 , clk , reset , t9 ) ;

MAC m5(x , c8 , t10 , clk , 1 ’ b0 , reset , t11 ) ;
reg18 rg6 ( t12 , clk , reset , t11 ) ;

MAC m6(x , c7 , t12 , clk , 1 ’ b0 , reset , t13 ) ;
reg18 rg7 ( t14 , clk , reset , t13 ) ;

MAC m7(x , c6 , t14 , clk , 1 ’ b0 , reset , t15 ) ;
reg18 rg8 ( t16 , clk , reset , t15 ) ;

MAC m8(x , c5 , t16 , clk , 1 ’ b0 , reset , t17 ) ;
reg18 rg9 ( t18 , clk , reset , t17 ) ;

MAC m9(x , c4 , t18 , clk , 1 ’ b0 , reset , t19 ) ;
reg18 rg10 ( t20 , clk , reset , t19 ) ;

MAC m10( x , c3 , t20 , clk , 1 ’ b0 , reset , t21 ) ;
reg18 rg11 ( t22 , clk , reset , t21 ) ;

MAC m11( x , c2 , t22 , clk , 1 ’ b0 , reset , t23 ) ;
reg18 rg12 ( t24 , clk , reset , t23 ) ;

MAC m12( x , c1 , t24 , clk , 1 ’ b0 , reset , t25 ) ;
////Writing the output in a t e x t f i l e f or Ver i f i ca t i on . .
mem_write mn( t25 , enb , c lk ) ;
Delay16 dly ( clk , enb , en ) ;
endmodule

16.2 FPGA Implementation of IIR Filters

In digital domain, majority of filters are of FIR type due to ease of implementation.
IIR filters can achieve same performance with less co-efficients and delay elements
compared to FIR filters. IIR filters are also suitable for achieving narrow bandwidth.
FIR filters can easily work at high frequencies with the help of the DSP blocks [83]
but a higher frequency use of IIR filters is limited. IIR filters are generally preferred
at low frequencies as IIR filters are recursive. In recursive filters, output is reused at
the input end and has a long critical path. Thus, inserting pipeline registers in IIR
filters is a challenging task.

In [60], FPGA implementation of the FIR filters is discussed. In this section,
different parallel FPGA implementation of the IIR filters is presented. The pipeline
implementation of IIR filters is also investigated here. A simple LPF is taken as an
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example and this filter is implemented with every type of IIR structure. Performance
comparison of these structures is also carried out here.

16.2.1 IIR Low-Pass Filter

Design of a LPF is taken as an example to illustrate the implementation of IIR filters.
The frequency response of the LPF is specified as

αp = 0.01dB for 0 ≤ w ≤ π
3 (16.10)

αs = 60dB for π
3 ≤ w ≤ π

2 (16.11)

Here,w is the normalized frequency. The parameter αp and the αs denotes attenuation
in the pass band and stop band, respectively. This low-pass IIR filter can be realized
using many techniques [10]. Elliptical-based design is followed here.

The transfer function H (z) = y(z)/x(z) of an IIR filter can be written as

H (z) =
∑M

n=0 bnz
−n

1 − ∑N
n=1 anz

−n
(16.12)

Here, bn denotes the co-efficients of the all-zero transfer function and an denotes the
co-efficients of the all-pole transfer function. Here, N = M = 6 for the given LPF.
The frequency plot of the low-pass IIR filter is shown in Fig. 16.15.
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Fig. 16.15 Frequency spectrum of the low-pass filter
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16.2.2 Different IIR Filter Structures

In literature, many structures [10, 27] to implement the IIR filters are reported and
these are

1. Direct Form I Structures
2. Direct Form II Structures
3. Cascaded Structures
4. Parallel Structures
5. Lattice Structures

In this work, an LPF is implemented using Direct Form I, Direct Form II, Cas-
caded Form and Parallel Form. Lattice structures are not discussed here as they are
extensively used in speech processing and are costly. Other structures are discussed
in detail with their FPGA implementation.

Direct Form I Structures

The time difference equation of the IIR filter can be expressed as

y(n) =
N∑

k=1

any(n − k) +
M∑
n=0

bnx(n − k) (16.13)

The Direct Form I structures directly implement the IIR filters. Figure 16.16a shows
the basicDirect Form I structure. This structure has a long critical path in the recursive
section (all-pole transfer function section). Hence, this structure is not suitable for
implementation in many applications. Pipeline registers directly cannot be inserted
like in the FIR filters. Incorrect insertion of pipeline registers may lead to the real-
ization of different transfer functions. Figure 16.16b shows an alternate direct form
structure which is known as transposed Direct Form I structure. Critical path is
reduced in this structure.

Direct Form II Structures

The Direct Form II structures implement the difference function based on the fact
that the filter transfer function can be represented as

H (z) = y(z)

w(z)
.
w(z)

x(z)
(16.14)

Figure 16.17a shows the Direct Form II realization of the IIR LPF. Compared to
the Direct Form I structure, this structure has same critical path but has less number
of delay elements. Transposed version of this structure is shown in Fig. 16.17b and
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Fig. 16.16 Direct form I structures for IIR filters
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Fig. 16.17 Direct form II structures for IIR filters

it has less critical path. Both Direct Forms I and II have similar kind of transposed
structures. ButDirect Form II structures are not suitable inmany applications. In these
kinds of structures, a high-gain all-pole network is followed by a all-zero network.
This may increase the data width of the multipliers and adders.



16.2 FPGA Implementation of IIR Filters 337

Fig. 16.18 Architecture for
the Biquad block for
cascaded IIR filter
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Cascaded Form

IIR filters also can be implemented using cascaded form. In the cascaded form, IIR
filter transfer function is broken into smaller transfer functions (IIR Type) and then
these smaller transfer functions are cascaded. An IIR filter transfer function can be
written as

H (z) = H1(z).H2(z)...Hk(z) (16.15)

Here, H (z) is written in terms of k number of smaller transfer functions. These
smaller transfer functions can be of either first order or second order. The second-
order IIR section is known popularly as the Biquad structure. The Biquad transfer
function is

H (z) = b0 + b1z−1 + b2z−2

1 − a1z−1 − a2z−2
(16.16)

The Biquad structure for the above-mentioned LPF is shown in Fig. 16.18. These
Biquad structures can be implemented using any of the direct form structures. The
cascaded structure of the IIR LPF is shown in Fig. 16.19.

Parallel Forms

Similar to the cascaded structures, parallel filter structures also provide immunity
towards the quantization effect due to the co-efficients. But parallel forms are more
popular as they provide parallelism in the design also. Transfer function for IIR
filter can be written as summation of first-order or second-order sections in this

H1(z)
x y

H2(z) H3(z)

Fig. 16.19 Cascaded structure of the IIR LPF
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Fig. 16.20 Architecture for
the Biquad block for
Cascaded IIR filter
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form. Partial fraction technique is used to break a transfer function as summation
of smaller transfer functions. Biquad structures are generally preferred as individual
sections. The IIR LPF transfer function considered here can be written as

H (z) = FIR +
L∑

i=1

di1 + di2z−1

1 − ai1z−1 − ai2z−2
(16.17)

Here, FIR is a simple constant and the number of parallel sections is denoted byL. The
above equation is known as non-delayed architecture [12]. If the order of numerator
is greater than the order of denominator, then delayed input signal is some times
provided to the all-pole section. This form is called delayed parallel structure [13].
In this case, FIR part can be an FIR-like transfer function. The second-order section
for the parallel structure of the LPF considered here is shown in Fig. 16.20. The
non-delayed and delayed parallel structures are shown in Figs. 16.21 and 16.22,
respectively.

16.2.3 Pipeline Implementation of IIR Filters

Previously, different structures of IIR filters are discussed. The direct forms directly
implement the IIR difference equation. In high-frequency applications, the direct
form filter structures are not suitable as hey are having long critical path. The trans-
posed architectures are suitable for comparatively higher frequencies but still they
are having higher critical path. Direct insertion of pipeline registers is not possible
as it will implement another transfer function. Thus, special algorithms are reported
in literature to implement pipeline IIR filters.

First, we will try to achieve pipelining in a simple first-order filter. The transfer
function of the first-order filter is

H (z) = 1

1 − az−1
(16.18)
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Fig. 16.21 Non-delayed parallel structure of IIR filter

This filter can be implemented either using direct form or using transposed form.
Figure 16.23 shows these structures. In both cases, themaximum frequency is limited
by the sum of delay provided by an adder and a multiplier. Insertion of pipeline
registers can not reduce this delay.

The look-ahead pipelining techniques [54] are very helpful in inserting pipeline
registers in IIR filters. The original transfer function has a single pole at z = a. P-
stage pipeline implementation can be derived by adding (P − 1) poles and zeros
at identical locations. Transfer function of the first-order filter is now modified for
pipeline implementation and it is

H (z) =
∏logP−1

2
i=0 (1 + a2

i
z−2i )

1 − aPz−P
(16.19)

The transfer function for the three-stage pipeline implementation of the first-order
filter is shown below

H (z) = 1 + az−1 + a2z−2

1 − a3z−3
(16.20)

Figure 16.24 shows the pipeline structure of the first-order IIR filter. Critical path
is obviously reduced here by at least three times. This circuit is now suitable for



340 16 Digital System Design Examples

Z−1

PH1(z)

d11

d12

Z−1

PH2(z)

d21

d22

Z−1

PH3(z)

d31

d32

P

P

P

P

P

P

P

y

a11 a12

a21 a22

a31 a32

FIR

Z−1
x

Fig. 16.22 Delayed parallel structure of IIR filter

Z−1x y

a1

(a) Structure of a typical first order IIR
filter.

x

Z−1

y

a1

(b) Transposed structure of first order IIR
filter.

Fig. 16.23 First-order IIR filter structures

high-frequency applications but the hardware complexity of the implementation is
increased.

Two look-ahead techniques are popular to implement pipeline IIR filters and these
are

1. Clustered Look-ahead Technique
2. Scattered Look-ahead Technique

In both these techniques, pipeline implementation of the first-order IIR filter is
same. P stage pipeline implementation of the higher order filters using the clustered
look-ahead technique is obtained by multiplying the numerator and denominator by
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Fig. 16.24 Pipelined version
of the first-order filter
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where ri is evaluated as follows:

ri = 0, for i = 0, 1, 2, ...., (N − 1) (16.22)

r0 = 0 (16.23)

ri =
N∑

k=1

akri−k , i > 0 (16.24)

(P − 1) additional cancelling poles and zeros are inserted here. Thismethod is having
stability issues. This method can produce an unstable transfer function even if the
original transfer functionwas stable. A higher number of pipeline stages are preferred
for making stable implementation.

Scattered look-ahead technique is another technique to obtain pipeline implemen-
tation. Let us consider the denominator of a transfer function is represented as

D(z) =
P∏
i=1

(1 − piz
−1) (16.25)

Then P-stage pipeline implementation in this technique is obtained by the following
equation:

H (z) = N (z)

D(z)
= N (z)

∏N
i=1

∏P−1
k=1 (1 − piej2πk/Pz−1)∏N

i=1

∏P−1
k=0 (1 − piej2πk/Pz−1)

(16.26)

In comparison to the clustered look-ahead technique, this technique generates a
stable transfer function with less number of pipeline stages. Both the techniques
implement pipeline IIR filters with increased hardware resources. This technique
is more suitable to the second-order transfer functions instead of directly applying
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Fig. 16.25 Pipelined
version of the Biquad for
parallel IIR filter
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to the main transfer function. The second-order transfer function H (z) = 1/(1 −
a1z−1 − a2z−2) is transformed into the following transfer function:

H (z) = 1 + a1z−1 + (a21 + a2)z−2 − a1a2z−3 + a22z
−4

1 − (a31 + a1a2)z−3 − a32z
−6

(16.27)

Pipeline implementation of the IIR LPF is presented here. The parallel IIR LPF
is chosen here for pipeline implementation. The scattered look-ahead technique is
applied to the second-order Biquads. Figure 16.25 shows the modified Biquad struc-
ture and the resulting pipeline parallel IIR LPF is shown in Fig. 16.26. Co-efficients
of the pipelined version of the IIR filter are star-marked.

16.2.4 Performance Estimation

Implementation Issues

IIR filter architectures can be serial or parallel like FIR filters. All the possible
parallel architectures are mentioned here. Serial architectures also may be useful
in some design applications. IIR filters are some advantages over FIR filters which
are already discussed. But IIR filters have one dis-advantage also. It is not easy to
insert pipeline registers in IIR filters. This is why techniques like look-ahead must be
used. But these techniques increase hardware resources and also inexact pole-zero
cancellation may occur due to finite word length. Another method to use IIR filters at
high frequency is that design the IIR filters in a way such that pipline registers can be
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Fig. 16.26 Pipelined version of the parallel IIR low-pass filter

inserted. These methods are called constrained filter design techniques. Hardware-
efficient pipelinable transfer functions can be resulted from these techniques.

Design Performance

Low-pass IIR filter of order 6 is implemented on NEXYSDDR2 artix7 FPGA device
(xc7a100t-3csg324). This LPF is verified by taking two sinusoidal signals of frequen-
cies 22 and 20 KHz. These two signals are multiplied and output of the multiplier is
given to the LPF. The sampling frequency is taken as 100KHz and thus the LPFfilters
out the signals whose frequency is greater than 25 KHz. Figure 16.27 shows output
of the LPF which is a tone of 2 KHz. The original signal (MATLAB output) and the
FPGA-based filtered output (delayed version) is compared in Fig. 16.27. An 18-bit
fixed point data width is used in this design where 10-bits are used for fractional
part. An RMSE of 0.0059 is achieved using a word length of 18-bits for parallel
IIR implementation. An RMSE of 0.00584 is achieved when it is implemented for
higher-frequency applications.
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Fig. 16.27 Output of the low-pass IIR filter for same input as applied to FIR filter in the previous
section

Comparison of Different IIR Filter Structures

Table 16.2 shows the comparison of the performances of FPGA implementation of
different IIR LPF structures. Transposed direct form structures are having almost
same performance. The cascaded structures may be preferred over direct forms
because of having less quantization noise. Cascaded structures have higher latency
and consume slightly higher resources. The parallel structures are more popular and
also they have similar quantization noise immunity. Parallel structures are having
parallel branches and thus latency is reduced but consumes more resources. Pipelin-
ing in IIR filters is very necessary as they have higher critical path. This way higher
maximum frequency can be achieved at the cost of extra hardware.

16.2.5 Conclusion

FPGA implementation of the different varities of IIR filter structures and their perfor-
mance comparison is presented here. An LPF is designed using different IIR struc-
tures to demonstrate the difference in their implementation. Direct form structures,
systolic in nature, directly implement the IIR transfer functions. Transposed struc-
tures have shorter critical path. Cascaded and parallel structures have some immunity
towards quantization noise compared to the direct forms. All IIR filters are not suit-
able for high-frequency applications and thus pipelining is important. Look-ahead
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Table 16.2 Performance comparison of different structures

Structures CLKmin (ns) Slice Reg Slice LUT DSP48 OS∗ Power

Transposed
Direct Form
I

6.9 222 228 10 71 0.029 W

Transposed
Direct Form
II

6.9 240 231 10 85 0.027 W

Cascaded
form

6.9 226 228 13 67 0.030 W

Parallel
form

6.9 226 228 13 67 0.0584 W

Pipelined
parallel
form

4 591 527 22 206 0.067 W

∗: OS—Occupied slices

techniques to insert pipeline registers in IIR filters are discussed. Scattered look-
ahead technique is adopted to implement parallel IIR filter and high frequency is
achieved. Design performance is measured by measuring RMSE.

16.3 FPGA Implementation of K-Means Algorithm

In machine learning or data science, clustering is a very important technique to anal-
yse huge data sets by segregating them according to their features. A bigger sub-set
is divided into several sub-sets where each sub-set is having similar data samples.
Knowledge of homogeneous groups can lead to apply many other optimization tech-
niques on the data set. Many clustering algorithms exist in literature but K-means
[44] algorithm is discussed in this section.

K-means algorithm is popular because of its simplicity and also this algorithm
can be easily applied to the unsupervised data set. This algorithm tries to partition a
data set intoK groups in an iterative fashion. It tries to group the similar data samples
in a cluster in every iteration. There are some techniques based on which similarities
between two data samples or two vectors are computed. K-means algorithm produces
K homogeneous groups where each group is having similar data samples. Groups
are non-overlapping means no data sample can belong to two or more groups.

If any application, real-time clustering is required then it is important to implement
the K-means algorithm on some hardware platform like FPGA. In this section, an
innovative architecture for the K-means algorithm is proposed and implemented on
FPGA. This is described below in detail.
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Algorithm 16. 1 K-means algorithm
Input: Data Matrix A ∈ RM×N , number of clusters (K) and number of iterations (I ).
Output: K clusters with its centroids (cntd ).
1: Initialization Randomly selects K number of elements from the matrix A. Initially set them as

cntdk = Ak for k = 1 to K . Initially, cltrk is a null vector for k = 1 to K .
2: for i ← 1 to I do
3: for j ← 1 to N do
4: for k ← 1 to K do
5: λ = argmin |Aj − cntdk |22
6: end for
7: cltrλ = [cltrλAj]
8: end for
9: d ∈ RM×1 = 0
10: for k ← 1 to K do
11: for j ← 1 to size(cltrk ) do
12: d = d + cltrkj
13: end for
14: cntdk = d/size(cltrk )
15: end for
16: end for

16.3.1 K-Means Algorithm

Algorithm 5 summarizes the K-means algorithm. The data set A ∈ RM×N is taken as
input set to the algorithm. In this algorithm, K represents the number of clusters and
I denotes the total number of iterations. This algorithm segregates the data samples
in K clusters in I iterations. Initially, the centroids are set as cntdk = Ak for k = 1
to K . Here, Aj denotes the jth column of A and cntdk is the kth centroid.

Similarities between the centroids and the columns of A are computed in the next
stage. Techniques such as correlation, Euclidean distance andManhattan distance can
adopted to find similarity between two vectors. Here, euclidean distance is chosen.
The Euclidean distance between two vectors of length M is computed as

d(x, y) =
√

(x1 − x2)
2 + (x1 − x2)

2 + .... + (xM − xM )2 (16.28)

The arithmetic operations required to evaluate d(x, y) are subtraction, squaring, addi-
tion and square root. Computational complexity of the square root operation is high
compared to other operations. Here, partial Euclidean distance is computed by avoid-
ing the square root operation. This partial Euclidean distance is evaluated in step 5 of
Algorithm 5. The parameter λ represents the index of the column that givesminimum
Euclidean distance.

The cluster formation is done in step 7 once the similar columns are identified.
The parameter λ can take any value from 1 toK . Steps 9–15 of Algorithm 5 are for the
averaging step. The elements of each cluster are accumulated and the accumulation
result is divided by the size of that cluster. New values of the centroids are computed
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after this step. The above-mentioned steps are repeated for maximum I number of
iterations.

16.3.2 Example of K-Means Algorithm

An example of K-means algorithm is shown in this section. In this example,
K-means algorithm is applied to group 8 data elements into three clusters, viz, Clus-
ter 1, Cluster 2 and Cluster 3. Initially, data elements are A1 = (2, 10), A2 = (2, 5),
A3 = (8, 4), A4 = (5, 8), A5 = (7, 5), A6 = (6, 4), A7 = (1, 2) and A8 = (4, 9).

Iteration 1

1. Choose initial centroids (seeds) of three clusters as A1 (Cluster 1), A4 (Cluster
2) and A7 (Cluster 3). Seed1 = A1 = (2,10), Seed2 = A4 = (5,8), Seed3 = A7 =
(1,2) ad A8 = (4,9).

2. Calculate Euclidean distance between each data point with respect to the three
seeds according to the following formula:

d(a, b) = (xb − xa)
2 + (yb − ya)

2

(a) w.r.t A1: d(A1,seed1) = 0, d(A1,seed2) = 13, d(A1,seed3) = 65, A1→Cluster
1.

(b) w.r.t A2: d(A2,seed1) = 25, d(A2,seed2) = 18, d(A2,seed3) = 10, A2 →
Cluster 3.

(c) w.r.t A3: d(A3,seed1) = 72, d(A3,seed2) = 25, d(A3,seed3) = 53, A3 →
Cluster 2.

(d) w.r.t A4: d(A4,seed1) = 13, d(A4,seed2) = 0, d(A4,seed3) = 52, A4→Cluster
2.

(e) w.r.t A5: d(A5,seed1) = 50, d(A5,seed2) = 13, d(A5,seed3) = 45, A5 →
Cluster 2.

(f) w.r.t A6: d(A6,seed1) = 52, d(A6,seed2) = 17, d(A6,seed3) = 29, A6 →
Cluster 2.

(g) w.r.t A7: d(A7,seed1) = 65, d(A7,seed2) = 52, d(A7,seed3) = 0, A7→Cluster
3.

(h) w.r.t A8: d(A8,seed1) = 5, d(A8,seed2) = 2, d(A8,seed3) = 58, A8 → Cluster
2.

At the end of this step, we have Cluster 1: (A1), Cluster 2: (A3,A4,A5,A6,A8),
Cluster 3: (A2,A7)

3. Find the centroid (seed) of the newly formed clusters by averaging. The new
centroids are C1: (2,10), C2: ((8+7+5+6+4)/5,(4+8+5+4+9)/5) = (6,6), C3:
((2+1)/2,(5+2)/2) = (1.5,3.5).
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Iteration 2

At the end of iteration 2, we get Cluster 1: (A1,A8), Cluster 2: (A3,A4,A5,A6) and
Cluster 3: (A2,A7) with centroids C1: (3,9.5), C2: (6.5,5.25) and C3: (1.5,3.5).

Iteration 3

At the end of the iteration 2, we get Cluster 1: (A1,A4,A8), Cluster 2: (A3,A5,A6)
and Cluster 3: (A2,A7) with centers C1: (3.66,9), C2: (7,4.33) and C3: (1.5,3.5).

16.3.3 Proposed Architecture

Figure 16.28 shows the proposed data path architecture of the clustering algorithm.
Parameters chosen for the implementation are M = 2, N = 8 and K = 3. This is a
prototype implementation but can be adopted for higher data samples. This algo-
rithm has three main steps, viz., Euclidean distance computing, sorting and average
computation. These steps are executed sequentially. This architecture is hardware
efficient and has moderate timing complexity. All the major blocks are explained
below.

Data Acquisition and Initialization

The input data matrix (A) can be acquired in real-time or can be pre-stored. Here
signal acquisition is ignored for simplification. Matrix A is stored in A_memwhich is
a bank ofmmemory elements. Each element is realized using dual port rams. Port B
is used for reading and port A is used for writing. In K-means algorithm, K elements
are randomly chosen. Thus, K data samples from the A_mem are read and written to
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Fig. 16.28 Proposed architecture of the K-means algorithm
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Fig. 16.29 Proposed architecture of EDC

C_mem. A ROM can be used to provide these initial indices or they can be generated
randomly. This proposed scheme is shown in Fig. 16.28.

Euclidean Distance Calculator

Partial Euclidean distance between the centroids and the data samples is computed
by the Euclidean Distance Calculator (EDC) block. Figure 16.29 shows the proposed
architecture of the EDC block. Subtractors are placed at the first stage, and in the
next stage, squaring operation is performed. Full-length multiplier is not required
to compute square operation. An adder tree is placed at the last stage to add all the
square values.

Minimum Finder Block

The output of the EDC block is fed to a Minimum Finder Block (MFB) which sorts
a serial stream of data and finds minimum of it. Figure 16.30 shows the architecture
of the MFB block. Initially, input A of the comparator is set and this input is selected
by signal gt. MFB gives the index (indx) of the vector for which ip is minimum.
Another output of this block is indxc.

Fig. 16.30 Proposed
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Fig. 16.31 Proposed architecture of CB

Cluster Block

Cluster Block (CB) counts the number of data samples in a cluster. Its structure is
shown in Fig. 16.31. It receives indxc and indx outputs from MFB. CB generates
K control signals en1, en2, en3. These control signals are used to incrementK number
of counters. Counters hold the size of their respective clusters after the sorting oper-
ation. Simultaneously, these control signals are used to write the value of addresses
(adb) in respective memory elements for which they are generated. Here, K memory
elements are used to store the indices that belong to each cluster.

Average Block

Averaging is the last step of the K-means architecture. In the averaging step, average
of the elements selected in each cluster is computed. An Average Block (AB) is
proposed here and this block is shown in Fig. 16.32. Serial approach is adopted here
to compute average as division operation involves very high hardware complexity.
Averaging operation is done for elements in the X-co-ordinates first and then for
elements in the Y-co-ordinates. A single divider is used here and it is non-restoring

Fig. 16.32 Proposed
architecture of AB
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Table 16.3 Design
performance

Design metrics Values

Device (xc7a100t)

Parameter (M ,N ,K, I ) 2, 8, 3, 3

Slice registers 557

Slice LUTs 527

Occupied slices 268

DSP blocks 2

Maximum frequency 250

Dynamic power (μW ) 57

algorithm based radix-2 divider [59]. The LSH10 block stands for 10-bit wired left
shift.

16.3.4 Design Performance

K-means algorithm is implemented on NEXYS DDR2 artix7 FPGA device
(xc7a100t-3csg324) here for parameters M = 2, N = 8 and K = 3. The proposed
architecture uses 18-bit fixed point data width where 10-bits is used for the fractional
part. Table 16.3 shows the design performance of the proposed architecture.

Hardware Complexity

Consumption of memory elements and resources for the proposed prototype archi-
tecture is shown in Table 16.4 and in Table 16.5, respectively. Here, k and n denote
the number of bits to represent K and N , respectively. This proposed architecture is
hardware-efficient as a single divider block and a single accumulation unit is used.

Table 16.4 Estimation of memory elements

Memory elements Word per cycle Size

Write Read

A_mem M M M × N × 18

cntd_mem M M M × K × k

cltr_mem K K K × N × k

indx_mem 1 1 K × n



352 16 Digital System Design Examples

Table 16.5 Estimation of hardware complexity

Blocks Multiplier Comparator Add_sub Divider

EDC K 0 2M − 1 0

MFB 0 1 1 0

AB 0 0 1 1

Timing Complexity

Timing complexity of the proposed design is analysed to form an expression for
the overall execution time. Initial centroids are loaded to cntd_mem from A_mem
in K clock cycles. Euclidean distances are computed in the next step. Euclidean
distance computation stage takes (K + 1) × N + lip number of clock cycles, where
lip = 3 is the latency of the EDC block. Even though sorting operation is executed in
parallel to the computation of Euclidean distance but two clock cycles are wasted to
start the next step. Averaging operation is the next step and its timing complexity is
2K + N + ldv clock cycles. Here ldv = 30 is the latency of the divider block. Timing
complexity for this prototype design is (3K + N (2 + K) + lip + ldv + 2)I , where I
denotes the total number of iterations. If I = 3 number of iterations is considered,
then 246 clock cycles are required and, for a frequency of 250 MHz, total execution
time is 984 μs.

16.3.5 Conclusion

Novel architecture is proposed here to implement the K-means algorithm on FPGA
device. Prototype design is targeted to theNEXYS4DDR2FPGAdevice. This design
is scalable and any size of matrixA can be clustered. This design is hardware efficient
with moderate execution time. A single divider is used here to reduce hardware
resources. An analysis of timing and hardware complexity is also presented

16.4 Matrix Multiplication

An algorithm in any field of application can involve matrix multiplication operation
for evaluation of the final output. The number of matrix multiplication operations
present in an algorithmdecides computation complexity of that algorithm.High com-
putation complexitymeans greater hardware complexity. Thus, efficient implementa-
tion of matrix multiplication operation is important. Matrix multiplication operation
is divided into three categories in this section and these are
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1. Matrix Multiplication by Scalar–Vector Multiplication
2. Matrix Multiplication by Vector–Vector Multiplication
3. Systolic Array for Matrix Multiplication

The pros and cons of these techniques are discussed below.

16.4.1 Matrix Multiplication by Scalar–Vector Multiplication

Almost all signal or image processing algorithms involve Scalar–Vector multipli-
cation which is a part of matrix multiplication. Hardware implementation of this
operation is discussed here with an example. A 6 × 3 Matrix (A) is multiplied by
a 3 × 1 Matrix (B) and the result is a 6 × 1 column vector (C). This matrix–vector
multiplication operation is shown in Fig. 16.33. This multiplication operation can
be done either by vector–vector multiplication or by scalar–vector multiplication.
In the latter method, one column of matrix A and one element of column vector B
are fed to the computing processor. Multiplication result of this step is accumulated
with the multiplication of the second column of A and the second element of B.
Thus, this matrix–vector multiplication objective is achieved through scalar–vector
multiplication and accumulation operation. The multiplication between A and B can
be expressed as

A.B = A1.B1,1 + A2.B2,1 + A3.B3,1 (16.29)

The computing unit is designed with the help of a basic Multiply and ACumu-
late (MAC) unit. MAC unit multiplies two elements and accumulates. MAC unit
schematic is shown in Figs. 16.34 and 16.35 shows the overall computing unit. Six
MAC blocks are used in this computing unit. Each MAC block has latency of two
clock cycles and vector C is computed after four clock cycles. The role of the reset
(rst) input signal is very important here. The register after the adder in the MAC
block is needed to be cleared by this rst signal before multiplication and before
starting another multiplication operation. The timing diagram for multiplication and
accumulation operation by a MAC block is shown below in Fig. 16.36. Here, P is
the output of the MAC, P1 is the first multiplication output, P2 is the first accumu-
lation output and P3 is the final output. The overall computing unit consumes six
multipliers and six adders.

Fig. 16.33 Multiplication of
a matrix and a vector
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Fig. 16.34 MAC schematic for scalar–vector multiplication
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16.4.2 Matrix Multiplication by Vector–Vector Multiplication

Vector–vector multiplication operation is another way to achieve matrix multiplica-
tion. Algorithms can also involve separate vector–vector multiplication operation. A
vector–vector multiplication is sometimes called inner product.

In this section, matrix A (6 × 6) is multiplied with matrix B (6 × 6) using vector–
vector multiplication technique. The multiplication result is matrix C (6 × 6). The
schematic of the vector–vector multiplier is depicted in Fig. 16.37. Matrix A is stored
in one memory bank and B is also stored in another memory bank. These memory
blocks can be configured either using ROM or RAM. The memory banks have six
outputs and each output is a word. In this example, Ai denotes ith row of A and Bi

denotes the ith column of matrix B.
Multipliers belong to the first stage of the Vector–vector multiplier and the second

stage is an adder tree. If there are n elements in a vector, then n multipliers should
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Fig. 16.37 Vector–vector multiplier

be used and (n − 1) adders will be required in the adder tree. The pipeline registers
are placed between a multiplier and an adder or inserted between two adders.

Timing Complexity

Timing complexity of this operation in multiplying two 6 × 6 matrices is expressed
as

T = Tlat + n2 (16.30)

Here, Tlat is the latency of the vector–vector multiplier and the second term is for
multiplying two (n × n) matrices. Thus, total time taken to multiply two 6 × 6 matri-
ces is (4 + 36 = 40) clock cycles where Tlat = 4. After the latency period, one inner
product is produced per cycle. These inner products can be written to any other
memory blocks for further use.

16.4.3 Systolic Array for Matrix Multiplication

Another technique to achieve matrix multiplication operation is discussed in this
section. This technique is called systolic array multiplication. An architecture is
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Fig. 16.38 MAC
architecture
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called systolic if it is homogeneous so that data processing units can be tightly
coupled. In this type of architecture, each data processing units compute partial result
independently. Systolic architectures are tightly coupled so that timing requirements
can be easily met and thus they are preferred more.

Here, matrix A (6 × 6) and matrix B (6 × 6) are multiplied together and the result
is matrix C (6 × 6). The A and B are stored in memory banks A_mem and B_mem,
respectively. These memory banks have six memory elements and each can be con-
figured as ROM or RAM. The columns of B and rows of A can be accessed serially.
Here, Ai denotes ith row of A and Bi denotes the ith column of B.

Systolic matrix multiplier for 3 × 3 matrices is discussed first and this architec-
ture is used to develop systolic architecture for 6 × 6 matrices. In this section also
Multiply–Acumulate unit (MAC) is used as a basic building block but this MAC has
a different structure compared to the previous MAC structure. Figure 16.38 shows
the structure of the MAC and it implements the function P = A × B + P. It has a
reset input for starting a new accumulation. The timing diagram of the MAC block
is very similar to the timing diagram shown in Fig. 16.36.

The systolic architecture to multiply 3 × 3 matrices is shown in Fig. 16.39 and
this architecture uses six MAC blocks. Rows of matrix A from one side and columns
of B from another side are fed to the structure. The second row of A and the second
column of B are delayed by one clock cycle. Similarly, the third row of A and the
third column of B are delayed by two clock cycles. This is because the objective is
to compute one element of matrix C per cycle.

The timing diagram for the above-mentioned architecture is shown in Fig. 16.40.
The systolic architecture for 3 × 3 matrices can be used to multiply two 6 × 6
matrices. Figure 16.41 shows the systolic matrix multiplier for 6 × 6 matrices. The
columns of matrix B and rows of matrix A are fed to the systolic array through mul-
tiplexers. Multiplication of two 6 × 6 matrices is achieved in four phases. In the first
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Fig. 16.39 Systolic matrix multiplier for 3 × 3 matrix
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Fig. 16.41 Systolic matrix
multiplier for 6 × 6 matrices
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phase, the first three rows of A are multiplied by the first three columns of B. In the
second phase, the first three rows of A and the last three columns of matrix B are
multiplied. Other two phases follow similar procedure. The phase-wise evaluation
of C is shown in Fig. 16.42.

Timing Complexity

The first part of timing complexity is (4 × 6 = 24 clock cycles) as multiplication is
achieved in four clock cycles. Reset signal is asserted three times in between the
phases and this is why three clock cycles are elapsed for clearing the register in the
MAC. Extra four clock cycles are required as the architecture is systolic. The total
number of clock cycles are

Tlat = (4 × 6) + 3 + 4 = 31 clock cycles (16.31)

This systolic structure has better timing complexity than the vector–vectormultiplica-
tion architecture. But every architecture has advantages or disadvantages depending

q1

q2

Computation of
C(1:3),(1:3)

Computation of
C(1:3),(4:6)

Computation of
C(4:6),(1:3)

Computation of
C(4:6),(4:6)

Fig. 16.42 Timing diagram for the multiplication of two 6 × 6 matrices
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upon the application. If hardware resources are limited then systolic architecture may
not be suitable as compared to other methods. Designers need to choose architecture
based on their application.

16.5 Sorting Architectures

16.5.1 Parallel Sorting Architecture 1

This is a basic parallel sorting architecture and it is discussed here for n = 8. Sorting
the adjacent elements is the technique behind this architecture which is shown in
Fig. 16.43. It consumes 25 BN blocks and it sorts eight data elements in the descend-
ing order. A Basic Network (BN) block is designed to sort two data elements in
descending order. A BN block has a comparator and two MUXes. It outputs MAX
and MIN out of two data elements. Figure 16.44 shows the architecture of the BN
block.

16.5.2 Parallel Sorting Architecture 2

Marge parallel sort algorithm is based on dividing the array into sub-arrays and
then merging them one by one. Based on this technique, a parallel sorting structure
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Fig. 16.43 An alternate architecture for sorting 8 data elements
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Fig. 16.45 Architecture of the parallel sort architecture based on marge sort algorithm

is discussed here for n = 8. This structure is hardware-efficient than the previous
structure. Array of four elements is sorted first and then the sorted sub-arrays are
sorted. Figure 16.45 shows this parallel sort architecture and it consumes total 19
basic node blocks compared to the previous architecture. The sort block for n = 4 is
shown by a dotted box.

16.5.3 Serial Sorting Architecture

The parallel sort architecture 1 is regular and can be divided into stages with each
stage having same hardware. This structure consumes 23 BN blocks and sorts 8 data
elements in just single iteration. If it is required to sort eight data elements in some
iterations, then a serial sort architecture [48] can be derived from this structure. A
basic SB is designed and this SB is reused in every iteration to get a serial architecture.
Figure 16.46 shows the architecture of this SB.

This SB consumes seven BN blocks and BN blocks are described previously. The
serial sort architecture is depicted in Fig. 16.47. In this serial architecture, inputs are
fed to the SB through eight MUXes. A start signal initially selects the inputs and fed

Fig. 16.46 Structure of the
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Fig. 16.47 An architecture
for sorting 8 data elements
serially
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them to the SB in the first iteration. In the next iterations, output signals of the SB are
fed back to the input of SB. The eight data elements are sorted after some iterations.
Four iterations are sufficient to run to sort eight data elements. This serial structure
takes more time to sort but uses less resources. Thus, can be used in architectures
where less resources must be consumed.

16.5.4 Sorting Processor Design

In all the previous architectures, data samples are accessed parallely. But in some
cases, we have to access the data samples serially from a memory element as parallel
data access is very costly. Serial to parallel data conversion is possible but again this
process also consumes extra hardware. Parallel sorting architectures are costly as they
consume more number of comparators. This is why alternate sorting architectures
should be adopted.

A serial sorting architecture is discussed here which is based on the insertion
sort technique. This architecture works on a serial stream of M data words. Values
from the unsorted part are inserted at the correct position of the sorted part in the
insertion sort technique. Two data elements are sorted in a similar way as it was done
previously for the parallel structures. But here architecture of the BN block is slightly
different and architecture of this BN block is shown in Fig. 16.48. Maximum of two
data elements is stored in a register and again fed back to the comparator. One rst
signal is there for resetting the registers as per requirement.
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Fig. 16.48 Architecture of the BN block for the sorting processor
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Fig. 16.49 Architecture of the sorting network-N using BN blocks

Figure 16.49 shows the insertion sorting algorithm-based sorting network to sort
M data elements. N number of BN blocks are used in this network. Serial data is
applied to the C0 pin. The BN1 block sorts two data and A1 is maximum of them. The
minimum value from the BN1 block is passed to the next block through amultiplexer.
If a data greater than the present value of A1 reaches at input of BN1, then this value
will be assigned to A1 and the previous value of A1 is passed to the next BN block.
Other BN blocks follow the same operation. After the M number of clock cycles,
A1 holds the maximum of M data elements. Similarly, values of A2, A3, ... , AN are
evaluated. The sorting network-N block takes (M + N ) clock cycles to sort N data
elements.

The next job is to sort the (M − N ) elements. Figure 16.50 shows the sorting
processor architecture which is built using the sorting network-N block. An output
memory can also be used to store the sorted elements through a multiplexer unit.



16.6 Median Filter for Image De-noising 363

Fig. 16.50 Data path of the
insertion sort
algorithm-based sorting
processor
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Unsorted elements are again fed back to the sorting network-N through the CN net.
The unsorted elements are now sorted serially using the same block. A1 holds the
maximum value of the unsorted part after N clock cycles. This way the whole array
of M data words is sorted.

An unsorted array is input to this sorting processor and this processor sort N
elements in one iteration. The sort processor mainly consists of N BN blocks apart
from the multiplexers and registers. If the value of N is increased, then the number
of BN blocks will also increase. The timing complexity of this sort processor can be
estimated in terms of M and N . The parameter M is preferably to be expressed as
M = k × N . Then timing complexity isTsort = M + (M − N ) + (M − 2N ) + ... +
(M − (k − 1)N ) + N . If N = 8, then total 88 number of clock cycles are required
to sort 32 data elements. This is obviously higher than the processing time of the
parallel sort structures but this sort processor is hardware efficient.

16.6 Median Filter for Image De-noising

Implementation of a simpleMedianfilter to remove noises froman image is discussed
in this section. Various types of noises [57] like salt and pepper noise, Gaussian noise,
periodic noise etc. can be present in an image. Salt and pepper noise is very common
to any image. This noise can be easily characterized and removed in spatial domain
using Median filter.

16.6.1 Median Filter

Many spatial filters are proposed in literature to remove salt and pepper noise.Median
filter is a very common and popular for image denoising. Many variations of Median
filter are also reported in literature but here the basic version is discussed. In median
filtering, the pixel on which the window is operated is replaced by the Median value
of all the pixels inside that window. A simple noisy greyscale image (Fig. 16.51) is
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(a) An Grey scale image distorted with Salt
and pepper noise.

(b) The filtered image output using Spatial
Median Filter.

Fig. 16.51 An image which has salt and pepper noise is filtered out by spatial median filter
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Fig. 16.52 Window operation for 4 × 4 image

taken as an example for implementation of median filter. In greyscale image, pixels
values are ranging from 0 to 255. In an image affected by salt and pepper noise,
noisy pixel value can be either very close to 255 or as small as 0. The filtering of
an image depends on the sliding window operation. A W × W window can be of
size 3 × 3, 5 × 5 or 7 × 7 for an n × n image and in a window their are W 2 pixels.
Figure 16.52 shows sliding window operation for a simple 4 × 4 image. Here, there
are four rows of pixels. In the first step, Row 1, Row 2 and Row 3. (x2, y2) is the
centre pixel on which the 3 × 3 window is operated. Then the window slides to the
right side and (x3, y3) becomes the centre pixel. Once the window slides reache the
extreme right, another row takes part in the denoising operation. For example, here
in the second step, Row 2–Row 4 are operated. Denoising operation can not be done
on the boundary pixels as window operation can not be operated on them.
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16.6.2 FPGA Implementation of Median Filter

A simple hardware implementation of the median filter is depicted in Fig. 16.53. In
implementation of this median filter, there are three major steps which are sliding
window operation, filtering operation and filtered image restoration. Image can be
acquired and stored in a dual-port Input RAM of size N × N × 8. An up counter
is used to write the pixels in the RAM block. Image pixels can be simultaneously
read from the Input RAM block and fed to another block which performs window
operation. This block feeds all the pixels of a current window to the median compu-
tation block. In the restoration phase, the median value replaces the pixel on which
the window operated.

Here, the 3 × 3 window is chosen for image denoising. Figure 16.54 shows a
simple scheme for sliding window operation [21]. Two line buffers are used in this
scheme and size of each buffer isN × 8. Initially, Row 1 iswritten to the Line buffer 1
through the DeMUX when phI signal is high. Line buffer 2 gets Row 2 when the
phII signal is high. Phase signals phI and phII are opposite to each other and non-
overlapping. Now, Line buffer 1 has Row 1 and Line buffer 2 has Row 2. Reading
Row 3 from the input RAM and from both the buffers is done simultaneously. During
this time, Row 3 is also written to Line buffer 1. Three clock cycles are required to
form the 3 × 3 window using the nine registers.

Various architectures are also reported in literature to find median efficiently.
Figure 16.55 shows the median computation block [31] which is used here. This
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Fig. 16.53 A possible architecture of the spatial median filter

Fig. 16.54 A scheme for
3 × 3 window operation
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Fig. 16.55 An architecture for computing median out of 8 data elements
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Fig. 16.56 An architecture for the restoration counter

parallel structure has total 19 BN blocks. The architecture of the BN block is already
shown in the previous Sect. 16.5. Timing performance of this block is improved by
placing pipeline registers. The number of BN blocks will increase if the value of W
is increased.

In the image restoration step, noisy pixels are replaced with Median values. This
restoration operation can be done separately or on the input image. But for simplifi-
cation, a separate output RAM is used here. Now, the output RAM should initially
contain the boundary pixels to retain the boundary pixels. A restoration counter is
used to write the median values in the output RAM at their exact location. For a
16 × 16 image, the restoration counter will count as

17 18 19....30 33 34 35....46 49.... (16.32)

Figure 16.56 shows a possible scheme for the restoration counter. Two loadable
counters are used, one is of 8-bits and another is of 4-bits. 4-bit counter is used
to generate the starting addresses (d = 17, 33, 49, ....) for the 8-bit counter. start
signal initially loads the 8-bit counter with d = 17 and then both the counters start
counting. The 4-bit counter counts up to 13 and generates terminal count signal (tc1)
which again loads the 8-bit counter with the next load value. Both the counters have
a common enable input.
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16.7 FPGA Implementation of 8-Point FFT

Fast Fourier Transform (FFT) is very common inmany signal processing applications
to analyse signals in frequency domain. Eight-point FFT, based on Decimation In
Time (DIT) algorithm, is implemented in this section. This implementation is targeted
to Spartan 3E FPGA target and its design performance is obtained. This design is
a basic prototype and thus may not be directly usable to a user but it will help to
understand the implementation of FFT.

Figure 16.57 shows the signal flow diagram (SFD) for 8-point DIT-based FFT.
Here, input samples are in reverse order and output samples are in correct order. Twid-
dle factors are also mentioned in that SFD. FPGA implementation of FFT algorithm
is directly described here, and for the detailed theory of FFT algorithm, students are
advised to follow the books on signal processing techniques.

Figure 16.58 shows the FFT processor. It has three inputs which are clk, reset and
start. As soon as a pulse is given to the start input, the transform operation will be
started. This processor has two output vectors which are Real and Imag representing
real and imaginary values respectively.A16-bit fixed point data representation is used
in this design where 8-bits are reserved for the fractional part. Two’s complement
data representation is used in this case to represent both signed and unsigned data.

Fig. 16.57 Signal flow diagram for 8-point DIT based FFT
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16.7.1 Data Path for 8-Point FFT Processor

The overall datapath of the FFT processor is shown in Fig. 16.59. Input data samples
are stored in a ROM to verify the design. In a single clock cycle, one data sample
is read from the ROM. Serial to Parallel (S2P) block converts the serial data stream
from the ROM into a parallel data stream. FFT processor takes the data samples from
the S2P block. Parallel to Serial (P2S) block converts the serial data stream from the
FFT block to a serial data stream. Two P2S blocks are there, one for real and one for
imaginary data. The output of the P2S blocks is sent to Chipscope Pro or directly to
a personal computer for analysis.

FFTblock in the data path is themajor blockwhich implements theSFDof theFFT
algorithm. The FFT block is designed using the structural style by designing the sub-
blocks first and then integrating them. FFT block architecture is shown in Fig. 16.60.
Architecture is moderately optimized for performance enhancement. Figure 16.61
shows the smaller sub-blocks. In the SFD shown in Fig. 16.57, a basic butterfly block
performs two basic operations, which are addition and subtraction. Thus, a basic
Butter-Fly Block 1 (BF1) is designed which performs both addition and subtraction
operations. The Butter-Fly block 2 (BF2) block is actually an optimized version of
two BF1 blocks.

Multiplication of two complex numbers is expressed as

(a + jb) × (c + jd) = ac + jad + jbc − bd = (ac − bd) + j(ad + bc) (16.33)

As (a + jb) is variable and (c + jd) is constant, the complexmultiplication operation
is reduced to the following:



16.7 FPGA Implementation of 8-Point FFT 369

Butter Fly
(BF1)

Butter Fly
(BF2)

x0

x4

x2

x6

x1

x5

x3

x7

Butter Fly
(BF1)

Butter Fly
(BF1)

Butter Fly
(BF1)

Butter Fly
(BF1)

Butter Fly
(BF1)

Butter Fly
(BF2)

Complex
Mult 1

Complex
Mult 2

R

I

R

I

R

I

R

I
I

R

R

R

I

R

R

R Delay

Delay

Delay

Delay

Delay

Delay

Delay

Delay

I

R

R

I

Butter Fly
(BF1)

Butter Fly
(BF1)

Butter Fly
(BF2)

Butter Fly
(BF1)

y0

y4

y1

y5

y2

y6

y3

y7

I

Fig. 16.60 8-point FFT processor

+/-

+/-

(a) Structure of BF1.

R

I
+/-

R1

R1

I1

−I10

(b) Structure of BF2.

Fig. 16.61 Structures of the sub-blocks of FFT processor

Fig. 16.62 Architecture of
the complex multiplier

a b a b

+/− +/−

0.7071

Re Im

(a + jb)(0.7071 − j0.7071) = 0.7071(a + b) − j0.7071(a − b) (16.34)

(a + jb)(−0.7071 − j0.7071) = −0.7071(a − b) − j0.7071(a + b) (16.35)

Figure 16.62 shows the complex multiplier block. Multiplication by 0.7071 is per-
formed by a constant multiplier. This reduces hardware consumption.
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16.7.2 Control Path for 8-Point FFT Processor

Design of a signal controller block is very important in order to guarantee proper
operation of the data path. Figure 16.63 shows the control path for the FFT processor
mentioned above. Phase Generation (PG) and loadable counter are the two major
blocks used in control path. Details of the PG block can be found in the Chap. 4. The
phase signal en1 is generated by the start pulse. The en1 signal activates the ROM
and also activates the S2P block for serial to parallel conversion. The counter 1 is
used to provide addresses to the ROM and it generates tc1 signal after eight clock
pulses. This terminal count signal (tc1) triggers another PG block. The latency of
the FFT block is tracked by another set of PG and counter block. After the latency
period of the FFT block, the second terminal count signal (tc2) is generated which
again triggers the third set of PG-Counter blocks. The tc2 signal is used to load the
parallel outputs to load to the P2S blocks and en3 signal is used for serial output
from the P2S blocks. The first output of FFT block and tc2 signal is synced.

The delay blocks are added for synchronization. In the delay blocks, a number of
registers are connected serially. Further optimization can be done in the FFT block
and an example is shown by a dotted box in Fig. 16.60. Here, two delay blocks
can be placed before the BF2 block instead of four delay blocks placed after BF2
block. This way searching the opportunity for optimization is necessary. The FFT
processor is implemented on SPARTAN 3E starter kit and its performance is shown
in Table 16.6.

PG 1 Loadable
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PG 2 Loadable
Counter2

PG 3 Loadable
Counter3

tc1 tc2

en1 en2 en3

start

rsten3tc2

P2S 1

rsten3tc2
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tc3
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Fig. 16.63 Control path for the FFT processor
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Table 16.6 Performance of FFT processor

Parameters FFT implementation

FPGA device xc3s500e-4fg320

Slice register count 1030 (11%)

4-input LUTs count 831 (%)

Occupied slices count 777 (16 %)

Dynamic power (mW) 229.51

Maximum frequency (MHz) 329

16.8 Interfacing ADC Chips with FPGA Using SPI Protocol

Real-world signals are digitized by ADC ICs and digital ICs like FPGAs are used to
process the digitized signals. Thus, it is important to learn how to interface ADC ICs
with the FPGA. In doing that, a separate HDL code is to be written according to the
specifications related to a particular ADC IC. A tutorial on interfacing an ADC IC
with FPGA is given in this section. This tutorial can be used to interface with other
ADC ICs with minor modifications.

The selected ADC IC (MCP3008) [49] is a product of Microchip Company. This
IC is having a 10-bit ADC and 8 input channels. The sampling speed is 200 ksps
at VDD of 5.5 V. Minimum clock frequency is 18 × fsample where fsample is the sam-
pling frequency of the ADC. More details about this ADC IC can be found in the
specification document of the IC.

The pin diagram of the ADC IC is shown in Fig. 16.64. This IC is having a
SAR logic-based ADC. Figure 16.65 shows the basic functional diagram. Any input
channel can be selected using the control inputs. The formula for interpreting the
digital value from a 10-bit ADC chip is

Digital Code = 1024 × VIN

VREF
(16.36)

Fig. 16.64 The pin diagram
of the ADC IC
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Fig. 16.65 The functional diagram of the ADC inside the IC

Any IC uses either SPI or I2C protocol for easy interfacing with digital controllers
or FPGAs. This ADC IC uses SPI protocol and the shift register produces output
data serially through the pin DOUT . The frequency of the CLK signal is 18 times
higher than the sampling frequency. The active low signal CS/SHDN controls the
SAR logic of the ADC. The control word is provided through the DIN serially. The
timing diagram is shown in Fig. 16.66.

A Verilog code is written to interface the SPI protocol-based ADC chip and the
SPI protocol is modelled using FSM based design style. Separate states for every
status on the DIN pin are defined. The start bit is kept high and it indicates the start
of control signal. The next bit defines how the analog signals are acquired. It is high
for single-ended application and it is low for differential application. The next three
bits are used for selecting input channels. A valid word is formed after receiving the
output data from the ADC IC through DOUT pin. The SPI-based controlling of the
ADC IC is shown in Fig. 16.67.

NEXYS 4DDR board is chosen here to demonstrate that the ADC IC is interfaced
with FPGA. The ADC IC is mounted on a PCB along with other ICs. A DC voltage
source is used to feed analog input to the ADC IC. The voltage source is varied from
0 to 3.3 volts that is maximum voltage of an FPGA. The experimental setup is shown
in Fig. 16.68 and all the 10 LEDs are blinking when voltage is 3.3.
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Fig. 16.66 Implication chart after second pass

Fig. 16.67 XILINX simulation for SPI interfacing protocol

Fig. 16.68 Experimental set-up for verification of interfacing ADC with the FPGA board
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module ADC_top ( clk , enable , I1 , I2 , I3 ,ADC_in ,ADC_out ,
ADCclk , conv , done , data_out ) ;
input clk , enable , I1 , I2 , I3 ,ADC_out ;
output conv , done ,ADC_in ,ADCclk ;
output [ 9 : 0 ] data_out ;
wire tc ;
wire [ 31 :0 ] out ;
wire [ 9 : 0 ] data_out1 ;
///clock div is ion . . . . . . . . . .
cnt1 counter ( out ,32 ’ b0 , tc , enable , clk , tc ,
32 ’ b11111111111111111111111111111111 ) ;
ADC m1(ADCclk , enable , I1 , I2 , I3 , conv , done ,
ADC_in , ADC_out , data_out1 ) ;
assign ADCclk = out [ 6 ] ;
fdc10 m2( data_out1 ,ADCclk , done , 1 ’ b0 , data_out ) ;
endmodule

module cnt1 ( out , data , load , en , clk , tc , lmt ) ;
output [ 31 :0 ] out ;
output reg tc ;
input [ 31 :0 ] data ;
input load , en , c lk ;
reg [ 31 :0 ] out ;
parameter reset =0;
input [ 31 :0 ] lmt ;
init ial begin out=32 ’b0 ;
tc =0; end
always @(negedge clk )
i f ( reset ) begin

out <= 32 ’b0 ;
end else i f ( load ) begin

out <= data ;
end else i f ( en )

out <= out + 32 ’b00000000000000000000000000000001 ;
else out <= out ;
always @(posedge clk )
i f ( out ==lmt )
tc <=1;
else tc <=0;
endmodule

module ADC( clk , enable , I1 , I2 , I3 , conv , done ,
ADC_in , ADC_out , data_out ) ;

// input and outputs
input I1 , I2 , I3 , clk , enable , ADC_out ;
output reg ADC_in ;
output reg conv , done ;
output reg [ 9 : 0 ] data_out ;
// internal variables
reg [ 2 : 0 ] Cs = 0;
reg [ 4 : 0 ] count = 0;
reg [ 4 : 0 ] bit_pos = 0;
always @(negedge clk ) begin// when enable i s on
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i f ( enable == 1) begin
case (Cs )
0 : begin
// i n i t i a l
conv <= 0;
done <= 0;
ADC_in = 1;
Cs <= Cs + 3 ’ b001 ;
count <= count + 5 ’ b00001 ; //1
data_out <= 0;
end
1: begin
// i n i t i a l
conv <= 0;
done <= 0;
ADC_in = 1;
Cs <= Cs + 3 ’ b001 ;
count <= count + 5 ’ b00001 ; //2
end
2: begin
// i n i t i a l
conv <= 0;
done <= 0;
ADC_in = I1 ;
Cs <= Cs + 3 ’ b001 ;
count <= count + 5 ’ b00001 ; //3
end
3: begin
// i n i t i a l
conv <= 0;
done <= 0;
ADC_in = I2 ;
Cs <= Cs + 3 ’ b001 ;
count <= count + 5 ’ b00001 ; //4
end
4: begin
// i n i t i a l
conv <= 0;
done <= 0;
ADC_in = I3 ;
Cs <= Cs + 3 ’ b001 ;
count <= count + 5 ’ b00001 ; //5
end

5: begin

i f ( count < 8) begin
conv <= 0;
done <= 0;
ADC_in = 0;
Cs <= 5;
count <= count + 5 ’ b00001 ; end //6
else begin
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conv <= 0;
done <= 0;
ADC_in = 0;
Cs <= 6;
bit_pos = 5 ’ b10001 − count ;
data_out [ bit_pos ] <= ADC_out ;
count <= count + 5 ’ b00001 ;
end
end
6: begin
i f ( count < 17) begin
conv <= 0;
done <= 0;
ADC_in = 0;
Cs <= 6;
bit_pos = 5 ’ b10001 − count ;
data_out [ bit_pos ] <= ADC_out ;
count <= count + 5 ’ b00001 ;end
else begin
conv <= 0;
done <= 1;
ADC_in = 0;
Cs <= Cs + 3 ’ b001 ;
bit_pos = 5 ’ b10001 − count ;
data_out [ bit_pos ] <= ADC_out ;
count <= count + 5 ’ b00001 ;
end
end
7: begin
i f ( count == 18) begin
conv <= 1;
done <= 0;
ADC_in = 0;
Cs <= 0;
conv <= 1;
count <= 0;
end
end
default : begin
Cs <= 0;
conv <= 0;
count <= 0;
done <= 0;
end
endcase
end else begin
// r e s e t
conv <= 0;
done <= 0;
Cs <= 0;
count <= 0;
data_out <= 0;
end
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end
endmodule

module fdc10 ( a , clk , en , reset , y ) ;
input [ 9 : 0 ] a ;
input clk , en , reset ;
output [ 9 : 0 ] y ;

fdce1 d1 ( y [ 0 ] , clk , en , reset , a [ 0 ] ) ;
fdce1 d2 ( y [ 1 ] , clk , en , reset , a [ 1 ] ) ;
fdce1 d3 ( y [ 2 ] , clk , en , reset , a [ 2 ] ) ;
fdce1 d4 ( y [ 3 ] , clk , en , reset , a [ 3 ] ) ;
fdce1 d5 ( y [ 4 ] , clk , en , reset , a [ 4 ] ) ;
fdce1 d6 ( y [ 5 ] , clk , en , reset , a [ 5 ] ) ;
fdce1 d7 ( y [ 6 ] , clk , en , reset , a [ 6 ] ) ;
fdce1 d8 ( y [ 7 ] , clk , en , reset , a [ 7 ] ) ;
fdce1 d9 ( y [ 8 ] , clk , en , reset , a [ 8 ] ) ;
fdce1 d10 ( y [ 9 ] , clk , en , reset , a [ 9 ] ) ;
endmodule

module fdce1 ( q , clk , ce , reset , d ) ;
input d , clk , ce , reset ;
output reg q ;

init ial begin q=0; end
always @ (negedge ( c lk ) ) begin
i f ( reset )

q <= 1 ’b0 ;
else i f ( ce )
q <= d ;

else
q<= q ;

end
endmodule

# c lock
# Choose IOSTANDARD = LVCMOS33;
# Choose SLEW = SLOW and DRIVE = 16;
NET " clk " LOC = E3 | IOSTANDARD = LVCMOS33 ;
NET " clk " PERIOD = 10.0ns HIGH 50%;
# Select ion of ADC Channels
NET " I1 " LOC = R15 ;
NET " I2 " LOC = M13 ;
NET " I3 " LOC = L16 ;
# other SPI inter face contro l
NET " conv " LOC = A14 ;
NET "ADC_in" LOC = A16 ;
NET "ADC_out" LOC = B17 ;
NET "ADCclk" LOC = A18 ;
# other contro l s ignals
NET " enable " LOC = J15 ;
NET "done " LOC = V11 ;
# Output data to the LEDs
NET " data_out [ 0 ] " LOC = H17 ;
NET " data_out [ 1 ] " LOC = K15 ;
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NET " data_out [ 2 ] " LOC = J13 ;
NET " data_out [ 3 ] " LOC = N14 ;
NET " data_out [ 4 ] " LOC = R18 ;
NET " data_out [ 5 ] " LOC = V17 ;
NET " data_out [ 6 ] " LOC = U17 ;
NET " data_out [ 7 ] " LOC = U16 ;
NET " data_out [ 8 ] " LOC = V16 ;
NET " data_out [ 9 ] " LOC = T15 ;

16.9 Interfacing DAC Chips with FPGA Using SPI Protocol

Like ADC chips, it is also important to know how to interface Digital to Analog
Converter (DAC) ICs with the FPGA Board. It is also required to convert the digital
outputs from the FPGA to analog domain. For example in an FPGA-based control
system, FPGA-based PID controller controls the control valves to regulate process
parameters. In this section, we will talk about how to interface a DAC IC using
Verilog HDL.

The MCP4922 [50] is a dual 12-bit buffered voltage output DAC IC. It operates
from a single 2.7–5.5 V supply with SPI compatible serial peripheral interface. The
IC supports SPI Interface with 20 MHz Clock. The pin diagram of the DAC IC is
shown in Fig. 16.69. The IC has two output pins (VOUTA and VOUTB) for two DAC
channels A and B. Thus, has two reference points (VREFA and VREFB). The LDAC
pins enables the synchronous update of DAC outputs. Both channels or any of the
channels can be shut down by applying active low signal on SHDN pin. The major
controlling pins are CS, SCK and SDI . The active low signal CS enables the DAC
IC, SCK pin provides the sampling clock and SDI pin provides the serial input signal
from the FPGA. The functional diagram is shown in Fig. 16.70.

The equation which controls the digital to analog conversion is

Fig. 16.69 The pin diagram
of the DAC IC chip
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Fig. 16.70 The functional diagram of the DAC chip

Fig. 16.71 Timing diagram for the DAC chip
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VOUT = VREF × Dn

2n
× G (16.37)

Here, VOUT is the output voltage, VREF is the external voltage reference, Dn is the
n-bit digital word and G is the gain. The timing diagram for the DAC IC is shown
in Fig. 16.71. The serial control word is divided into two sections, viz., 12-bits for
digital word and 4-bits reserved for configuration bits. The 15th bit is to select the
DAC and if it is 1, then channel B is selected. If the 14th bit is high, then the output
is buffered. The 13th bit is gain selection bit and it sets to 0 to have unit gain. If the
12th bit is 1, then only the IC is in active mode. The interfacing is done by writing a
Verilog code. The Verilog code is shown below.

module DAC(
clk , enable , done , data ,
SPI_MOSI , DAC_CS, SPI_SCK, DAC_CLR, SPI_MISO) ;
// input and outputs
input clk , enable , SPI_MISO;
output done ;// goes high for one clock cyc l e
input [ 11 :0 ] data ;// desired DAC value
output SPI_MOSI , DAC_CS, SPI_SCK, DAC_CLR;
wire clk ,SPI_MISO;
reg done ;
wire [ 11 :0 ] data ;
reg SPI_MOSI , DAC_CS, SPI_SCK, DAC_CLR;
// internal variables
reg [ 2 : 0 ] Cs = 0;
reg [ 15 :0 ] send ;
reg [ 4 : 0 ] bit_pos = 16;
always @(posedge clk ) begin

i f ( enable == 1) begin
case (Cs )
0 : begin
// i n i t i a l
DAC_CS <= 1;
SPI_MOSI <= 0;
SPI_SCK <= 0;
DAC_CLR <= 1;
done <= 0;
Cs <= Cs + 3 ’ b001 ;
end
1: begin
// se t data to be sent
send <= { 4 ’ b0011 , data } ;
// se t for next
bit_pos <= 16;
Cs <= Cs + 3 ’ b001 ;
end
2: begin
// s tar t sending
DAC_CS <= 0;
// lower c lock
SPI_SCK <= 0;
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// se t data pin
SPI_MOSI <= send [ bit_pos −1];
bit_pos <= bit_pos − 5 ’ b00001 ;
Cs <= Cs + 3 ’ b001 ;
end
3: begin
// r i s e spi c lock
i f ( bit_pos > 0) begin
SPI_SCK <= 1;
Cs <= 2;
end else begin
SPI_SCK <= 1;
Cs <= Cs + 3 ’ b001 ;
end
end
4: begin
SPI_SCK <= 0;
Cs <= Cs + 3 ’ b001 ;
end
5: begin
DAC_CS <= 1;
Cs <= Cs + 3 ’ b001 ;
end
6: begin
done <= 1; // send done signal
Cs <= Cs + 3 ’ b001 ;
end
7: begin
done <= 0; // go back to loop
Cs <= 1;
end
default : begin
DAC_CS <= 1;
SPI_MOSI <= 0;
SPI_SCK <= 0;
DAC_CLR <= 1;
end
endcase
end else begin

// r e s e t
DAC_CS <= 1;
SPI_MOSI <= 0;
SPI_SCK <= 0;
DAC_CLR <= 1;
done <= 0;
Cs <= 0;
bit_pos <= 16;

end
end

endmodule
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16.10 Interfacing External Devices with FPGA Using
UART

In the previous section, we have seen that how any IC can be interfaced with FPGA
device through SPI protocol. Universal Asynchronous Receiver/Transmitter (UART)
is another means of establishing an interface between FPGA and IC or between
FPGA and a microcontroller. The UART interfacing protocol doesn’t need clock
information. Many ICs follow this protocol for interfacing. Interfacing between an
FPGA and a microcontroller (MCU) is shown below in Fig. 16.72.

UART is a serial communication where bit-by-bit transmission takes place. Here,
an MCU doesn’t transmit clock signal but has an internal clock to define the time
duration of the bits. MCU sends the bits in the form of a control word or packet. The
user understands the control word or packet and forms words from it.

The UART frame is shown in Fig. 16.73 for 8-bits. The overall length of the frame
is 10-bits. First, there is a start bit which is a overhead bit as it doesn’t carry any
information. It indicates the transition from the idle state to active state. The data line
is active high in idle state and thus the start bit is active low. Then the 8-bits are sent
serially from LSB bit. The last bit in the frame is stop bit which is also a overhead
bit. The stop bit is active high and indicates that data is sent and can go to the idle
state.

The rate at which the bits are transmitted is called Baud rate and it is measured
in terms of bits per second. If the Baud rate is 9600, then it can be said that a bit is
transmitted in 1/9600 = 104.2μs. Setting of proper Baud rate is very important in
order to establish a successful UART interface

TX

RX

Gnd

RX

TX

Gnd

MCU FPGA

Fig. 16.72 Interfacing an FPGA with MCU

Start
Bit Bit 0

Stop
BitBit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Fig. 16.73 UART frame for 8-bits
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module UART_top(
input clk ,
input RxD,
output TxD,
output [ 7 : 0 ]GPin ,

output [ 7 : 0 ]GPout
) ;

reg [ 7 : 0 ] GPout ;// general purpose outputs
reg [ 7 : 0 ] GPin ; // general purpose inputs
wire RxD_data_ready ;
wire Tx_Done , Tx_Active ;
wire [ 7 : 0 ] RxD_data ;
wire [ 7 : 0 ]GPout1 ;
uart_rx RX( clk , RxD, RxD_data_ready , RxD_data ) ;
always @(posedge clk )
i f ( RxD_data_ready )
GPin <= RxD_data ;
else
GPin<=GPin ;

uart_tx TX( clk , RxD_data_ready , GPout ,
Tx_Active , TxD, Tx_Done ) ;

always @(negedge clk )
i f (Tx_Done )
GPout<=GPin ;
else
GPout<=GPin ;
endmodule

‘timescale 1ns / 1ps
// Transmitter transmits 8 b i t s o f s e r i a l data ,
// one s tar t bit , one stop b i t and no pari ty b i t .
// When transmit i s complete o_Tx_done wi l l be high
// Set Parameter CLKS_PER_BIT as fo l lows :
// CLKS_PER_BIT=(Frequency of i_Clock ) /(Frequency of UART)
// Example : 10 MHz Clock , 115200 baud UART
// (10000000) /(115200) = 87
module uart_tx

# (parameter CLKS_PER_BIT=10416)
(
input i_Clock ,
input i_Tx_DV ,
input [ 7 : 0 ] i_Tx_Byte ,
output o_Tx_Active ,
output reg o_Tx_Serial ,
output o_Tx_Done
) ;

parameter s_IDLE = 3 ’ b000 ;
parameter s_TX_START_BIT = 3 ’ b001 ;
parameter s_TX_DATA_BITS = 3 ’ b010 ;
parameter s_TX_STOP_BIT = 3 ’ b011 ;
parameter s_CLEANUP = 3 ’ b100 ;
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reg [ 2 : 0 ] r_SM_Main = 0;
reg [ 13 :0 ] r_Clock_Count = 0;
reg [ 2 : 0 ] r_Bit_Index = 0;
reg [ 7 : 0 ] r_Tx_Data = 0;
reg r_Tx_Done = 0;
reg r_Tx_Active = 0;

always @(posedge i_Clock )
begin

case ( r_SM_Main)
s_IDLE : ////State 0

begin
o_Tx_Serial <= 1 ’b1 ; // Drive Line High for Idle
r_Tx_Done <= 1 ’b0 ;
r_Clock_Count <= 0;
r_Bit_Index <= 0;

i f ( i_Tx_DV == 1 ’b1 )
begin

r_Tx_Active <= 1 ’b1 ;
//r_Tx_Data <= i_Tx_Byte ;

r_SM_Main <= s_TX_START_BIT ;
end
else

r_SM_Main <= s_IDLE ;
end // case : s_IDLE

// Send out Start Bit . Start b i t = 0
s_TX_START_BIT : ////State 1
begin

o_Tx_Serial <= 1 ’b0 ;

// Wait CLKS_PER_BIT−1 clock cy c l e s for s ta r t b i t to f in i sh
i f ( r_Clock_Count < CLKS_PER_BIT−1)

begin
i f ( r_Clock_Count == CLKS_PER_BIT/ 2 )

r_Tx_Data <= i_Tx_Byte ;
r_Clock_Count <= r_Clock_Count + 1;

r_SM_Main <= s_TX_START_BIT ;
end
else
begin

r_Clock_Count <= 0;
r_SM_Main <= s_TX_DATA_BITS ;

end
end // case : s_TX_START_BIT

// Wait CLKS_PER_BIT−1 clock cy c l e s for data b i t s to f in i sh
s_TX_DATA_BITS : ////State 2
begin

o_Tx_Serial <= r_Tx_Data [ r_Bit_Index ] ;
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i f ( r_Clock_Count < CLKS_PER_BIT−1)
begin

r_Clock_Count <= r_Clock_Count + 1;
r_SM_Main <= s_TX_DATA_BITS ;

end
else
begin

r_Clock_Count <= 0;

// Check i f we have sent out a l l b i t s
i f ( r_Bit_Index < 7)
begin

r_Bit_Index <= r_Bit_Index + 1;
r_SM_Main <= s_TX_DATA_BITS ;

end
else
begin

r_Bit_Index <= 0;
r_SM_Main <= s_TX_STOP_BIT ;

end
end
end // case : s_TX_DATA_BITS

// Send out Stop b i t . Stop b i t = 1
s_TX_STOP_BIT : ////State 3

begin
o_Tx_Serial <= 1 ’b1 ;

// Wait CLKS_PER_BIT−1 clock cy c l e s for Stop b i t to f in i sh
i f ( r_Clock_Count < CLKS_PER_BIT−1)
begin

r_Clock_Count <= r_Clock_Count + 1;
r_SM_Main <= s_TX_STOP_BIT ;

end
else
begin

r_Tx_Done <= 1 ’b1 ;
r_Clock_Count <= 0;
r_SM_Main <= s_CLEANUP;
r_Tx_Active <= 1 ’b0 ;

end
end // case : s_Tx_STOP_BIT

// Stay here 1 clock
s_CLEANUP : ////State 4

begin
r_Tx_Done <= 1 ’b1 ;
r_SM_Main <= s_IDLE ;

end

default :
r_SM_Main <= s_IDLE ;
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endcase
end

assign o_Tx_Active = r_Tx_Active ;
assign o_Tx_Done = r_Tx_Done ;
endmodule

‘timescale 1ns / 1ps
module uart_rx

#(parameter CLKS_PER_BIT=10416)
(
input i_Clock ,
input i_Rx_Serial ,
output o_Rx_DV ,
output [ 7 : 0 ] o_Rx_Byte
) ;

parameter s_IDLE = 3 ’ b000 ;
parameter s_RX_START_BIT = 3 ’ b001 ;
parameter s_RX_DATA_BITS = 3 ’ b010 ;
parameter s_RX_STOP_BIT = 3 ’ b011 ;
parameter s_CLEANUP = 3 ’ b100 ;

reg r_Rx_Data_R = 1 ’b1 ;
reg r_Rx_Data = 1 ’b1 ;

reg [ 13 :0 ] r_Clock_Count = 0;
reg [ 2 : 0 ] r_Bit_Index = 0; //8 b i t s t o t a l
reg [ 7 : 0 ] r_Rx_Byte = 0;
reg r_Rx_DV = 0;
reg [ 2 : 0 ] r_SM_Main = 0;

// Purpose : Double−r e g i s t e r the incoming data .
// This allows i t to be used in the UART RX Clock Domain .
// ( I t removes problems caused by metas tabi l i ty )
always @(posedge i_Clock )

begin
r_Rx_Data_R <= i_Rx_Serial ;
r_Rx_Data <= r_Rx_Data_R ;

end

// Purpose : Control RX s ta t e machine
always @(posedge i_Clock )

begin

case ( r_SM_Main)
s_IDLE :
begin
r_Rx_DV <= 1 ’b0 ;
r_Clock_Count <= 0;
r_Bit_Index <= 0;

i f ( r_Rx_Data == 1 ’b0 )// Start b i t detec ted
r_SM_Main <= s_RX_START_BIT ;
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else
r_SM_Main <= s_IDLE ;
end

// Check middle o f s ta r t b i t to make sure i t ’ s s t i l l low
s_RX_START_BIT :

begin
i f ( r_Clock_Count >=(CLKS_PER_BIT−1) / 2 )
begin
i f ( r_Rx_Data == 1 ’b0 )
begin
i f ( r_Clock_Count==CLKS_PER_BIT−2)
begin
r_SM_Main <= s_RX_DATA_BITS ;
r_Clock_Count <= 0;
end
else
r_Clock_Count <= r_Clock_Count + 1;
end
else
r_SM_Main <= s_IDLE ;
end
else
begin
r_Clock_Count <= r_Clock_Count + 1;
r_SM_Main <= s_RX_START_BIT ;
end
end // case : s_RX_START_BIT

// Wait CLKS_PER_BIT−1 clock cy c l e s to sample s e r i a l data
s_RX_DATA_BITS :

begin
i f ( r_Clock_Count < CLKS_PER_BIT−1)
begin
r_Clock_Count <= r_Clock_Count + 1;
r_SM_Main <= s_RX_DATA_BITS ;
end
else
begin
r_Clock_Count <= 0;
r_Rx_Byte [ r_Bit_Index ] <= r_Rx_Data ;

// Check i f we have rece ived a l l b i t s
i f ( r_Bit_Index <7)
begin
r_Bit_Index <= r_Bit_Index + 1;
r_SM_Main <= s_RX_DATA_BITS ;
end
else
begin
r_Bit_Index <= 0;
r_SM_Main <= s_RX_STOP_BIT ;
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end
end
end // case : s_RX_DATA_BITS

// Receive Stop b i t . Stop b i t = 1
s_RX_STOP_BIT :

begin
// Wait CLKS_PER_BIT−1 clock cy c l e s for Stop b i t to f in i sh
i f ( r_Clock_Count < CLKS_PER_BIT−1)
begin

r_Clock_Count <= r_Clock_Count + 1;
r_SM_Main <= s_RX_STOP_BIT ;
end
else
begin
r_Rx_DV <= 1 ’b1 ;

r_Clock_Count <= 0;
r_SM_Main <= s_CLEANUP;
end
end // case : s_RX_STOP_BIT

// Stay here 1 clock
s_CLEANUP :

begin
r_SM_Main <= s_IDLE ;

r_Rx_DV <= 1 ’b0 ;
end

default :
r_SM_Main <= s_IDLE ;

endcase
end

assign o_Rx_DV = r_Rx_DV ;
assign o_Rx_Byte = r_Rx_Byte ;

endmodule // uart_rx

16.11 Conclusion

In this chapter, we have discussed various examples of digital system designs. The
architectures are explained in detail to give readers a clear view that how to start
designing their own digital system. The systems are chosen in such a way to cover
all the important areas. These architectures may not be directly needed in a project
but the design concepts may be very useful.

First, we have discussed the design of digital filters. In designing a filter, the
first thing we have to know that which type of filter we are going to use. It may
be an FIR or an IIR filter. In our earlier discussion, it is clear that FIR filters are
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the general choice for high-frequency applications. IIR filters can achieve better
response with less filter order than the FIR filters. But IIR filters are recursive and
thus pipelining is difficult. Pipeline registers can be inserted in IIR filters using look-
ahead techniques but becomes costly. Secondly, we have to be careful about the filter
topology. Transpose structures are always better than the direct forms. Topology
must be chosen in such a way to reduce power consumption and also to increase
SNR performance.

We have discussed the implementation of a machine learning algorithm which is
K-means algorithm. This will give the readers an idea that how to implement an algo-
rithm on FPGA and analyze its performance. FPGA implementation performance is
measured in terms of hardware complexity (Resource utilization), timing complexity
(Developing the timing expressions) and dynamic power consumption.

In implementing signal processing algorithms, matrix multiplication is very
important. Thus, we have also discussed some methods of matrix multiplication.
Three methods are discussed here which are scalar–vector multiplication, vector–
vector multiplication and systolic array multiplication. Each technique has its own
advantage and must be used based on application needs.

Some of the sorting architectures are also discussed in this chapter. Designers may
use parallel or serial architecture based on their requirement. Along with the sorting
architectures, efficient computation of median of nine elements is also shown here.
This median computation block is very useful in designing median filter to remove
noises from an image. Here, FPGA implementation of a spatial median filter is also
given.

At last, we have discussed how to interface ADC and DAC chips to an FPGA
device kit. Interfacing of ADC or DAC chips is very important for real-time signal
acquisition or demonstration of FPGA performance, respectively. This interfacing
is achieved through an FSM design style written using Verilog HDL. These two
interfacing examples will be very useful in interfacing any SPI protocol-based ICs
to an FPGA kit. In addition to SPI-based interfacing, interfacing using the UART
protocol is also explained here.



Chapter 17
Basics of System Verilog

17.1 Introduction

In the Chap. 3, we have discussed the fundamentals of VerilogHDLwhich is themost
used language for description of hardware. In the case of FPGA implementations
Verilogwas enough as timing verification ismostly handled by the EDA tools. But for
ASIC designs designers were using other tools to perform STA and other verification
tasks. The usage of different tools was becoming a headache for the engineers.

Gradually, a new language is developed, called systemVerilog, which is becoming
verypopular nowadays for bothRTLdesign andverification.The feature set of system
Verilog can be divided into two distinct roles:

• System Verilog for RTL design is an extension of Verilog-2005. All features of
that language are available in system Verilog. Therefore, Verilog is a subset of
system Verilog.

• System Verilog for verification uses extensive object-oriented programming tech-
niques and is more closely related to Java than Verilog. These constructs are
generally not synthesizable.

It is not possible to discuss all the concepts of system Verilog in a single chapter. In
this chapter, fundamentals of system Verilog are discussed. The concepts which are
mostly require for RTL design are discussed here.

17.2 Language Elements

17.2.1 Logic Literal Values

Unlike Verilog, system Verilog supports automatic expansion of the bits. Following
example shows how unsized single bit value can be used for expansion
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1. ‘0 : fill all bits with 0.
2. ‘1 : fill all bits with 1.
3. ‘x : fill all bits with x.
4. ‘z : fill all bits with z.

In the following example the net x can be filled with all zeros.

wire [ 7 : 0 ] x ;
assign x = ‘ 0 ;

17.2.2 Basic Data Types

All the data types of Verilog are supported in system Verilog. System Verilog addi-
tionally includes some extra data types to give flexibility to the designers. All the
data types of Verilog and system Verilog are shown below.

• 2-state type.

– longint : 64-bit signed integer.
– shortint : 32-bit signed integer.
– int : 16-bit signed integer.
– bit: 1-bit.
– byte: 8-bit signed integer.

• 4-state type.

– logic : 1-bit.
– reg : 1-bit //Already defined in Verilog
– integer : 32-bit signed integer //Already defined in Verilog
– time : 64-bit unsigned integer //Already defined in Verilog

• Other types

– real : 64-bit double precision floating point. It is already defined in Verilog.
– realtime : This is of type real and is used to store time. It is also defined in
Verilog.

– shortreal : 32-bit single precision floating point.
– void : This type indicates no storage. It is used in functions to return nothing.
– chandle : This type is used to store pointers.

The difference between 2-state and 4-state variables is that a 2-state variable can take
either 0 or 1 but a 4-state variable can take any values from the set {0, 1, x, z}. Type
logic and type reg are equivalent and thus can be used interchangeably.

In the system Verilog kind (net or variable) and type of an object are separately
mentioned. Some examples are shown below.

wire l o g i c c t r l , add_sub ;//1−b i t l og i c type net .
var l o g i c [ 7 : 0 ] bus ; //8−b i t 4−s ta t e variable
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If type is not mentioned, then it is assumed that it is of variable type. Also, if kind
of an object is not mentioned, then it is assumed that it is of logic type.

wire c t r l , add_sub ;//by default o f type l og i c .
logic [ 7 : 0 ] bus ; //by default o f kind variable .

17.2.3 User Defined Data-Types

System Verilog offers user-defined data types for comfortably handling the objects.
Not that no new type of data type can be used. User can choose any data type which
are already defined. An example is shown below

typedef int my_int ;

A new data type my_int is defined which is equivalent to data type int. Thus, the
followings are equivalent

int x ;
my_int x ;

User-defined data types are useful in creating parametrized modules where data type
is not explicitly defined in the sub-modules.

17.2.4 Enumeration Data Type

In enumeration data type, an object can get any value from a set of constant values.
Some examples are shown below:

enum { s0 , s1 , s2 , s3 } fsm_states ;
enum { add , sub } c t r l ;

In the above example, variable f sm_states can take any values from the four values
and the variable ctrl can take value of either add or sub. Each literal in an enu-
meration data type is of int data type and has a specific value associated with it.
For example, add has a value of 0 and sub has a value of 1. The integer values are
assigned from left to right in increasing order. For example, s0 gets a value of 0 and
s3 gets a value of 3. No literal can have same value in an enumeration data type.
Specific values also can be specified by overriding the original values. For example,

enum { s0=0 , s1=1 ,s2=2 ,s3=4} fsm_states ;
enum { add=2 , sub } c t r l ;

It is not necessary to give values for all the literals. In the above example, literal sub
automatically gets a value of 3.

In the above examples, type of the objects is not defined. Type of an enumeration
object can be defined using typedef. For example,
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enum l o g i c [ 1 : 0 ] { s0 , s1 , s2 , s3 } fsm_states ;

Here, all the literals are of type logic. Default type of the literals is int.

typedef enum
{ s0=0 , s1=1 ,s2=2 ,s3=4} t_func ;
var t_func alu_func ;

Here, our main object is alu_ f uncwhich is of type t_ f unc (user-defined data type).
Again t_ f unc is of enumeration data type and thus alu_ f unc is of enumeration
data type and of kind variable.

System Verilog offers some shorthand notations to specify enumeration data-type
literals. The following expression:

typedef enum
{ s [ 3 ] , fn [ 7 : 4 ] } t_func ;
var t_func alu_func ;

can be interpreted as

typedef enum
{ s3 , s2 , s0 , fn7 , fn6 , fn5 , fn4 } t_func ;
var t_func alu_func ;

17.2.5 Arrays

System Verilog adds more features to handle the arrays. In an array, data can be
stored and an array can be one-dimensional or two-dimensional. There are two types
of arrays, packed and unpacked. unpacked array means only locations are mentioned
but, at each location, only single-bit data can be stored. Packed array means that the
width of the data is more than a single bit. Below some examples are shown

reg [ 3 : 0 ] count ///packed array
reg x [ 3 : 0 ] ///one dimensional unpacked array
reg [ 3 : 0 ] mem [7 : 0 ] ///8 loca t ions and each having 4−b i t data
reg [ 3 : 0 ] rom [ 7 : 0 ] [ 3 : 0 ] ///Total 32 loca t ions and
//each having 4 b i t data .
reg [ 3 : 0 ] [ 7 : 0 ] y [ 7 : 0 ] ///Total 8 loca t ions and
//each having 32 b i t data .

//Data width i s part i t ioned into two sec t i ons .
typedef bit x [ 7 : 0 ] ;
x [ 3 : 0 ] y ; /// not allowed .
//Can not mix−up packed and unpacked array .

byte [ 31 :0 ] prg ; //not allowed
int [ 7 : 0 ] z ; //not allowed .

//How to access a data from a packed array . . .
data [ 3 ] [ 3 : 2 ] ;//Firs t i s the unpacked index and
//second i s the part s e l e c t from the packed range .
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//the range can be imp l i c i t l y sp e c i f i ed .

reg [ 3 : 0 ] dpram [4 ] [ 2 56 ] ; // i s equivalent to
reg [ 3 : 0 ] dpram [3 : 0 ] [ 255 : 0 ]

//but data width cannot be imp l i c i t l y sp e c i f i ed for packed arrays
.

reg [ 3 ] q ; // i s not equal to
reg [ 3 : 0 ] q ;

///Consider an array having both two−dimensional
//packed and unpacked range .
reg [ 3 : 0 ] [ 7 : 0 ] xy [ 31 : 0 ] [ 2 55 : 0 ] ;
// [ 7 : 0 ] dimension varies more rapidly than the [ 3 : 0 ] dimension
//and [255 :0 ] varies more rapidly than the [31 :0 ] dimension .

//Thus in
xy [ 3 ] [ 2 5 0 ] [ 2 ] [ 6 ] ;
//Here , 3 i s from the [31 :0 ] range , 250 i s from the [255 :0 ] ,
//2 i s from the [ 3 : 0 ] range and 6 i s from the [ 7 : 0 ] range .

The following operations can be performed on arrays:

• Read and write an array array1 = array2;
• Read and write slice an array array1[i : j] = array2[m : n];
• Read and write a variable slice an array array1[x+ : i] = array2[y+ : i];
• Read and write element of an array array1[i] = t ; t = array1[ j];
• Use equality operator on an array or on a slice array1 == array2; array1[i :

j] = array2[m : n];

Array Literals

Array literals are values of an array. Such values are specified in the followingmanner.

logic [ 3 : 0 ] count = ’ { 1 , 0 , 1 , 0 } ;
bit mdat [ 1 : 0 ] [ 2 : 0 ] = ’ { ’ { 0 , 0 , 1 } , ’ { 1 , 0 , 1 } } ;
int h i t _ tb l [ 0 : 1 ] [ 1 : 5 ] = ’ { 2 { ’ { 5 , 4 , 5 , 6 , 3 } } } ;
int corr [ 0 : 7 ] = ’ { 0 : 4 , 2 : 5 , default : 2 } ;
///0th element ge ts 4 , 3rd element ge ts 5
//and re s t o f the elements ge ts 2 value .

17.2.6 Dynamic Arrays

Dynamic array is an array whose size is specified only at the runtime. Size of the
dynamic arrays can be varied. For example,

integer mem [ ] ;
int array [ ] ;
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The storage for dynamic array is not exist until it is created at runtime. The function
new can be used to allocate storage.

mem = new [ 5 0 ] ; //a l l o ca t e s 50 elements to the array .

The elements of the dynamic array are by default initialized to the default value of
the type of array. Another array also can be used to initialize the dynamic array.

int in i t_array [ 1 9 : 0 ] ;
. . .
mem = new [ 50 ] ( in i t_array ) ;// In i t i a l i z e f i r s t 20
//values using the array ini t_array .

A dynamic array can be of any size and can have any number of elements. It also
can be multidimensional. Size of a dynamic array can be known by method size in
the following way:

j = mem. size ;// i t returns 50

The elements of the dynamic array can also be deleted in the following way by
method delete:

mem.delete ;//mem has 0 element a f t e r execution of th i s statement .

17.2.7 Associative Array

Associative arrays are like a look-up table. The index type is used as look-up key. The
array index can be of any arbitrary type. Here is a variable declared as an associative
array.

typedef enum (MON, TUE, WED, THU, FRI ) weekdays ;
bit [ 3 : 0 ] lookup [weekdays ] ;

Here, an associative array of 4-bit is created and index weekdays is enumeration
type. So, the element from the look-up array is accessed based on the index. Storage
for associative arrays is created as when required.

17.2.8 Queues

Queue is a list of variable sizes where ordered elements of same type can be stored.
An example of a queue is

byte q_a [$ ] ;

Queue q_a stores elements of byte data type. A queue can represent first in first out
(FIFO), last in last out (LILO) or last in first out (LIFO). More examples of queue are
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int q_data [$]; //queue of integer
bit [3:0] q_b [$:31]; //31 is the max size of the queue.

A queue is a one-dimensional array that can grow or shrink dynamically. Thus, queue
can be used with indexing, slicing, concatenation and equality operators. Following
are the operations on queue:

int q_c [$ ] = ’ { 2 , 3 , 4 } ;
string code [$ ] = { "AM01" , "Am02" } ;
q_send [0 ] = 9 ;
q_send = { q_send , 2 } ;
q_rec = q_send ;
q_rec = { } ;
temp = q_send [0 ] + q_send [$ ] ;
q_rec = { q_rec [ 0 : pos−1] ,m, q_rec [ pos : $ ] } ;

The followings are the methods for queues:

• queue.size : returns the number of elements.
• queue.insert(i,e) : inserts element e at position i .
• queue.delete(i) : deletes element at i th position.
• e= queue.pop_front() : gets element in front and removes it from queue.
• e = queue.pop_back : gets element from back and removes it from queue.
• queue.push_front : pushes element at the front of the queue.
• queue.push_back : pushes element at the end of the queue.

17.2.9 Events

A variable can be declared to be of event type. A process can wait for

event clock_evnt ;
event a1 , a2 ;
always @( clock_evnt )
@( clock_evnt ) ;//wait for an event .
−> clock_evnt ;//create an event on clock_evnt .

17.2.10 String Methods

String data type store string values. Variables of type string are dynamic in their
length.

string my_name;
string his_name = "ramesh" ;
string empty_string = " " ;//This i s an empty s tr ing .
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A single character of a string is of byte type and indexes are from 0 to (N − 1). So
his_name[0] is r and hisname[3] is e. Characters from a string can be accessed just
like an array.

byte tb = his_name [ 0 ] ;

To convert integer and bit-vectors to a string type, use a type cast.

string str = string ’ ( 10 ’ b11_0011_0001 ) ;
//Automatically padded with zero to make multiple o f 8 .
string s t r_ in t = string ’ ( 5 2 ) ;

The followings are the string operations:

• str_int == str_bit : Compare equality.
• str_int != str_bit : Compare inequality.
• str_int > str_bit : Compare strings.
• {str_int,str_bit} : Concatenation of strings.
• {num_rep{str_int}} : Replication (num_rep can be a variable).
• {{3{str_int}},str_bit}} : Concatenation and replication.
• str_int[i] : Index, returns a byte.

Events can be assigned to other events. Like a1 = a2, any event that occurs on
a1 will appear on a2. An event also can have null values, so that no event can occur.
Such as

17.3 Composite Data Types

17.3.1 Structures

Collection of elements of different data types can be written in a single data type
called structures. Structures help organizing the data used in similar purpose. An
example of a structure is

struct {
int x ;
bit sign ;
logic [ 3 : 0 ] op_code ;
} my_structure ;

Here, my_structure is of structure data type and it has three elements of three
data types. Elements that comprise the structure are called members. Members of
structure are accessed by the following way:

y = structure_name .member_name

Members can be accessed individually and can be assigned.

y = my_structure . x
my_structure . sign = 1;
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This waymembers of structure can either be used in procedural or continuous assign-
ment. User-defined type definition also can be usedwith structure type. This is shown
in the following example:

typedef struct {
logic [ 3 : 0 ] s ;
logic [ 7 : 0 ] a ;
logic [ 7 : 0 ] b = 8 ’h0d ;// in i t i a l i z a t i on i s also poss ib l e .
} s t ruc t _ l og i c ;
s t ru c t _ l og i c in t _ l og i c ;

In the above example, int_logic is of type structure. Structures also can be nested
like in the following example:

typedef struct {
int x ;
int y ;
} struct1 ;

typedef struct {
struct1 a ;
struct1 b ;
} struct2 ;

In the second structure, members are of another structure which is struct1.Members
of nested structure can be accessed as

struct2 . a . x ///Accessing member of s truct1
struct2 . b ///Accessing another s truc ture which i s b .

Usage of structure data type is very similar to that of array data types. Assignment,
initialization and replication are possible for members of a structure.

A structure is packed or unpacked just like an array data type. If nothing is men-
tioned then a structure data type is unpacked. The structures which were discussed
above are unpacked type. In this case, all the members are accessed individually and
no order has to be maintained. But in the case of packed type, bits of the members
are stored in specific order. An example of packed data type is shown below.

struct packed {
bit sign ;
bit [ 3 : 0 ] exponent ;
bit [ 10 :0 ] mantissa ;
} f loat_hp ;

The above-packed structure is equivalent to just an unpacked array of the following
type:

reg [ 15 :0 ] f loat_hp_array ;

Individual bits or part of the vector can be accessed as

f loat_hp [ 3 : 0 ] ; //This i s the exponent f i e l d .

The packed structures provide an easy way to divide the vector into different parts.
Then part selection becomes easier. Any operation that can be applied to the unpacked
array, can also be applied to an unpacked structured data type.
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17.3.2 Unions

Unions in system Verilog is another composite data type which is similar to structure
data type. Only difference is that in union data data type storage is allocated for only
one member and this storage is shared by other members. Storage is allocated for the
member which requires the highest storage. An example of union data type is shown
below:

typedef union {
int x ;
l o g i c [ 7 : 0 ] y ;
} my_union ;
my_union z ;

In the above example, z is a union data type and it has two members. One member
is of integer data type and another is of logic data type. The storage requirement for
integer is greater than the member of logic type. Thus, 32-bits are allocated for x and
this storage is shared by other members.

The operations, assignments and usage of union and structure data type are same.
Like structure data type, union data type can also be packed type. An example of
packed data type is shown below

typedef union packed {
logic [ 3 : 0 ] x_reg ;
logic [ 7 : 0 ] y_reg ;
} my_packed_union ;

In a packed union, the size of the members must be same and packed union does not
support real, short real, unpacked arrays, unpacked unions or unpacked structures.
Packed unions are like vectors. In the above example, the storage is shared by x_reg
and y_reg. First, 4-bits are for x_reg, and last, 8-bits from the MSB side are for
y_reg.

Apart from packed and unpacked unions, there is another type of union which is
tagged union. A tagged union is the type of union data type where every member is
tagged or every member has an extra field associated with them to differentiate. An
example is

typedef union tagged {
int int_val ;
logic [ 7 : 0 ] l og i c_va l ;
} my_tagged_union ;
my_tagged_union t_union1 ;

Here, each member is associated with a tag. Like, an additional bit is used in storage
to differentiate the members. It is due to track which member is modified. Say, bit 0
is for int_val and bit 1 is for logic_val. A member in the tagged union is assigned
as

t_union1 = tagged int_val 35;

Here, 35 is assigned to member int_val of t_union1 variable which is of tagged
union data type.
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17.3.3 Classes

System Verilog introduces class, similar to structure, which not only includes differ-
ent types of members but also can include functions or tasks which can operate on
the members residing inside a system Verilog class. Members of a class called class
properties and functions or tasks are called class methods. An example of a system
Verilog class is shown below

class my_class;
bit [2:0] data;
bit write;
bit [3:0] address;
function new (bit [2:0] data = 3’h3, bit [3:0] address=4’h2",
this.data,this.write,this.address);
this.data = data;
this.write = 0;
this.address = address;
endfunction
function display
$display ("data = 0x%0h, write = 0x%0b,address = 0x%0h",
this.data, this.write, this.address);
endfunction
endclass

In the above definition of the class, there are three class properties and two class
methods. A class is used for grouping variables and their functionality in a single
scope. Here, two new keywords this and new are used. The keyword this is used
to refer the current class. Normally used within a class to call its own objects. The
keyword new after a class method is used to initialize a function or a task. In order to
use a class, first the class is instantiated by another object and then the class properties
are accessed just like structure members are used.

module c lass_tb ;
my_class t_class1 , t_c lass2 ; //ins tant ia t ion of the c lass

init ial begin
t_c lass1 = new ( 3 ’ h4 , 4 ’h7 ) ; //data = 3 ’h4 , address = 4 ’h2 .
t_c lass1 . display ;

t_c lass2 = new ( ) ; //The function wi l l i n i t i a l values
//data = 3 ’h3 and address = 4 ’h2 .
t_c lass2 . display ;
end
endmodule

If the functionality of the above class is to be increased without changing it then this
can be done using the extend keyword. This keyword will extend the features of the
previous class. Now previous class my_class is base class and functions or objects
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are added to the new class using the super keyword. An example is shown below

class my_class1 extends my_class;
bit read;
bit enable;
function new();
super.new;
this.enable = 1;
this.read = 0;
endfunction
function display
super.display();
$display("enable = 0x%0b, read = 0x%0b",this.enable, this.read);
endfunction
endclass

17.4 Expressions

In system Verilog, many new expressions and mechanisms are added. The newly
added features in system Verilog are highlighted here.

17.4.1 Parameters and Constants

A parameter can be specified by the symbol $. This represents unspecified or
unbounded constants.

parameter N = $ ; //parameter declaration . .
module add # (parameter N = 16) ( . . ) ; //parameter de f in i t i on .
. . .

endmodule

add ( .N($ ) ) . . . . parameter value assignment

In system Verilog, type of a port can also be passed as constants. Such a parameter
is called a t ypeparameter as opposed to valueparameter .

module modem # (parameter type ptype = l og i c ) ( . . . .
ptype modreg ;
endmodule

modem # ( . ptype ( b i t ) , . . . . //usage of type parameter .

In system Verilog, the word parameter is optional. One could simply write as

module alu # (N = 16 , type log ic , int i ) ( . . . .
endmodule
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SystemVerilog has the capability to specify constants using the const keyword.Const
constants are like local parameters. Local parameters get their value at the elaboration
time, whereas const constants get their value after elaboration is complete. Some
examples are

const int data = 9;
const k= 7 .4 ; ///wrong . . . type must be sp e c i f i ed .
const l o g i c path = top . sb . fa ; //can take hierarchical path also .

17.4.2 Variables

Variables are declared with their type. Some declarations of the variables are shown
here.

int count ;
bit done ;
enum int (S0 , S1 , S2 , S3 ) state ;
logic hsize ;

Some time variables are declared with var keyword.

var reg x ;
var byte y ;
var z ; //type i s not sp e c i f i ed . Default type i s l og i c .
var int i = 5 ; //can take i n i t i a l values .

Variables are used in continuous assignments or procedural assignments. One impor-
tant point about variables is that only one input can drive a variable. If multi-driver
is there, then a net type should be used.

A variable can be declared as static or automatic by the keywords static and
automatic.

automatic l o g i c [ 3 : 0 ] lmt ;
static int i ;

By default a variable is of type static. Automatic variables can only be used within
the block in which it is defined. But static variables are global and can also be used
outside the block.

a variable can be initialized in two ways. The first method is inline initialization
and the second method is with the initial statement. An example is

integer num = 6; //in l ine i n i t i a l i z a t i on
. . . .
integer num;
init ial num = 6;

In Verilog HDL, both types of initialization methods are same and it creates a simu-
lation event. But in system Verilog, they are not same. In the latter case, the value is
6 is assigned to variable num after the simulation starts at time 0 and thus it causes
a simulation event and num gets value at time 0. But in the former case, simulation
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starts with variable num having a value of 6 and thus it does not cause any simulation
event.

17.4.3 Operators

Operators of Verilog HDL are same in the systemVerilog. The only difference is that
they are differently written. In system Verilog, an assignment operator is written as

a ∗= 2; ///System Verilog usage . .
a = a ∗ 2 /// Verilog HDL equivalent .

This way other assignment operators can be used in the system Verilog. Blocking
assignments can be written as

b = ( a += 1) ;

In the system Verilog following is

i f ( ( a =b ) ) . . .

is equivalent to

a = b ;
i f ( a =b ) . . .

The increment or decrement operators (bump operators) are just like they are in
language C. A variable can be incremented or decremented in the following way:

j = j ++;//Post−increment operator . . . assign then increment
// i s equivalent to
j = j +1;
///// Similarly , other bump operators are
k = ++k ;//Pre−increment operator . . . increment then assign
j = j−−;//Post−decrement operator .
k = −−k ;//Pre−decrement operator .

System Verilog adds two additional comparison operators. These are

==? ///Wildcard equal i ty operator
!=? ///Wildcard inequal i ty operator

These two operators are used to check equality and inequality even if the -hand side
expression has x or z values. If the right-hand expression has x and z values, then
they are treated as don’t care and don’t care bits are masked for comparison. But x
and z values in the left-hand side expression are not treated as don’t cares. Now, if the
left-hand side expression has x values then the comparison result is x. For example,

a = 4 ’ b1010 , b = 4 ’ bx01z ; //then
a ==? b ; // i s 1
a !=? b ; // i s 0

. . . . .
a = 4 ’ b1x10 , b = 4 ’ bx01z ; //then
a ==? b ; // i s x
a !=? b ; // i s x
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These operators also can compare the expression of different sizes. For these case,
zeros are appended to the expression which has less number of bits.

System Verilog introduces two additional logical operators and these are

−> //log i ca l implication operator
<−> //log i ca l equivalence operator

Examples of these operators are

a −> b ; // i s equal to ( ! a || b )
a <−> b ; // i s equal to ( a −> b ) && (b −> a )

17.4.4 Set Membership Operator

System Verilog offers a set membership operator which is defined by the keyword
inside. This keyword is used to check that if the value of an expression present in a
set of values. For example,

state inside {0 ,1 ,2 ,3 }

If the value of state variable matches any value from the set, then the output is 1.
This operator can be easily used in a loop as a condition. More examples of inside
operator are

add inside { 4 ’ b0x1z }//compares with 4 ’ b0010 , 4 ’ b0011 , 4 ’ b0110 , 4 ’
b0111

// x and z values are treated as don ’ t cares .
adt inside { x , y , z }
//Set values are variables

17.4.5 Static Cast Operator

In, a design different data types may be defined and we may require to change the
type of a variable or net. This type change is done by casting operator (′). Examples
of type casting are

int ’ ( 2 . 0 ) //real to in teger
i = int ’ ( 3 . 16∗0 .5 )
shortint ’ ( 8 ’hFA)

It is possible to change the user defined types also using this casting operator. Similar
to type casting, size casting is also possible in the following manner

a = 10 ’ (2+5) // stored in 10−b i t s
32 ’ (15) //integer i s ge t t ing 32 b i t s .

Similar to type and size casting, sign of an operand also can be changed. This is done
in the following way
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signed ’ ( 4+9 )

The result will be signed in this case. Type casting can also be performed between
composite data types. This type of type casting is achieved through bit streaming.
Type casting between composite data types can be possible only between two bit-
stream types of same size. In this conversion, first the right hand side object is con-
verted into a vector via bit-streams. This stream of bits are assigned to the destination
from left to right. An example is shown below

typedef struct {
bit [ 3 : 0 ] x ;
byte y [ 3 : 0 ] ;
} t_str1 ; //s i z e 36

typedef struct {
byte a ;
bit b [ 2 7 : 0 ] ;
} t_str2 ; //s i z e 36

t_str1 t_dr1 ;
t_str2 t_dr2 ;

typedef logic [ 35 :0 ] t_array ;
t_array t_arr ;

t_dr2 = t_str2 ’ ( t_dr1 ) ;
t_dr1 = t_str1 ’ ( t_dr2 ) ;
t_arr = t_array ’ ( t_dr1 ) ;

17.4.6 Dynamic Casting

Static casting does not report an error if the casting is not right. For example, if a long
real data is converted into an integer, then it is possible that it may not be accom-
modated. Dynamic casting reports an error if the casting is illegal and the object on
which the casting is operated is left unchanged. Dynamic casting is like a function
and can be used inside any function or task. An example of dynamic casting is

$cast(dest_var,source_expression) /// format of dynamic expression..
$ cast(x,y*9);
report = $ cast(bn, tm*3.9); //report = 1 only conversion is valid.
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17.4.7 Type Operator

The type operator gives type of an variable or net or expression. This command can
be usedwhenever type is required to know. This operator can be used in the following
way:

var type ( rec ) cs t ;
x = type ( y ) ’ ( z ) ;

In the first example, type of variable cst is defined as same type of variable rec. In
the second example of typecasting, z is converted to x and type of x is same as that
is of y.

17.4.8 Concatenation of String Data Type

In the systemVerilog, concatenation of string type data type is possible. For example,

string tes t = "geh " ;
string alph = { " abc " , " def " , t es t } ;

The output of the following is "abc def geh". Replication of the strings is also possible.
Like

string str_a ;
str_a = {3 { " str ing " } } ; //Output i s " s t r ing s tr ing s tr ing "

17.4.9 Streaming Operators

The streaming operators are

• >>: This operator causes the data to be streamed out from left to right.
• <<: This operator causes the data to be streamed out from right to left.

These operators, when applied on the right-hand side, perform packing of a bit stream
into sequence of bits in a user-specified order. This operator can be applied to either
structures, unpacked arrays or class objects of any length. The stream of bits then
can be allocated to a destination. If these operators are applied on the left-hand side,
then they unpack a bit stream into one or more variables. The format of this operator
is

stream_operator slice_si ze list_of _expr_concat

The slice_si ze specifies how the bit-stream is broken into slices where each slice
has a specific number of bits. If not specified, then it is assumed that sluce_si ze is
1. Examples of streaming operators are
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byte x = 8 ’ b01100101 ;
bit a , b , c , d ;
bit [ 3 : 0 ] e ;

y = {<< { x } } ; // Bit reverse . . y = 1_0_1_0_0_1_1_0 ; . .
//from right to l e f t .
y = {>> 2{x } } ; // Same . . y = 01_10_01_01 ; . .
///from l e f t to r ight .
{>> {a , b , c , d } } = z ; // / i f z = "1011_1110 " . .
///then a = q , b = 0 , c=1 ,d=1 and e = 1110.

17.5 Behavioural Modelling

17.5.1 Procedural Constructs

System Verilog has three additional always statements which are

• always_comb statement.
• always_latch statement.
• always_ff statement.

always_comb Statement

In the Verilog HDL, the statement always @* is used to realize combinational cir-
cuits. In system Verilog, this statement is modified and a new procedural construct
always_comb is used to realize only combinational circuits. The major characteris-
tics of this statement are

• Automatically detects the sensitivity list of a design.
• always_comb automatically executes once at time zero, whereas always @*waits
until a change occurs on a signal in the inferred sensitivity list.

• Variables on the left-hand side of assignments within an always_comb procedure,
including variables from the contents of a called function, cannot be written to by
any other processes, whereas always @* permits multiple processes to write to
the same variable.

• Statements in an always_comb cannot include those that block, have blocking
timing or event controls, or fork-join statements.

• It generates warning if combinational circuits can not be generated.
• Inputs of functions, called in procedural statements, are considered part of the
sensitivity list.

Consider the simple system Verilog code of a half adder. Here, the always_comb
procedural statement automatically considers inputs a and b in the sensitivity list.
But it does not include the variable which is declared locally in the statement in the
sensitivity list. Here, sensitivity list is ‘a or b’.
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module FA( input a , b , output reg s , c ) ;
always_comb
begin

s <= b ^ a ;
c <= a & b ;

end
endmodule

Consider another simple realization of 3:1 multiplexer using case statement. Here,
the default case is not mentioned and thus there is a possibility that a latch will be
inferred. Thus, it will not be a pure combinational circuit and always_comb will
generate a warning.

module MUX( input a , b , c , input [ 1 : 0 ] s , output reg y ) ;
always_comb
case ( s ) // : ADDER

2 ’ b00 : y = a ;
2 ’ b01 : y = b ;
2 ’ b10 : y = c ;
//default : y = 0;

endcase
endmodule

In the following systemVerilog code, a function is defined and called. The sensitivity
list for the always_comb statement is ‘a or b or cin’

module Top ( input a , b , cin , output reg s ) ;
function l o g i c my_func ( input l o g i c cin ) ;

my_func = a | b | cin ;
endfunction
always_comb
s = my_func ( cin ) ;
endmodule

always_latch Statement

Just like always_comb targets to generate combinational circuits, always_latch
statement targets to generate latch-like circuits. The characteristics of these two
statements are same and the only difference is that always_latch statements gener-
ate warning if latch-like logic is not realized. A simple system Verilog code is shown
below:

module FA_latch ( input a , b , en , output reg s , c ) ;
always_latch
begin : ADDER

i f ( en ) begin
s <= b ^ a ;
c <= a & b ;

end
end
endmodule
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Here, the sensitivity list for the above design is automatically inferred and it is ‘a or
b or en’.

always_ff Statement

Like other two procedural statements, always_ff is used to realize sequential logic
circuits which use flip-flops. The timing control for the flip-flop circuits must be
edge-triggered, like positive or negative edge of clock or reset signals. A simple
example of system Verilog code using this statement is given below:

module DFF_sv ( input d , clk , rst , output reg q ) ;
always_ @(posedge clk or posedge rs t )
i f ( rs t )
q <= 0;
else
q <= d ;
endmodule

The above code models a simple D flip-flop using system Verilog.

17.5.2 Loop Statements

System Verilog improves the existing loop statements and also introduces some new
loop statements for easy programming. These are

• For loop
• Do-while loop
• If-else loop
• Foreach loop.

For-Loop Statement

In system Verilog, variables can be declared locally in the for-loop. These variables
are called automatic variables. In addition, system Verilog allows multiple initial
assignments and multiple-step assignments.

module f or_ loop ( ) ;
init ial begin

for ( int i = 0 , j = 0 ; i < 4 ; i ++ , j ++) begin
#1 $display ( " Current value of i = %g , j = %g" , i , j ) ;

end
#1 $finish ;

end
endmodule
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Here, i and j are automatic variableswhich are locally declared.These locally declared
variables can neither be referred to in hierarchy nor dumped in VCD files.

While and Do-While-Loop Statement

System Verilog additionally introduces while and do-while loops. The while loop
works exactly like it works in C language. Statement executes when certain condition
satisfies. An example is shown below

module while_tb;
initial begin
int cnt = 0;
while (cnt<5) begin
$display("cnt = %0d",cnt);
cnt ++;
end
end
endmodule

The do-while loop first executes the procedural statements and then evaluates the
condition. An example of this type of loop is shown below.

module do-while_tb;
initial begin
int cnt = 0;
do begin
$display(" cnt = %0d",cnt);
cnt ++;
end while (cnt<5);
end endmodule

Foreach-Loop Statement

This is a newly introduced loop statement in system Verilog. This loop can be used
to iterate over the elements of a single or multidimensional array without knowing
the size of the array. The argument must be an array with a list of loop variables.
These loop variables are local or automatic by default.

byte word [ 0 : 3 ] [ 0 : 1 5 ] ;
. . . . .
foreach (word [ i , j ] )
word [ i ] [ j ] = i ∗ j ;
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Here, i and j are local variables. The iteration takes place from left to right. For each
value of i, loop iterates over each value of j. This loop can also be possible for three
variables as shown below. Here, innermost loop is k and outermost loop is i.

logic matrix [ 1 : 4 ] [ 2 : 5 ] [ 4 : 0 ] ;
. . .
foreach (word [ i , j , k ] )

Jump Statements

Like in C language, system Verilog introduces some jump statements to jump out
of a loop when required. This facilitates the programmer to model a hardware block
easily. These jump statements are

• Break Statement.
• Continue Statement.
• Return Statement.

The break statement causes the loop to terminate and exit. An example is shown
below.As soon as the count for i reaches 5, the for loop stops executing. The statement
which immediately follows the loop executes after the execution of break statement.

module break_loop ( input a [ 7 : 0 ] , output reg b [ 7 : 0 ] ) ;
always @∗
begin
for ( int i = 0 ; i <10; i ++) begin
b [ i ] = a [ i + 1 ] ;
i f ( i == 5)
break ; end
end
endmodule

The continue statement is used to execute the loop if some condition is satisfied.
This statement is less often used. An example is shown below. Here, assignment of
array a to another array b is executed only if i is equal to 0 or 2.

module continue_loop ( input a [ 3 : 0 ] , output reg b [ 3 : 0 ] ) ;
always @∗
begin
for ( int i = 0 ; i <10; i ++) begin
i f ( i == 0 || i ==2)
b [ i ] = a [ i + 1 ] ;
continue ; end
end
endmodule

The return statement is used in a task or function to exit from a task or a function,
respectively. In the following example, return statement returns (a + b) or (a − b)
depending upon whether a is lesser or greater than b, respectively.
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module return_loop ( input [ 3 : 0 ] a , b , output reg [ 3 : 0 ] s ) ;
function [ 3 : 0 ] my_func ( input [ 3 : 0 ] a , b ) ;

i f ( a<b )
return ( a+b ) ;
else
return ( a−b ) ;

endfunction
always_comb
s = my_func ( a , b ) ;
endmodule

Block and Statement Labels

Labelling in Verilog was done by adding a label after the keyword begin. In system
Verilog, a label can be added after the keyword end also but both the label after
begin and end should be same. System Verilog also allows statement levels in order
to give coders good readability and for the ease of troubleshooting. An example is
shown below:

begin : ADDER //Label for block
summation : s <= b ^ a ;//Statement Label
carry : c <= a & b ;//Statement Label

end : ADDER //Closing Label for block

17.5.3 Case Statement

The case statement in system Verilog is improved and three keywords unique,
unique0 and priority are added so that violations can be checked and reported.

Unique and Unique0 Case Statement

The unique case statement specifies that the case expression evaluates to only one
of the case values. Thus, the case values can be written in any order and selection can
be done in parallel. In unique case, statement case values must be non-overlapping.
This statement will report violation if no case value is matched or more than one
case values are same.

module MUX( input a , b , c , input [ 1 : 0 ] s , output reg y ) ;
always_comb
unique case ( s ) // : ADDER

2 ’ b00 : y = a ;
2 ’ b01 : y = b ;

endcase
endmodule
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In the case of unique0 case statement, no violation is reported if case expression
does not match any case values.

Priority Case Statement

Priority case statement specifies that case expressions should match at least one
case item. It does not report violation if more than one match is found. If more than
one matching case items are found, then the first matching branch is evaluated. In
the following example, if a is equal to 0 or 1, then statement ‘Priority Casez 0 or 1’
is displayed.

always @ (*)
begin
priority casez(a)
3’b00?: $display("Priority Casez 0 or 1");
3’b0??: $display("Priority Casez 2 or 3");
endcase
end

Case Inside Statement

The case inside statement (case statement with inside operator) can be used to check
whether the case expression is a member of the case items or not. A simple example
is shown below where case expression s checked whether any match occurs or not
inside the array of case items [3:0]. Along with inside operator, unique, unique0 or
priority word can be added.

module MUX( input a , b , c , input [ 1 : 0 ] s ,output reg y ) ;
always_comb
case ( s ) ins ide// : ADDER

[ 0 : 3 ] : y = a ;
endcase
endmodule

17.5.4 If Statement

The keywords unique, unique0 or priority can be added to if statement also.
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Unique and Unique0 if Statement

Similar to the unique case statement, in the case of a series of if–else–if statements
order of the conditions are not important. The conditions must be unique or mutually
exclusive and at least one condition must be satisfied. Thus, unique if statement
gives warning if more than one conditions are same. An example is shown below.
Unique0 does not report warning if more than one conditions are same. The last else
statement is required to avoid warning.

always @ (*)
begin
unique if ((a==0) || (a==1)) begin
$display("Unique if : 0 or 1");
end else if (a == 2) begin
$display("Unique if : 2");
end else if (a == 4) begin
$display("Unique if : 4");
end end

Priority if Statement

In the case of priority if statement, order of the conditions is important. All the
conditions are evaluated as they are specified. This is like the normal if statement
only difference is that priority if statement generates warning if no conditions are
satisfied and hence the last else statement is required. In the following code, if a = 5
then no conditions are satisfied and a warning will be generated as the last else state-
ment is not present.

always @ (*)
begin
priority if ((a==0) || (a==1)) begin
$display("Priority if : 0 or 1");
end else if (a == 2) begin
$display("Priority if : 2");
end else if (a == 4) begin
$display("Priority if : 4");
end end

17.5.5 Final Statement

The final block is like an initial block, defining a procedural block of statements,
except that it occurs at the end of simulation time and executes without delays. A
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final block is typically used to display statistical information about the simulation.
The only statements allowed inside a final block are those permitted inside a func-
tion declaration. This guarantees that they execute within a single simulation cycle.
Unlike an initial block, the final block does not execute as a separate process instead
it executes in zero time, the same as a function call.

module final_block ();
initial begin
for (int i = 0 ; i < 10; i ++) begin
$display ("@%g Continue with next iteration", $time);
end
#1 $finish;
end
final begin
$display ("Final block called at time %g", $time);
end

17.5.6 Disable Statement

System Verilog has break and continue statement to break out of or continue the
execution of loops. The disable statement is also allowed to disable a named block,
which does not contain the disable statement. If the block is currently executing, this
causes control to jump to the statement immediately after the block. If the block is a
loop body, it acts like a continue. If the block is not currently executing, the disable
has no effect.

module disable_block ( ) ;
init ial begin

fork : FORK
for ( int i = 0 ; i < 9 ; i ++) begin

#1 $display ( " First −> Current value of i = %g" , i ) ;
end
for ( int j = 0 ; j < 10; j ++) begin : FOR_LOOP

i f ( j == 4) begin
$display ( " Disable FORK" ) ;
disable FORK;

end
#1 $display ( " Second −> Current value of j = %g" , j ) ;

end
join
#10 $finish ;

end
endmodule
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17.5.7 Event Control

If Conditional Event

System Verilog introduces iff qualifier (if and only if) @ event control. The event
expression triggers only if the condition is true. In the following example, the always
block does not get triggered when there is a positive edge of clock signal and ‘rst ==
1’. This is shown in the below example.

module DFF_sv ( input d , clk , rst , output reg q ) ;
always_ @(posedge clk i f f rs t == 0 or posedge rs t )
i f ( rs t )
q <= 0;
else
q <= d ;
endmodule

Edge Events

In addition to posedge event and negedge event, system Verilog introduces edge
event. An edge event occurs whenever a posedge or negedge event occurs and it can
be used to form event expressions just like posedge events and negedge events.

module DFF_sv ( input d , clk , rst , output reg q ) ;
always_ @ (edge clk )
i f ( rs t )
q <= 0;
else
q <= d ;
endmodule

17.5.8 Continuous Assignment

System Verilog allows the continuous assignment of any variables of any data type.
While nets can be driven by multiple continuous statements, variables can only be
driven by one continuous assignment or one procedural block.

var int address ;
assign address = q << 2
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17.5.9 Parallel Blocks

The parallel processing in behavioural style in system Verilog is modified and
two types of fork-join statements are introduced. These are fork-join_any and
fork-join_none statements. These two have some differences from the original fork-
join statements.

The fork-join_any statement blocks until any of the processes spawned by the
fork completes. The parallel block completes if any of the processes completes. Here
is an example of fork-join_any statement. At 5ns, all the parallel processes p1, p2
and p3 are spawned in parallel. The process p2 is the process which completes after
7 ns. Thus, the fork-join_any block exits after 12 ns. The display statement will
display 12 ns.

module forK−join_any_tb ( ) ;
init ial begin
#5ns ;
fork begin : p1
#10ns ;
end
begin : p2
#7ns ;
end
begin : p3
#15ns ;
end
join_any

$display ( " I t i s now time %t " , $time ) ;
end
endmodule

In the fork-join_none statement, the parent process does not get suspended and it
continues executing. In the following example, all the processes are spawned at after
5 ns. Thus, the first display statement displays 5 ns. Then all the parallel processes
start executing. Process p1 ends after 15 ns, p2 ends after 12 ns and p3 ends after 20
ns but the parent process is executing. The second display statement executes after
55 ns. If normal fork-join statement was used, then the first display statement would
be executed at 20 ns and the second display statement would be executed at 70 ns
time.

module forK−join_none_tb ( ) ;
init ial begin

#5ns ;
fork begin : p1
#10ns ;
end
begin : p2
#7ns ;
end
begin : p3
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#10ns ;
end
join_any

$display ( " I t i s now time %t " , $time ) ;
#5ns ;
$display ( "End of time %t " , $time ) ;
end
endmodule

17.5.10 Process Control

SystemVerilog also offers constructs to either disable a process or wait for processes
to complete. Example of these constructs are wait-fork and disable-fork statement.
The wait-fork statement ensures that all the child process of a parent process are
completed their execution. An example is shown below. If wait-fork statement was
not used, then the display statement would be executed at 12 ns as p2 process takes
only 7 ns. But the wait-fork statement causes to wait for all the processes to complete
and thus the display statement executes at 15 ns.

module wait_fork_tb ( ) ;
init ial begin
#5ns ;

fork
begin : p1
#10ns ;
end
begin : p2
#7ns ;
end
begin : p3
#10ns ;
end
join_any
wait fork ;

$display ( "End of time %t " , $time ) ;
end
endmodule

The disable-fork statement disables all the child processes of the parent process.
In the following example, all the processes are spawned at 5 ns. The disable-fork
statement executes after 8 ns. Thus, this statement disables the processes p1 and p3.
Only the display command under process 2 will be executed.

module disable_fork_tb ( ) ;
init ial begin
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#5ns ;
fork

begin : p1
#10ns ; $display ( "End of p1 %t " , $time ) ;
end
begin : p2
#7ns ; $display ( "End of p2 %t " , $time ) ;
end
begin : p3
#10ns ; $display ( "End of p3 %t " , $time ) ;
end

join_none
#8ns ;
disable fork ;
end
endmodule

17.6 Structural Modelling

17.6.1 Module Prototype

In system Verilog, a module can be declared without specifying its body using a
special keyword extern. In an extern module declaration, all the ports or parameters
are specified. This makes easy compilation and handling of the system Verilog files.
An example is shown below.

////FA f i l e . . .
extern module Adder_2bit #(parameter N=2)
( input [N−1:0] a , b , output [N−1:0] s ) ;

module Adder_2bit ( . ∗ ) ;
assign s = a+b ;
endmodule : Adder_2bit

Amodule prototype is declared using extern keyword. Now, a module prototype can
be declared either inside another module or outside all the modules in a single system
Verilog file. If declared outside, then themodule prototype can be instantiated in other
modules. In system Verilog, module name can also be mentioned after endmodule.

In system Verilog, a module can be declared inside another module and this is
called nesting of module declaration. If a module is declared inside a module, then
this module is only visible to themodule in which it is declared. An example is shown
below. Here, the Adder_2bit module is declared inside the Add_3op_2bit module
and thus Adder_2bit module is only useful by Add_3op_2bit module.

module Add_3op_2bit ( input [ 1 : 0 ] a , b , c ,output [ 1 : 0 ] s ) ;
wire [ 1 : 0 ] s1 ;
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Adder_2bit # (2 ) m1(a , b , s1 ) ;
Adder_2bit # (2 ) m2( c , s1 , s ) ;
extern module Adder_2bit #(parameter N=2)
( input [N−1:0] a , b , output [N−1:0] s ) ;
module Adder_2bit ( . ∗ ) ;
assign s = a+b ;
endmodule : Adder_2bit
endmodule

In designing a complex design with many sub-modules, it is best practice to use sep-
arate system Verilog files. In handling more files, system Verilog offers a command
‘inlcude written in a file to include the modules declared in another file. An exam-
ple is shown below. Here, module Adder_2bit is defined in the FA.sv file which is
shown earlier.

///Adder Fil . . . . .
module Add_3op_2bit ( input [ 1 : 0 ] a , b , c ,output [ 1 : 0 ] s ) ;
wire [ 1 : 0 ] s1 ;
‘include "FA. sv "
Adder_2bit # (2 ) m1(a , b , s1 ) ;
Adder_2bit # (2 ) m2( c , s1 , s ) ;
endmodule

If no port type or direction is specified for the first port, then all the ports with their
type and direction should be specified in the body of the module not in the port list.
If the type or kind (variable or net) of the first port is specified but direction is not
specified, then it is assumed that it is an inout port by default. In the port list, if
direction of a port is not specified, then by default the direction of the previous port
is considered. If direction of the first port specified but kind or type not defined, then
by default it is assumed to be a wire of logic type. System Verilog allows a port to be
variable instead of a net. A variable can have only a driver but a net can have multiple
driver. For bidirectional ports, net type ports can be used. In Verilog, we have seen
that a module can be instantiated either by maintaining the position of the ports or
by mentioning the port name. System Verilog offers some features to instantiate a
module with many ports with little effort. An example of module instantiation is
shown below where a D flip-flop module is instantiated in a parallel in parallel out
register.

module DFF( input clk , rst , d , output reg q ) ;
always_ @(posedge clk ) begin
i f ( rs t )
q <= 0;
else
q <= d ; end
endmodule
module pipo_2bit ( input clk , rst , input [ 1 : 0 ] d , output reg [ 1 : 0 ] q ) ;
DFF f1 ( . clk , . rst , . d ( d [ 0 ] ) , . q ( q [ 0 ] ) ) ;//As same clk and rs t pin i s
//connected to each f l ip−f l ops
DFF f2 ( . ∗ , . d ( d [ 1 ] ) , . q ( q [ 1 ] ) ) ;//.∗ i s used to reduce writing
// e f f o r t to declare same ports .
endmodule
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In this instantiation, clk and rst signals are connected to each flip-flop and thus
writing .clk and .rst is enough. Sometimes, similar ports of the sub-module are used.
In this case, to reduce to need of writing all the ports .∗ operator is used. This is called
an implicit port connection. If the port names vary, then explicit port connection is
required. Like, d pin of DFF module is connected to d[1] pin of pipo_2bit module.

In system Verilog, arrays either packed or unpacked can be passed through ports.
The port also must be an array and values are passed just like an assignment. System
Verilog also allows any type of port including real values, structures or unions in the
port list.

System Verilog adds a fourth port connection named ref other than input, output
and inout. A ref port passes hierarchical reference to a signal instead of passing its
value. By using ref port, a port can be shared by both sub-module or topmodule. This
means that if the ref port is a variable then it can be accessed by multiple modules.
An example is shown below where an array val1 is accessed by both sub-module
and top-module. One point is to be noted here that a module which uses the ref port
can not be synthesized. This helps only in the verification of complex designs.

module submod( input [ 1 : 0 ] s , ref val [ 3 : 0 ] ) ;
always @∗
case ( s )
2 ’ b00 : val [ 0 ] = 1 ’ b1 ;
2 ’ b01 : val [ 1 ] = 1 ’ b1 ;
default : val [ 0 ] = 1 ’ b0 ;
endcase
endmodule

module topmod ( input [ 3 : 0 ] s1 , output reg val1 [ 7 : 0 ] ) ;
submod m1( . s ( s1 [ 1 : 0 ] ) , . val ( val1 [ 3 : 0 ] ) ) ;
always @∗
case ( s1 )
4 ’ b0101 : val1 [5 ] = 1 ’ b1 ;
4 ’ b0110 : val1 [6 ] = 1 ’ b1 ;
default : val1 [ 0 ] = 1 ’ b0 ;
endcase
endmodule

In system Verilog, type or kind of an input or output port can also be parameterized.
In this way, type of a port in sub-modules is not required to be fixed. An example is
shown below.

extern module portType #(parameter VAR_TYPE = short int )
( input VAR_TYPE a , b ) ;

interface ram_if (
input clka , clkb , ena ,wea , enb ,web ,
input [ 2 : 0 ] ada , adb ) ;
endinterface

module dpram( ram_if i fa , input [ 7 : 0 ] ina , inb , output reg [ 7 : 0 ]
outa , outb ) ;

reg [ 7 : 0 ] mem [ 0 : 7 ] ;
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always@ (posedge i f a . clka )
i f ( i f a . ena )begin
i f ( i f a .wea)
mem[ i f a . ada]= ina ;
else
outa = mem[ i f a . ada ] ;
end
else
outa = outa ;
always@ (posedge i f a . clkb )
i f ( i f a . enb )begin
i f ( i f a .web)
mem[ i f a . adb]= inb ;
else
outb = mem[ i f a . adb ] ;
end
else
outb = outb ;
endmodule

module memmory_bank( ram_if i fa , input [ 7 : 0 ] a1 , a2 , a3 , a4 ,
output reg [ 7 : 0 ] b1 , b2 , b3 , b4 ) ;
dpram m1( i fa , a1 , a2 , b1 , b2 ) ;
dpram m2( i fa , a3 , a4 , b3 , b4 ) ;
endmodule

. . . . .
ram_if i faa ( clka , clkb , ena ,wea , enb ,web , ada , adb ) ;
memmory_bank uut ( i faa , a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 ) ;
. . . . .

17.7 Summary

In this chapter, some fundamental principles of system Verilog are discussed. The
objective was not to discuss the whole course of system Verilog here as it is beyond
the scope of this chapter. Major features of system Verilog for describing hardware
using system Verilog are focussed here. Verification of a design using system Ver-
ilog is another topic which is not covered here. In contrast to Verilog HDL, system
Verilog offers many attractive features which are very useful to system designers. In
conclusion, it can be said that it is not mandatory to learn system Verilog for RTL
design as systemVerilog only helps designer for quick prototype. But it is mandatory
to learn system Verilog if verification is required. Nowadays, it is industrial prac-
tice whether it is RTL design, verification or software development for intellectual
properties system Verilog is the solution.



Chapter 18
Advanced FPGA Implementation
Techniques

18.1 Introduction

In the previous chapters, many basic and advanced concepts of digital system design
are discussed. All these systems can be implemented on either FPGA or ASIC plat-
form but this book mainly discusses FPGA implementation of digital systems. In
order to implement the digital systems on FPGA, concepts of Verilog and system
Verilog are described in this book. General procedure of implementing a system on
FPGA is to model the digital system using HDL and then implement (synthesize,
translate, place and route) the system on FPGA via EDA tools. The implementation
steps are discussed in detail in Chap. 14.

Over the past few years, many new techniques are adopted for FPGA imple-
mentation and some advanced features are also included in modern FPGAs. This
enhancement in the features was necessary so that FPGAs can be easily used in the
embedded systems. The objective of this chapter is to discuss these advanced tech-
niques. This chapter focuses on how an FPGA can be easily adopted as an embedded
processor.

18.2 System-On-Chip Implementation

Processors have high-level management functionality in terms of managing memory
devices, input–output interfaces or high-speed transceivers. Also, processors have
high system clock frequency to quickly execute functions having high timing com-
plexity. On the other hand, FPGAs are having high data processing capability and
ability to reconfigure the architecture if necessary. Thus, embedded systems also
include FPGA as a part of the system. The whole embedded system using FPGA and
CPU is shown below in Fig. 18.1. In the above-embedded system, FPGA and CPU
are integrated as separate parts. This results in greater area on the printed circuit board
(PCB) and results in greater power consumption. Thus, researchers came up with the
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Fig. 18.2 Presently how FPGA can be used as embedded system processor

idea that both processor and FPGA can be integrated into a single IC. Both power
and area are reduced by integrating FPGA and CPU on a single IC. This is called
system-on-chip (SoC) as the whole embedded system is now fabricated on a single
IC. FPGA can now be mainly responsible for fast data processing and parallelism of
the architectures. The processor will handle the interfacing devices and take care of
the serial functions which take huge time. This SoC architecture scheme is shown
in Fig. 18.2. SoCs can be of great use in the case of real-time operations in compar-
ison to the ASIC-based embedded systems. In SoCs, logic implemented on FPGA
is equivalent to the logic implemented on the ASIC part. FPGA-based SoC system
has an extra advantage over the ASIC-based SoCs and that is reconfigurability. Both
types of embedded systems are shown in Fig. 18.3. At present, all the FPGA vendors
are making their own SoC FPGAs. A simple comparison of three basic SoC FPGAs
from three key FPGA vendors is shown in Table 18.1.
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Fig. 18.3 ASIC-based embedded processor vs FPGA-based embedded processor

Table 18.1 Comparison of basic SoC FPGAs from three key manufacturers

Parameters Intel SoC Xilinx Zynq 7000 EPP Microsemi
SmartFusion2

Processor ARM Cortex-A9 ARM Cortex-A9
ARM

Cortex-M3

Processor class Application processor Application processor Microcontroller

Single or dual core Single or dual Dual Single

Processor max.
frequency

1.05 GHz 1.0 GHz 166 MHz

FPGA fabric Cyclone V, Arria V Artix-7, Kintex-7 Fusion2

SoC FPGAs have the following advantages over the ASIC-based embedded sys-
tem:

• No expensive non-recurring engineering (NRE) charges or minimum purchase
requirements, for a single, SoC FPGA or millions of devices, cost-effectively.

• Faster time to market. Devices are available off-the-shelf.
• The SoC FPGA can be reprogrammed at any time, even after shipping thus have
lower risk.

• Adaptable to changingmarkets requirements and standards, supporting for in-field
updates and upgrades.

• No additional licensing or royalty payments are required for the embedded pro-
cessor, high-speed transceivers or other advanced system technology.

18.2.1 Implementations Using SoC FPGAs

In this section, implementation of a digital system using SoC FPGAs is discussed.
Though many SoC FPGAs are available in the market from different manufacturers,
Xilinx XC7Z010 SoC FPGA is adopted in this chapter to illustrate the procedure
of implementation. A SoC FPGA has two parts, processing system (PS) and pro-
grammable logic (PL). PS part corresponds to logic implementation on the dedicated
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processor (XILINX 7000 processing system) and PL part corresponds to the FPGA
part. An user can place part of the complex design in PS part and rest part on PL part
according to the requirement.

Implementation of a simple NAND gate on the SoC FPGA is described here. The
NAND gate is opposite of the AND gate. Thus, AND logic is implemented on the
PL part and the NOT logic part is implemented on the PS part. A simple Verilog
code for AND gate is shown below.

module nand1 ( input a , b , output s ) ;
assign s = a&b ;
endmodule

Here, AND gate has two inputs a and b. The signal s is the output of the AND
gate. This output will go to the NOT gate which will be implemented on the PS part.

XILINX provides intellectual property (IP) blocks for invoking the ZYNQ 7000
processing systems for free. Also, the interfacing systems for the PS part are also
available for free in the XILINX EDA tool. In the block design mode of the XIL-
INX Vivado tool, ZYNQ 7000 processing system and other IPs for interfacing are
invoked. The HDL is also converted to a block and invoked in the same block
design. A snapshot of the block design window is shown in Fig. 18.4. In the block
design, shown in figure, RTL block corresponds to the HDL code for AND gate.
The output of the AND gate is connected to ps7_0_axi_periph block through
the axi_gpio_0 block. ZYNQ processing system gets the output of the AND gate
through the ps7_0_axi_periph block.Now, output of theANDgate is inverted in the
PS part to get the final output of NAND gate. Output of the PS part again reaches the
axi_gpio_1 block through the same ps7_0_axi_periph block. Finally, output of the
NAND gate s is connected to the external world through the axi_gpio_1 block. So,
in this implementation, two general-purpose input–output (GPIO) interface blocks

Fig. 18.4 Block design for implementing a NAND gate on XILINX ZYNQ SoC
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are used and these blocks are controlled by ps7_0_axi_periph peripheral control
block. Another block, rst_ps7_0_50M , is used which is for controlling the reset
signal.

Once this blockdesign is completed, the blockdesignmust be converted to anHDL
equivalent file called HDL wrapper file. The HDL wrapper file is then simulated and
functionally verified. Once the verification is completed, the hardware constraint file
is written and implementation process is started. The output of the implementation
process is a .bit file. This bit file is not enough to give the output as the output of the
AND gate is connected to the PS system. Thus, the next step is to realize the NOT
gate in the PS system.

The PS part of the SoC system can be programmed by SDK tool provided by
the XILINX Vivado. The PS part can be programmed by either C or C++ language.
A small code is needed to be written in C language to realize the NOT gate. This
program is shown below.

#include <std io . h>
#include " platform .h"
#include " x i l _ p r i n t f . h"
#include " xgpio . h"
#include " xparameters . h"
int main ( )
{
in i t_plat form ( ) ;

XGpio input , output ;
int a ;
int y ;
XGpio_Init ia l ize (&input , XPAR_AXI_GPIO_0_DEVICE_ID) ;
XGpio_Init ia l ize (&output , XPAR_AXI_GPIO_1_DEVICE_ID) ;
XGpio_SetDataDirection(&input , 1 , 1 ) ;
XGpio_SetDataDirection(&output , 1 , 0 ) ;
print ( "We are up" ) ;
while ( 1 )

{
a = XGpio_DiscreteRead(&input , 1 ) ;
i f ( a==1)
{
y = 0;
}
else
{
y = 1;
}
XGpio_DiscreteWrite(&output , 1 , y ) ;
}
cleanup_platform ( ) ;
return 0;

}
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18.2.2 AXI Protocol

The Arm advanced microcontroller bus architecture (AMBA) is an open-source on-
chip interconnect specification for the connection and management of functional
blocks in SoC designs. Advanced extensible interface (AXI) protocol is one of the
variations of AMBA-type interface management system. Most of the SoC makers
are nowadays using either AXI3 or AXI4 protocols to manage the interfaces which
come as packed IPs. Thus, basic knowledge of AXI protocol is now necessary.

InAXI3 andAXI4, there are only twoAXI interface types,master and slave. These
interface types are symmetrical. All AXI connections are between master interfaces
and slave interfaces. AXI interconnect interfaces contain the same signals, which
makes integration of different IPs relatively simple. The diagram shown in Fig. 18.5
shows AXI connections join master and slave interfaces. The direct connection gives
maximum bandwidth between the master and slave components with no extra logic
and with AXI, there is only a single protocol to validate. In this figure, two masters
and slaves are connected. It is also possible to connect multiple master and slave
modules to a single AXI bus.

18.2.2.1 AXI Channels

The AXI specification describes a point-to-point protocol between two interfaces: a
master and a slave. AXI protocol uses fivemain channels to establish communication
between a master and a slave. These channels are used for either write or read
operation as shown in Fig. 18.6.

The following channels are used for write operation.

• The master sends an address on the write address (AW) channel and data is trans-
ferred on the write data (W) channel to the slave.

• The slave writes the received data to the address sent by master. Once the slave
has completed the write operation, slave responds with a message to the master
on the write response (B) channel after it completes the write operation.

Read operations use the following channels:

• The master sends the address on the read address (AR) channel.
• The slave sends the data on the read data (R) channel from the requested address
to the master. The slave can also send an error message through this channel if
read operation is not valid or address is not correct.

AXI
Master

AXI
Slave

AXI
Interconnect
Component

AXI
Master

AXI
Slave

Fig. 18.5 Connection of master and slave interfaces using AXI interface protocol
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Fig. 18.6 AXI channels for communication between a master and channel

Each of these five channels contains several signals, and all these signals in each
channel have the prefix as follows:

• AW for signals on the write address channel.
• AR for signals on the read address channel.
• W for signals on the write data channel.
• R for signals on the Read data channel.
• B for signals on the write response channel.

18.2.3 AXI Protocol Features

The AXI protocol has several key features that are designed to improve bandwidth
and latency of data transfers and transactions and these features are discussed below:

• Independent read and write channels: AXI supports two different sets of channels,
one for write and another for read operations. Bandwidth performances of the
interfaces are improved because of two independent sets of channels.

• Multiple outstanding addresses: AXI allows for multiple outstanding addresses.
This means that a master can issue transactions without waiting for earlier trans-
actions to complete. This can improve system performance because it enables
parallel processing of transactions.

• No strict timing relationship between address and data operations: There is no
strict timing relationship between the address and data operations in the AXI. This
means that, for example, a master could issue a write address on the write address
channel, but there is no time requirement for when the master has to provide the
corresponding data to write on the write data channel.

• Support for unaligned data transfers: For any burst that is made up of data transfers
wider than one byte, the first bytes accessed can be unaligned with the natural
address boundary. For example, a 32-bit data packet that starts at a byte address
of 0x1002 is not aligned with the natural 32-bit address boundary.
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• Out-of-order transaction completion: Out-of-order transaction completion is pos-
sible with AXI. The AXI protocol includes transaction identifiers, and there is no
restriction on the completion of transactions with different ID values. This means
that a single physical port can support out-of-order transactions by acting as several
logical ports, each of which handles its transactions in order.

• Burst transactions based on start address: AXI masters only issue the starting
address for the first transfer. For any following transfers, the slave will calculate
the next transfer address based on the burst type.

18.3 Partial Re-configuration (PR)

There are three type re-configuration mechanisms present in the current FPGAs and
they are

• Static Re-configuration—In the static re-configuration, the whole bit stream is
modified and loaded o the FPGA. Execution is stopped to load the bit-stream file.

• Static PR (SPR)—In this case, only a part of the bit file is modified instead of
modifying the whole bit stream. The execution is stopped for a very short time to
load the bit stream.

• Dynamic PR (DPR)—In the case of DPR technique, part of the whole bit stream
is modified and this part can be loaded to the FPGA without halting the execution.

18.3.1 Dynamic PR

DPR technique has become very attractive nowadays because of its run-time recon-
figuration feature. Every sector is adopting DPR technique so that only a part of the
whole design can be programmed without hampering the whole design.

18.3.2 Advantages of DPR

The advantages of FPGAs over ASIC ICs are discussed many times in this book.
Prototype of a complex digital system can be rapidly done onFPGAand the prototype
design can be reconfigured. Reconfiguration means the designer can change the
architecture whenever required. But this configuration was not possible at run-time
till the development ofDPR.Run-timeconfiguration justifies the advantages ofFPGA
more strongly. The advantages of DPR are mentioned below.

• Re-configuration time in FPGAs which having millions of logics gates is very
high. This high reconfiguration time is not suitable for many applications. In such
applications, DPR can be used to speed up the process. Partial reconfiguration
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time is proportional to the size of the bit stream, which in turn is proportional to
the area of the chip being reconfigured.

• High-density FPGAs are having high chances of failure due to single event upsets
(SEU). SEUs are caused by ionizing radiation strikes that discharge the charge
in storage elements, such as configuration memory cells, user memory and reg-
isters. SEUs can be detected and compensated with the help of DPR (e.g. using
configuration scrubbing).

• Substantial relative increase in static power consumption is another issue in high-
density FPGAs. The static power consumption is related directly to the device
capacity. A system might be implemented on a smaller and consequently less
power-consuming device with the help of DPR.

• DPR is also useful in applications where one part of the system should be always
functional. In such case, only the re-configurable parts are configured without
hampering the part which needs to be functional.

18.3.3 DPR Techniques

There are mainly two types of DPR techniques on an FPGA and they are

• Difference-based PR—Difference-based PR is used when small changes are to be
done on an FPGA. For example, if some contents in the LUT or in a dedicated
memory are to be changed. In this case, only the difference between the original
file and the present file is loaded. Thus, the size of the new bit file is small.

• Module-based PR—This type of PR technique is required when large blocks are
to be partially re-configured. Re-configurable modules are distinct portions of
the main design and thus module-specific properties and layouts are needs to be
changed. The design has to be partitioned and proper planning has to be done.

The dynamic PR can be achieved by some PR control logic. This PR control logic
can reside either in the FPGA or in an external processor. Based on the location of
the PR control logic, DPR can be done in the following two ways:

• Externally: This type of DPR uses a serial configuration port like JTAG port,
processor configuration access Port (PCAP) or media configuration access port
(MCAP). This is shown in Fig. 18.7.

• Internally: This type of DPR uses internal configuration access port (ICAP). Inter-
nal configuration can consist of either a custom state machine or an embed-
ded processor such as MicroBlaze processor. This DPR technique is shown in
Fig. 18.7.
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Fig. 18.7 Different mechanisms for DPR

18.3.4 DPR Terminology

DuringDPR, the FPGA is divided into twoparts, static area and partial area. The static
area is fixed and is not re-configured during runtime. The area which is eligible for
run-time re-configuration is called partial area. This is shown in Fig. 18.8. An FPGA
may have several partial areas. In time-multiplexed manner, modules are loaded to
the partial areas and every partial bit stream corresponds to a single module.

The size of a partial area should be at least the size of the most extensive module.
As a consequence, there is usually a waste of logic resources that arises if modules
with different resource requirements share the same island exclusively, which is
called internal fragmentation. The reason is that a large module cannot be replaced
by multiple smaller ones (to be hosted simultaneously). Therefore, the utilization of
the partial area becomes inefficient. In Fig. 18.9, the white surfaces in the partial
areas indicate the unused reconfigurable area, and thus the internal fragmentation.
The reconfiguration of the partial areas can be categorized into multiple styles and
these are

• Island-style.
• Slot-style.
• Grid-style.

Fig. 18.8 Partitioning of
FPGA in two parts for DPR

Partial Area

FPGA
Static Area

Partial Bit-streams
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18.3.4.1 Island-Style

In island-style, only one module can reside in the partial area at the same time. This
style is shown in Fig. 18.9a and here system provides multiple islands. If there is
a specific island reserved for a set of modules then this style is called single island
style. Inmulti-island style, module relocation is feasible among different islands. The
use of same module at various locations on FPGA fabric is called module relocation.
Module relocation is possible due to the instantiation of samemodule multiple times.

The size of the partial blocks is taken as the size of themodulewhich hasmaximum
area. This results in waste of logical resources if the modules with different sizes
share the same island. This is called internal fragmentation. A large module cannot
be replaced by multiple smaller ones which are to be hosted simultaneously. So, the
utilization of the partial area becomes inefficient.

m2m1

Static Part

Unused Reconfigurable Part

(a) Island DPR style.

m1

Static Part

Unused Reconfigurable Part

m2
m3

(b) Slot type DPR.

Static Part

Unused Reconfigurable Part

m1 m2

m
3

m4

(c) Grid type DPR.

Fig. 18.9 Different styles for DPR
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18.3.4.2 Slot-Style

In slot-style, it is attempted to reduce the internal fragmentation effect. In this
style, partial areas are arranged in one-dimensional slots. This style is illustrated
in Fig. 18.9b. The partial area can host multiple modules at the same time, and
modules can occupy the number of slots according to their resource requirements.
This style is slightly complicated as communication between the modules has to
be provided. Slot-style reduces the internal fragmentation but can generate external
fragmentation. External fragmentation is the wastage of logic cells if any slot is left
unused or partially used due to the heterogeneous size of FPGA resources.

18.3.4.3 Grid-Style

In slot-style, most of the wasted spaces are reduced in the slot-style but there may be
a possibility that a slot remains unused. A more advanced style is grid-style where
chances of fragmentation effect are less. If a module is using less resources, then
another module should use the remaining resources. This is possible in grid-style
reconfiguration which is shown in Fig. 18.9c. In this reconfiguration, the slots are
arranged in a two-dimensional fashion. The implementation and management of this
style is even more complex.

18.3.5 DPR Tools

DPR process is comparatively complex than the normal implementation of a digital
system. Thus, EDA tool vendors launched advanced software applications to support
DPR process. DPR process steps are almost similar for the two popular vendors
XILINX and Intel. Xilinx provides PlanAhead and Vivado Design Suite for DPR
process. On the other hand, Intel has Quartus-II and Quartus Prime to support DPR.
These tools are commercial and may not be available to the academic researchers.
Thus, alternative open-source tools are also available in the market. These tools are
OpenPR, GoAhead, Dreams and CoPR. These tools have limited functionality but
are freely available.

18.3.6 DPR Flow

In this section, DPR flow is described with the help of the Xilinx Vivado Design
Suit software tool. The flow chart for the DPR process is shown in Fig. 18.10. The
first step for DPR is to partition the design in terms of static and partial regions. This
information is given in the constraints file. According to the partitioning, design floor
planning and budgeting step is carried out. the designer has to manually floorplan
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Fig. 18.10 The flow chart for the DPR process

the locations and bounding boxes of the reconfigurable regions on the FPGA fabric.
Floorplanning details are written in a constraint file for incorporation in the imple-
mentation stage. The next step is to start the top-level implementation. First static
design is implemented and bit file is generated. Then the PR modules (PRM) are
implemented and separate bit files are generated. At the last stage, all these bit files
are combined.

Communication between the static design and PRMs is an essential part of DPR
design. Current vendors use proxy logic for connection between static and PRMs.
Proxy logic are anchor LUTs, which are placed inside the partial area for each
interface signal, as shown in Fig. 18.11. The interface signals are routed to the
anchor LUTs during the implementation of the static system. The partial modules
are implemented as an increment to the static system without modifying any of the
already implemented static routings.

18.3.7 Communication Between Reconfigurable Modules

During the dynamic configuration, the whole FPGA is divided into mainly two parts,
static and partially reconfigurable areas. There may be many reconfigurable areas
according to the requirement of the design. Building communication between the
static module and the configuration modules in an efficient way is a very important
topic. Also, the communication between configuration modules is also important.
Many techniques are proposed over the past few years for efficient communication
between these modules. These techniques are outlined below.
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18.3.7.1 Partial Module Linking via I/O Pins

Initially, to achieve linking between the partial modules FPGA I/O pins were used.
Many FPGA projects adopted this technology where a resource slot engages a com-
plete device and partial reconfiguration is achieved on system level by exchanging
some full FPGA configurations. But DPR is meant to share a fraction of whole
FPGA configurations. This technique is used in FPGA projects [9, 79] where Xilinx
FPGAs are used. In [43], all interface signals of a partial module are routed to I/O
pins, located inside the module bounding box andmost of these pins are connected to
external memory buses. In another FPGA project [4], partial modules can be directly
connected to external peripherals with the help of an external crossbar chip which
adds extra latency. In this scheme of connecting partial modules, modules may be
relocated to different positions but they can access a private external memory bank.

18.3.7.2 Partial Module Linking via Tristate Buffers

Partial modules are linked with tristate buffers and such tristate signals have been
mainly used for implementingwide input functions, such aswired-ORorwired-AND
gates, as well as for global communication purposes. FPGA projects depicted in [81,
82], used tristate buffers to link the PRMswhere two FPGAs are used one control and
one for accelerating computations. Most Xlinx FPGAs which uses tristate buffers
for module linking are based on BUSMacros. These macros define the positions of a
set of tristate drivers which connects the horizontal long lines. This is due to the fact
that Xilinx follows a column-wise reconfiguration of the modules. Linking partially
reconfigurable modules with tristate drivers on Xilinx FPGAs can be implemented
with low logic resource overhead. A few other projects which use this technique are
depicted in [32, 75]. Modern FPGA architectures are no longer supporting internal
tristate drivers, this was common in many older FPGA architectures.

18.3.7.3 Partial Module Linking via Logic Resources

Partial modules can also be connected via logic sources like LUT. The connection
by LUTs is achieved by using one LUT at the beginning and one at the end of the
wire resource. These LUTs are placed such that one LUT is placed inside the PRMs
and the other one inside the static part. As a result, LUTs act as a connection point
between the partial modules. This scheme is shown in Fig. 18.11. As compared to
the tristate driver approach, the LUT bus macros allow a higher density of signals
and a lower latency by the cost of two LUTs just to connect a static system and a
partial module. Many newer Xilinx FPGAs adopted this technique to achieve DPR.
In FPGA projects [36, 37], based on Xilinx Virtex-4, LUT-based linking is used.
Row-based two-dimensional module linking based on LUT macros is reported in
[64].
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Fig. 18.11 Connection of static module with partial modules using LUT bus macros

18.3.7.4 Partial Module Linking using Proxy Logic

The LUT macro approach uses two LUTs and also it has some extra latency. This
method is improved and a new approach called incremental partial design flow is
proposed. In this method, a LUT which implements some proxy logic is placed in
partial module for each signal which passes from partial module to static module. All
these signals which cross the boundary go to another anchor LUTwhich is situated in
the staticmodule. This approach is shown inFig. 18.12. This approachneeds oneLUT
per signal and its major drawback is that routing is different for each reconfigurable
island. This prevents module relocation even if the islands provide identical logic
and memory layout. Changes in the static system will result different in the proxy
logic. This approach is more suitable for systems having lower complexity.

18.3.7.5 Zero Logic Overhead Integration

Previous LUT-based approaches have logic overhead and thus have extra latency.
As an alternative to Xilinx bus macro and proxy logic, an approach to link the par-
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FPGA

PRM2

Fig. 18.12 Connection of static module with partial modules using proxy logic
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Fig. 18.13 Connection of static module with partial modules using zero logic overhead integration

tial modules without logic overhead is reported in [34]. The zero-overhead integra-
tion combines Xilinx bus macro technique with proxy logic. PRMs can be plugged
directly into a reconfigurable region without additional logic resources for the com-
munication and only thewires act as plugs, called PR link. This is shown in Fig. 18.13.

18.3.7.6 Bus-Based Communication for Reconfigurable Systems

In computer systems, buses can be easily used to establish communication between
modules and memory devices. Thus, buses can also be adopted for establishing
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Fig. 18.14 Common bus implementations for inter modules communication
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communication between the static module and the reconfiguration modules. A bus is
a set of signals and in that set different signals have special purposes. A bus act as a
shared medium for the communication between different modules connected to the
bus. Modules which are connected to the bus can be of two types which are master
and slave. A master module can control the bus and a slave module can respond to
the instructions set by master. For example, a master can give the address to the bus.
Different kinds of buses are shown in Fig. 18.14. Any of these buses can be adopted
for communication between the modules.

18.4 Conclusion

In this chapter, advance programming techniques for FPGAs are discussed. SoC-
based embedded systems are very important nowadays where FPGA is used to per-
form the tasks which have high computational complexity and processor part is used
to perform the tasks which have high timing complexity. AXI protocol is generally
used to connect the interfaces in an SoC design and thus a basic outline of AXI
topology is discussed in this chapter. Partial reconfiguration is another important
area of research nowadays. In DPR, part of the whole design can be reprogrammed,
while the other part is not affected. DPR is very important in applications where the
execution should not be stopped. The techniques to achieve DPR is growing day by
day. Some basics of re-configuration are discussed in this chapter.
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