




Introduction to Field Programmable Gate Arrays

. Introduction

Electronics continues to make an impact in the twenty-first century and has given birth
to the computer industry, mobile telephony and personal digital entertainment and ser-
vices industries, to name but a few. These markets have been driven by developments in
silicon technology as described by Moore’s law (Moore 1965), which is represented pic-
torially in Figure 1.1. This has seen the number of transistors double every 18 months.
Moreover, not only has the number of transistors doubled at this rate, but also the costs
have decreased, thereby reducing the cost per transistor at every technology advance.

In the 1970s and 1980s, electronic systems were created by aggregating standard com-
ponents such as microprocessors and memory chips with digital logic components, e.g.
dedicated integrated circuits along with dedicated input/output (I/O) components on
printed circuit boards (PCBs). As levels of integration grew, manufacturing working
PCBs became more complex, largely due to greater component complexity in terms
of the increase in the number of transistors and I/O pins. In addition, the development
of multi-layer boards with as many as 20 separate layers increased the design complex-
ity. Thus, the probability of incorrectly connecting components grew, particularly as the
possibility of successfully designing and testing a working system before production was
coming under greater and greater time pressures.

The problem became more challenging as system descriptions evolved during prod-
uct development. Pressure to create systems to meet evolving standards, or that could
change after board construction due to system alterations or changes in the design spec-
ification, meant that the concept of having a “fully specified” design, in terms of phys-
ical system construction and development on processor software code, was becoming
increasingly challenging. Whilst the use of programmable processors such as microcon-
trollers and microprocessors gave some freedom to the designer to make alterations in
order to correct or modify the system after production, this was limited. Changes to
the interconnections of the components on the PCB were restricted to I/O connectiv-
ity of the processors themselves. Thus the attraction of using programmability inter-
connection or “glue logic” offered considerable potential, and so the concept of field
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programmable logic (FPL), specifically field programmable gate array (FPGA) technol-
ogy, was born.

From this unassuming start, though, FPGAs have grown into a powerful technol-
ogy for implementing digital signal processing (DSP) systems. This emergence is due to
the integration of increasingly complex computational units into the fabric along with
increasing complexity and number of levels in memory. Coupled with a high level of pro-
grammable routing, this provides an impressive heterogeneous platform for improved
levels of computing. For the first time ever, we have seen evolutions in heterogeneous
FPGA-based platforms from Microsoft, Intel and IBM. FPGA technology has had an
increasing impact on the creation of DSP systems. Many FPGA-based solutions exist for
wireless base station designs, image processing and radar systems; these are, of course,
the major focus of this text.

Microsoft has developed acceleration of the web search engine Bing using FPGAs
and shows improved ranking throughput in a production search infrastructure. IBM
and Xilinx have worked closely together to show that they can accelerate the reading
of data from web servers into databases by applying an accelerated Memcache2; this
is a general-purpose distributed memory caching system used to speed up dynamic
database-driven searches (Blott and Vissers 2014). Intel have developed a multicore die
with Altera FPGAs, and their recent purchase of the company (Clark 2015) clearly indi-
cates the emergence of FPGAs as a core component in heterogeneous computing with
a clear target for data centers.

. Field Programmable Gate Arrays

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from Xilinx. At
the same time, a company called Altera was also developing a programmable device,
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later to become the EP1200, which was the first high-density programmable logic device
(PLD). Altera’s technology was manufactured using 3-μm complementary metal oxide
semiconductor (CMOS) electrically programmable read-only memory (EPROM) tech-
nology and required ultraviolet light to erase the programming, whereas Xilinx’s tech-
nology was based on conventional static random access memory (SRAM) technology
and required an EPROM to store the programming.

The co-founder of Xilinx, Ross Freeman, argued that with continuously improving
silicon technology, transistors were going to become cheaper and cheaper and could be
used to offer programmability. This approach allowed system design errors which had
only been recognized at a late stage of development to be corrected. By using an FPGA
to connect the system components, the interconnectivity of the components could be
changed as required by simply reprogramming them. Whilst this approach introduced
additional delays due to the programmable interconnect, it avoided a costly and time-
consuming PCB redesign and considerably reduced the design risks.

At this stage, the FPGA market was populated by a number of vendors, including
Xilinx, Altera, Actel, Lattice, Crosspoint, Prizm, Plessey, Toshiba, Motorola, Algotronix
and IBM. However, the costs of developing technologies not based on conventional inte-
grated circuit design processes and the need for programming tools saw the demise of
many of these vendors and a reduction in the number of FPGA families. SRAM tech-
nology has now emerged as the dominant technology largely due to cost, as it does not
require a specialist technology. The market is now dominated by Xilinx and Altera, and,
more importantly, the FPGA has grown from a simple glue logic component to a com-
plete system on programmable chip (SoPC) comprising on-board physical processors,
soft processors, dedicated DSP hardware, memory and high-speed I/O.

The FPGA evolution was neatly described by Steve Trimberger in his FPL2007 ple-
nary talk (see the summary in Table 1.1). The evolution of the FPGA can be divided into
three eras. The age of invention was when FPGAs started to emerge and were being used
as system components typically to provide programmable interconnect giving protec-
tion to design evolutions and variations. At this stage, design tools were primitive, but
designers were quite happy to extract the best performance by dealing with lookup tables
(LUTs) or single transistors.

As highlighted above, there was a rationalization of the technologies in the early 1990s,
referred to by Trimberger as the great architectural shakedown. The age of expansion
was when the FPGA started to approach the problem size and thus design complexity
was key. This meant that it was no longer sufficient for FPGA vendors to just produce

Table . Three ages of FPGAs

Period Age Comments

1984–1991 Invention Technology is limited, FPGAs are much smaller than the
application problem size. Design automation is secondary,
architecture efficiency is key

1992–1999 Expansion FPGA size approaches the problem size. Ease of design
becomes critical

2000–present Accumulation FPGAs are larger than the typical problem size. Logic capacity
limited by I/O bandwidth
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place and route tools and it became critical that hardware description languages (HDLs)
and associated synthesis tools were created. The final evolution period was the period of
accumulation when FPGAs started to incorporate processors and high-speed intercon-
nection. Of course, this is very relevant now and is described in more detail in Chapter
5 where the recent FPGA offerings are reviewed.

This has meant that the FPGA market has grown from nothing in just over 20 years to
become a key player in the IC industry, worth some $3.9 billion in 2014 and expected to
be worth around $7.3 billion in 2022 (MarketsandMarkets 2016). It has been driven by
the growth in the automotive sector, mobile devices in the consumer electronics sector
and the number of data centers.

1.2.1 Rise of Heterogeneous Computing Platforms

Whilst Moore’s law is presented here as being the cornerstone for driving FPGA evo-
lution and indeed electronics, it also has been the driving force for computing. How-
ever, all is not well with computing’s reliance on silicon technology. Whilst the number
of transistors continues to double, the scaling of clock speed has not continued at the
same rate. This is due to the increase in power consumption, particularly the increase in
static power. The issue of the heat dissipation capability of packaging means that com-
puting platform providers such as Intel have limited their processor power to 30 W. This
resulted in an adjustment in the prediction for clock rates between 2005 and 2011 (as
illustrated in Figure 1.2) as clock rate is a key contributor to power consumption (ITRS
2005).

In 2005, the International Technology Roadmap for Semiconductors (ITRS) predicted
that a 100 GHz clock would be achieved in 2020, but this estimation had to be revised
first in 2007 and then again in 2011. This has been seen in the current technology where
a clock rate of some 30 GHz was expected in 2015 based on the original forecast, but we
see that speeds have been restricted to 3–4 GHz. This has meant that the performance
per gigahertz has effectively stalled since 2005 and has generated the interest by major
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Figure . Change in ITRS scaling prediction for clock frequencies
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computing companies in exploring different architectures that employ FPGA technol-
ogy (Putnam et al. 2014; Blott and Vissers 2014).

1.2.2 Programmability and DSP

On many occasions, the growth indicated by Moore’s law has led people to argue that
transistors are essentially free and therefore can be exploited, as in the case of pro-
grammable hardware, to provide additional flexibility. This could be backed up by the
observation that the cost of a transistor has dropped from one-tenth of a cent in the
1980s to one-thousandth of a cent in the 2000s. Thus we have seen the introduction of
hardware programmability into electronics in the form of FPGAs.

In order to make a single transistor programmable in an SRAM technology, the
programmability is controlled by storing a “1” or a “0” on the gate of the transistor,
thereby making it conduct or not. This value is then stored in an SRAM cell which,
if it requires six transistors, will will mean that we need seven transistors to achieve one
programmable equivalent in FPGA. The reality is that in an overall FPGA implementa-
tion, the penalty is nowhere as harsh as this, but it has to be taken into consideration in
terms of ultimate system cost.

It is the ability to program the FPGA hardware after fabrication that is the main appeal
of the technology; this provides a new level of reassurance in an increasingly compet-
itive market where “right first time” system construction is becoming more difficult to
achieve. It would appear that that assessment was vindicated in the late 1990s and early
2000s: when there was a major market downturn, the FPGA market remained fairly
constant when other microelectronic technologies were suffering. Of course, the impor-
tance of programmability has already been demonstrated by the microprocessor, but this
represented a new change in how programmability was performed.

The argument developed in the previous section presents a clear advantage of FPGA
technology in overcoming PCB design errors and manufacturing faults. Whilst this
might have been true in the early days of FPGA technology, evolution in silicon tech-
nology has moved the FPGA from being a programmable interconnection technology
to making it into a system component. If the microprocessor or microcontroller was
viewed as programmable system component, the current FPGA devices must also be
viewed in this vein, giving us a different perspective on system implementation.

In electronic system design, the main attraction of the microprocessor is that it consid-
erably lessens the risk of system development. As the hardware is fixed, all of the design
effort can be concentrated on developing the code. This situation has been comple-
mented by the development of efficient software compilers which have largely removed
the need for the designer to create assembly language; to some extent, this can even
absolve the designer from having a detailed knowledge of the microprocessor archi-
tecture (although many practitioners would argue that this is essential to produce good
code). This concept has grown in popularity, and embedded microprocessor courses are
now essential parts of any electrical/electronic or computer engineering degree course.

A lot of this process has been down to the software developer’s ability to exploit
an underlying processor architecture, the von Neumann architecture. However, this
advantage has also been the limiting factor in its application to the topic of this text,
namely DSP. In the von Neumann architecture, operations are processed sequentially,
which allows relatively straightforward interpretation of the hardware for programming
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 FPGA-based Implementation of Signal Processing Systems

purposes; however, this severely limits the performance in DSP applications which
exhibit high levels of parallelism and have operations that are highly data-independent.
This cries out for parallel realization, and whilst DSP microprocessors go some way
toward addressing this situation by providing concurrency in the form of parallel hard-
ware and software “pipelining,” there is still the concept of one architecture suiting all
sizes of the DSP problem.

This limitation is overcome in FPGAs as they allow what can be considered to be a sec-
ond level of programmability, namely programming of the underlying processor archi-
tecture. By creating an architecture that best meets the algorithmic requirements, high
levels of performance in terms of area, speed and power can be achieved. This concept
is not new as the idea of deriving a system architecture to suit algorithmic requirements
has been the cornerstone of application-specific integrated circuit (ASIC) implementa-
tions. In high volumes, ASIC implementations have resulted in the most cost-effective,
fastest and lowest-energy solutions. However, increasing mask costs and the impact of
“right first time” system realization have made the FPGA a much more attractive alter-
native.

In this sense, FPGAs capture the performance aspects offered by ASIC implementa-
tion, but with the advantage of programmability usually associated with programmable
processors. Thus, FPGA solutions have emerged which currently offer several hundreds
of giga operations per second (GOPS) on a single FPGA for some DSP applications,
which is at least an order of magnitude better performance than microprocessors.

. Influence of Programmability

In many texts, Moore’s law is used to highlight the evolution of silicon technology, but
another interesting viewpoint particularly relevant for FPGA technology is Makimoto’s
wave, which was first published in the January 1991 edition of Electronics Weekly. It is
based on an observation by Tsugio Makimoto who noted that technology has shifted
between standardization and customization. In the 1960s, 7400 TTL series logic chips
were used to create applications; and then in the early 1970s, the custom large-scale inte-
gration era emerged where chips were created (or customized) for specific applications
such as the calculator. The chips were now increasing in their levels of integration and
so the term “medium-scale integration” (MSI) was born. The evolution of the micropro-
cessor in the 1970s saw the swing back towards standardization where one “standard”
chip was used for a wide range of applications.

The 1980s then saw the birth of ASICs where designers could overcome the fact
that the sequential microprocessor posed severe limitations in DSP applications where
higher levels of computations were needed. The DSP processor also emerged, such as
the TMS32010, which differed from conventional processors as they were based on the
Harvard architecture which had separate program and data memories and separate
buses. Even with DSP processors, ASICs offered considerable potential in terms of
processing power and, more importantly, power consumption. The development of
the FPGA from a “glue component” that allowed other components to be connected
together to form a system to become a component or even a system itself led to its
increased popularity.
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The concept of coupling microprocessors with FPGAs in heterogeneous platforms
was very attractive as this represented a completely programmable platform with micro-
processors to implement the control-dominated aspects of DSP systems and FPGAs
to implement the data-dominated aspects. This concept formed the basis of FPGA-
based custom computing machines (FCCMs) which formed the basis for “configurable”
or reconfigurable computing (Villasenor and Mangione-Smith 1997). In these systems,
users could not only implement computational complex algorithms in hardware, but
also use the programmability aspect of the hardware to change the system function-
ality, allowing the development of “virtual hardware” where hardware could ‘virtually”
implement systems that are an order of magnitude larger (Brebner 1997).

We would argue that there have been two programmability eras. The first occurred
with the emergence of the microprocessor in the 1970s, where engineers could develop
programmable solutions based on this fixed hardware. The major challenge at this time
was the software environments; developers worked with assembly language, and even
when compilers and assemblers emerged for C, best performance was achieved by
hand-coding. Libraries started to appear which provided basic common I/O functions,
thereby allowing designers to concentrate on the application. These functions are now
readily available as core components in commercial compilers and assemblers. The need
for high-level languages grew, and now most programming is carried out in high-level
programming languages such as C and Java, with an increased use of even higher-level
environments such as the unified modeling language (UML).

The second era of programmability was ushered in by FPGAs. Makimoto indicates
that field programmability is standardized in manufacture and customized in applica-
tion. This can be considered to have offered hardware programmability if you think in
terms of the first wave as the programmability in the software domain where the hard-
ware remains fixed. This is a key challenge as most computer programming tools work
on the fixed hardware platform principle, allowing optimizations to be created as there
is clear direction on how to improve performance from an algorithmic representation.
With FPGAs, the user is given full freedom to define the architecture which best suits
the application. However, this presents a problem in that each solution must be hand-
crafted and every hardware designer knows the issues in designing and verifying hard-
ware designs!

Some of the trends in the two eras have similarities. In the early days, schematic cap-
ture was used to design early circuits, which was synonymous with assembly-level pro-
gramming. Hardware description languages such as VHSIC Hardware Description Lan-
guage (VHDL) and Verilog then started to emerge that could used to produce a higher
level of abstraction, with the current aim to have C-based tools such as SystemC and
Catapult® from Mentor Graphics as a single software-based programming environment
(Very High Speed Integrated Circuit (VHSIC) was a US Department of Defense funded
program in the late 1970s and early 1980s with the aim of producing the next genera-
tion of integrated circuits). Initially, as with software programming languages, there was
mistrust in the quality of the resulting code produced by these approaches.

With the establishment of improved cost-effectiveness, synthesis tools are equiva-
lent to the evolution of efficient software compilers for high-level programming lan-
guages, and the evolution of library functions allowed a high degree of confidence
to be subsequently established; the use of HDLs is now commonplace for FPGA
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implementation. Indeed, the emergence of intellectual property (IP) cores mirrored
the evolution of libraries such as I/O programming functions for software flows; they
allowed common functions to be reused as developers trusted the quality of the resulting
implementation produced by such libraries, particularly as pressures to produce more
code within the same time-span grew. The early IP cores emerged from basic function
libraries into complex signal processing and communications functions such as those
available from the FPGA vendors and the various web-based IP repositories.

. Challenges of FPGAs

In the early days, FPGAs were seen as glue logic chips used to plug components together
to form complex systems. FPGAs then increasingly came to be seen as complete systems
in themselves, as illustrated in Table 1.1. In addition to technology evolution, a number
of other considerations accelerated this. For example, the emergence of the FPGA as a
DSP platform was accelerated by the application of distributed arithmetic (DA) tech-
niques (Goslin 1995; Meyer-Baese 2001). DA allowed efficient FPGA implementations
to be realized using the lookup table or LUT-based/adder constructs of FPGA blocks
and allowed considerable performance gains to be gleaned for some DSP transforms
such as fixed coefficient filtering and transform functions such as the fast Fourier trans-
form (FFT). Whilst these techniques demonstrated that FPGAs could produce highly
effective solutions for DSP applications, the idea of squeezing the last aspect of per-
formance out of the FPGA hardware and, more importantly, spending several person-
months creating such innovative designs was now becoming unacceptable.

The increase in complexity due to technology evolution meant that there was a grow-
ing gap in the scope offered by current FPGA technology and the designer’s ability
to develop solutions efficiently using currently available tools. This was similar to the
“design productivity gap” (ITRS 1999) identified in the ASIC industry where it was per-
ceived that ASIC design capability was only growing at 25% whereas Moore’s law growth
was 60%. The problem is not as severe in FPGA implementation as the designer does not
have to deal with sub-micrometer design issues. However, a number of key issues exist:

� Understanding how to map DSP functionality into FPGA. Some of the aspects are
relatively basic in this arena, such as multiply-accumulate (MAC) and delays being
mapped onto on-board DSP blocks, registers and RAM components, respectively.
However, the understanding of floating-point versus fixed-point, wordlength opti-
mization, algorithmic transformation cost functions for FPGA and impact of routing
delay are issues that must be considered at a system level and can be much harder to
deal with at this level.

� Design languages. Currently hardware description languages such as VHDL and Ver-
ilog and their respective synthesis flows are well established. However, users are now
looking at FPGAs, with the recent increase in complexity resulting in the integration
of both fixed and programmable microprocessor cores as a complete system. Thus,
there is increased interest in design representations that more clearly represent sys-
tem descriptions. Hence there is an increased electronic design automation focus on
using C as a design language, but other representations also exist such as those meth-
ods based on model of computation (MoC), e.g. synchronous dataflow.
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� Development and use of IP cores. With the absence of quick and reliable solutions
to the design language and synthesis issues, the IP market in SoC implementation has
emerged to fill the gap and allow rapid prototyping of hardware. Soft cores are par-
ticularly attractive as design functionality can be captured using HDLs and efficiently
translated into the FPGA technology of choice in a highly efficient manner by conven-
tional synthesis tools. In addition, processor cores have been developed which allow
dedicated functionality to be added. The attraction of these approaches is that they
allow application-specific functionality to be quickly created as the platform is largely
fixed.

� Design flow. Most of the design flow capability is based around developing FPGA
functionality from some form of higher-level description, mostly for complex func-
tions. The reality now is that FPGA technology is evolving at such a rate that sys-
tems comprising FPGAs and processors are starting to emerge as an SoC platform
or indeed, FPGAs as a single SoC platform as they have on-board hard and soft
processors, high-speed communications and programmable resource, and this can
be viewed as a complete system. Conventionally, software flows have been more
advanced for processors and even multiple processors as the architecture is fixed.
Whilst tools have developed for hardware platforms such as FPGAs, there is a def-
inite need for software for flows for heterogeneous platforms, i.e. those that involve
both processors and FPGAs.

These represent the challenges that this book aims to address and provide the main
focus for the work that is presented.
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