




Arithmetic Basics

. Introduction

The choice of arithmetic has always been a key aspect for DSP implementation as it not
only affects algorithmic performance, but also can impact system performance criteria,
specifically area, speed and power consumption. This usually centers around the choice
of a floating-point or a fixed-point realization, and in the latter case, a detailed study
is needed to determine the minimal wordlength needed to achieve the required per-
formance. However, with FPGA platforms, the choice of arithmetic can have a much
wider impact on the performance as the system designer can get a much more direct
return from any gains in terms of reducing complexity. This will either reduce the cost
or improve the performance in a similar way to an SoC designer.

A key requirement of DSP implementations is the availability of suitable processing
elements, specifically adders and multipliers; however, many DSP algorithms (e.g. adap-
tive filters) also require dedicated hardware for performing division and square roots.
The realization of these functions, and indeed the choice of number systems, can have
a major impact on hardware implementation quality. For example, it is well known that
different DSP application domains (e.g. image processing, radar and speech) can have
different levels of bit toggling not only in terms of the number of transitions, but also in
the toggling of specific bits (Chandrakasan and Brodersen 1996). More specifically, the
signed bit in speech input can toggle quite often, as data oscillates around zero, whereas
in image processing the input typically is all positive. In addition, different applications
can have different toggling activity in their lower significant bits. This can have a major
impact in reducing dynamic power consumption.

For these reasons, it is important that some aspects of computer arithmetic are cov-
ered, specifically number representation as well as the implementation choices for some
common arithmetic functions, namely adders and multipliers. However, these are not
covered in great detail as the reality is that in the case of addition and multiplication,
dedicated hardware has been available for some time on FPGA and thus for many appli-
cations the lowest-area, fastest- speed and lowest-power implementations will be based
on these hardware elements. As division and square root operations are required in
some DSP functions, it is deemed important that they are covered here. As dynamic
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 FPGA-based Implementation of Signal Processing Systems

range is also important, the data representations, namely fixed-point and floating-point,
are also seen as critical.

The chapter is organized as follows. In Section 3.2 some basics of computer arith-
metic are covered, including the various forms of number representations as well as an
introduction to fixed- and floating-point arithmetic. This is followed by a brief intro-
duction to adder and multiplier structures in Section 3.3. Of course, alternative repre-
sentations also need some consideration so signed digit number representation (SDNR),
logarithmic number representations (LNS), residue number representations (RNS), and
coordinate rotation digital computer (CORDIC) are considered in Section 3.4. Dividers
and circuits for square root are then covered in Sections 3.5 and 3.6, respectively. Some
discussion of the choice between fixed-point and floating-point arithmetic for FPGA is
given in Section 3.7. In Section 3.8 some conclusions are given and followed by a dis-
cussion of some key issues.

. Number Representations

From our early years we are taught to compute in decimal, but the evolution of tran-
sistors implies the adoption of binary number systems as a more natural representa-
tion for DSP systems. This section starts with a basic treatment of conventional number
systems, namely signed magnitude and one’s complement, but concentrates on two’s
complement. Alternative number systems are briefly reviewed later as indicated in the
introduction, as they have been applied in some FPGA-based DSP systems.

If x is an (n + 1)-bit unsigned number, then the unsigned representation

x =
n∑

i=0
xi2i (3.1)

applies, where xi is the ith binary bit of n and x0 and xn are least significant bit (lsb)
and most significant bit (msb) respectively. The binary value is converted to decimal by
scaling each bit to the relevant significance as shown below, where 1110 is converted
to 14:

1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 14.

Decimal to binary conversion is done by successive divisions by 2. For the expression
D = (x3x2x1x0)2 = x323 + x222 + x121 + x0, we successively divide by 2:

D∕2 = x322 + x221 + x1 = Q1, remainder = x0
Q1∕2 = x321 + x2 = Q2, remainder = x1

Q2∕2 = x3 = Q3, remainder = x2
Q3∕2 = 0 = Q4, remainder = x3.

So if 14 is converted to binary, this is done as follows:

14∕2 = 7, remainder = 0 = x0
7∕2 = 3, remainder = 1 = x1
3∕2 = 1, remainder = 1 = x2
1∕2 = 0, remainder = 1 = x3.
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Arithmetic Basics 

(a) Sign and Magnitude (b) One’s complement
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(c) Two’s complement
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Figure . Number wheel representation of four-bit numbers

3.2.1 Signed Magnitude

In signed magnitude systems, the n − 1 lower significant bits represent the magnitude,
and the msb, xn, bit represents the sign. This is best represented pictorially in Fig-
ure 3.1(a), which gives the number wheel representation for a four-bit word. In the
signed magnitude notation, the magnitude of the word is decided by the three lower
significant bits, and the sign determined by the sign bit, or msb. However, this represen-
tation presents a number of problems. First, there are two representations of 0 which
must be resolved by any hardware system, particularly if 0 is used to trigger any event
(e.g. checking equality of numbers). As equality is normally achieved by checking bit-
by-bit, this complicates the hardware. Lastly, operations such as subtraction are more
complex, as there is no way to check the sign of the resulting value, without checking
the size of the numbers and organizing accordingly. This creates overhead in hardware
realization and prohibits the number system’s use in practical systems.

3.2.2 One’s Complement

In one’s-complement systems, the assignment of the bits is done differently. It is based
around representing the negative version of the numbers as the inverse or one’s com-
plement of the original number. This is achieved by inverting the individual bits, which
in practice can easily be achieved through the use of an inverter.
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 FPGA-based Implementation of Signal Processing Systems

The conversion for an n-bit word is given by

N = (2n − 1) − N , (3.2)

and the pictorial representation for a four-bit binary word is given in Figure 3.1(b). The
problem still exists of two representations of 0. Also, a correction needs to be carried
out when performing one’s complement subtraction (Omondi 1994). Once again, the
need for special treatment of 0 is prohibitive from an implementation perspective.

3.2.3 Two’s Complement

In two’s-complement systems, the inverse of the number is obtained by inverting the
bits of the original word and adding 1. The conversion is given by

N = 2n − N , (3.3)

and the pictorial representation for a four-bit binary word given in Figure 3.1(c). Whilst
this may seem less intuitively obvious than the previous two approaches, it has a num-
ber of advantages: there is a single representation for 0, addition and more importantly
subtraction can be performed readily in hardware and if the number stays within range,
overflow can be ignored in the computation. For these reasons, two’s complement has
become the dominant number system representation.

This representation therefore efficiently translates into efficient hardware structures
for the core arithmetic functions and means that addition and subtraction is easily
implemented. As will be seen later, two’s complement multiplication is a little more
complicated but the single representation of 0 is the differentiator. As will be seen in
the next section, the digital circuitry naturally falls out from this.

3.2.4 Binary Coded Decimal

By applying different weighting, a number of other binary codes can be applied as shown
in Table 3.1. The following codes are usually called binary coded decimal (BCD). The
2421 is a nine’s complement code, i.e. 5 is the inverse of 4, 6 is the inverse of 3, etc.
With the Gray code, successive decimal digits differ by exactly one bit. This coding styles

Table . BCD codes

BCD

Decimal   Gray

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0011
3 0011 0011 0010
4 0100 0100 0110
5 0101 1011 1110
6 0110 1100 1010
7 0111 1101 1011
8 1000 1110 1001
9 1001 1111 1000
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Arithmetic Basics 

tends to be used in low-power applications where the aim is to reduce the number of
transitions (see Chapter 13).

3.2.5 Fixed-Point Representation

Up until now, we have only considered integer representations and not considered the
real representations which we will encounter in practical DSP applications. A widely
used format for representing and storing numerical binary data is the fixed-point for-
mat, where an integer value x represented by xm+n−1, xm+n−2,… , x0 is mapped such that
xm+n−1, xm+n−2,… , xn represents the integer part of the number and the expression,
xn−1, xn−2,… , x0 represents the fractional part of the number. This is the interpretation
placed on the number system by the user and generally in DSP systems, users represent
input data, say x(n), and output data, y(n), as integer values and coefficient word values
as fractional so as to maintain the best dynamic range in the internal calculations.

The key issue when choosing a fixed-point representation is to best use the dynamic
range in the computation. Scaling can be applied to cover the worst-case scenario, but
this will usually result in poor dynamic range. Adjusting to get the best usage of the
dynamic range usually means that overflow will occur in some cases and additional cir-
cuitry has to be implemented to cope with this condition; this is particularly problematic
in two’s complement as overflow results in an “overflowed” value of completely different
sign to the previous value. This can be avoided by introducing saturation circuitry to
preserve the worst-case negative or positive overflow, but this has a nonlinear impact
on performance and needs further investigation.

The impact of overflow in two’s complement is indicated by the sawtooth represen-
tation in Figure 3.2(a). If we consider the four-bit representation represented earlier in
Figure 3.1 and look at the addition of 7 (0111) and 1(0001), then we see that this will
give 8 (1000) in unsigned binary, but of course this represents −8 in 2’s complement
which represents the worse possible representation. One approach is to introduce cir-
cuitry which will saturate the output to the nearest possible value, i.e. 7 (0111). This is
demonstrated in Figure 3.2(b), but the impact is to introduce a nonlinear impact to the
DSP operation which needs to be evaluated.

This issue is usually catered for in the high-level modeling stage using tools such
as those from MATLAB® or LabVIEW. Typically the designer is able to start with a

2n–1

Unsigned

–2n

Signed

(a) Overflow

2n–1

Unsigned

(b) Saturation

–2n

Signed

Figure . Impact of overflow in two’s complement
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 FPGA-based Implementation of Signal Processing Systems

floating-point representation and then use a fixed-point library to evaluate the perfor-
mance. At this stage, any impact of overflow can be investigated.

A FPGA-based solution may have timing problems as a result of any additional cir-
cuitry introduced for saturation. One conclusion that the reader might draw is that
fixed-point is more trouble than it is worth, but fixed-point implementations are par-
ticularly attractive for FPGA implementations (and some DSP microprocessor imple-
mentations), as word size translates directly to silicon area. Moreover, a number of opti-
mizations are available that make fixed-point extremely attractive; these are explored in
later chapters.

3.2.6 Floating-Point Representation

Floating-point representations provide a much more extensive means for providing real
number representations and tend to be used extensively in scientific computation appli-
cations, but also increasingly in DSP applications. In floating-point, the aim is to rep-
resent the real number using a sign (S), exponent (Exp) and mantissa (M), as shown in
Figure 3.3. The most widely used form of floating-point is the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754). This specifies four formats:
� single precision (32-bit);
� double precision (64-bit);
� single extended precision;
� double extended precision.

The single-precision format is a 32-bit representation where 1 bit is used for S, 8 bits
for Exp and 23 bits for M. This is illustrated in Figure 3.3(a) and allows the representa-
tion of the number x where x is created by 2Exp−127 × M as the exponent is represented
as unsigned, giving a single-extended number of approximately ±1038.52. The double-
precision format is a simple extension of the concept to 64 bits, allowing a range of
±10308.25, and is illustrated in Figure 3.3(b); the main difference between this and single
precision being the offset added to the exponent and the addition of zero padding for
the mantissa.

The following simple example shows how a real number, −1082.5674 is converted
into IEEE 754 floating-point format. It can be determined that S = 1 as the number is
negative. The number (1082) is converted to binary by successive division (see earlier),

(b) Double precision

(a) Single precision

Figure . Floating-point representations
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Arithmetic Basics 

Table . Truth table for a one-bit adder

Inputs Outputs

A B Ci−1 Si Ci

Ci = A or B 0 0 0 0 0
0 0 1 1 0

Ci = Ci−1

0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1

Ci = A or B 1 1 0 0 1
1 1 1 1 1

giving 10000111010. The fractional part (0.65625) is computed in the same way as above,
giving 10101. The parts are combined to give the value 10000111010.10101. The radix
point is moved left, to leave a single 1 on the left, giving 1.000011101010101 × 210. Filling
with 0s to get the 23-bit mantissa gives the value 10000111010101010000000. In this
value the exponent is 10 and, with the 32-bit IEEE 754 format bias of 127, we have 137
which is given as 10001001 in binary (giving the representation in Figure 3.3(a)).

. Arithmetic Operations

This section looks at the implementation of various arithmetic functions, including
addition and multiplication but also division and square root. As the emphasis is on
FPGA implementation which comprises on-board adders and multipliers, the book
concentrates on using these constructions, particularly fixed-point realizations. A brief
description of a floating-point adder is given in the following section.

3.3.1 Adders

Addition of two numbers A and B to produce a result S,

S = A + B, (3.4)

is a common function in computing systems and central to many DSP systems. Indeed,
it is a key operation and also forms the basic of multiplication which is, in effect, a series
of shifted additions.

A single-bit addition function is given in Table 3.2, and the resulting implementation
in Figure 3.4(a). This form comes directly from solving the one-bit adder truth table
leading to

Si = Ai ⊕ Bi ⊕ Ci−1, (3.5)
Ci = Ai ⋅ Bi + Ai ⋅ Ci−1 + Bi ⋅ Ci−1, (3.6)

and the logic gate implementation of Figure 3.4(a).
By manipulating the expression for Ci, we can generate the alternative expression

Ci = (Ai ⊕ Bi)Ci−1 + Ai ⋅ Ci−1. (3.7)
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 FPGA-based Implementation of Signal Processing Systems

(a) Conventional

(b) Revised

(c) Mux based

Ai

Bi

Ci–1

Si

Ci

Ai

Bi

Ci–1

Si

Ci

Ai

Bi

Ci

Ci–1

Si

4 input LUT 

Fast carry logic 

Figure . One-bit adder structure

This has the advantage of sharing the expression Ai ⊕ Bi between both the Si and Ci
expressions, saving one gate but as Figure 3.4(b) illustrates, at the cost of an increased
gate delay.

The truth table can also be interpreted as follows: when Ai = Bi, then Ci = Bi and
Si = Ci−1; and when Ai = Bi, then Ci = Ci−1 and Si = Ci−1. This implies a multiplexer
for the generation of the carry and, by cleverly using Ai ⊕ Bi (already generated in order
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AN–1 BN–1

CN–2

SN–1

C–1

A1      B1

S2                            S1          S0

A2      B2  A0    B0

Figure . n-bit adder structure

to develop Si), very little additional cost is required. This is the preferred construction
for FPGA vendors as indicated by the partition of the adder cell in Figure 3.4(c). By
providing a dedicated EXOR and mux logic, the adder cell can then be built using a
LUT to generate the additional EXOR function.

3.3.2 Adders and Subtracters

Of course, this only represents a single-bit addition, but we need to add words rather
than just bits. This can be achieved by chaining one-bit adders together to form a word-
level adder as shown in Figure 3.5. This represents the simplest but most area-efficient
adder structure. However, the main limitation is the time required to compute the word-
level addition which is determined by the time for the carry to propagate from the lsb
to the msb. As wordlength increases, this becomes prohibitive.

For this reason, there has been a considerable body of detailed investigations in alter-
native adder structures to improve speed. A wide range of adder structures have been
developed including the carry lookahead adder (CLA) and conditional sum adder (CSA),
to name but a few (Omondi 1994). In most cases the structures compromise architecture
regularity and area efficiency to overcome the carry limitation.

Carry Lookahead Adder
In the CLA adder, the carry expression given in equation (3.7) is unrolled many times,
making the final carry dependent only on the initial value. This can be demonstrated
by defining a generate function, Gi, as Gi = Ai ⋅ Bi, and a propagate function, Pi, as
Pi = Ai ⊕ Bi. Thus we can rewrite equations (3.5) and (3.7) as

Si = Pi ⊕ Ci−1, (3.8)
Ci = Pi ⋅ Ci−1 + Gi. (3.9)

By performing a series of substitutions on equation (3.9), we can get an expression for
the carry out of the fourth addition, namely C3, which only depends on the carry in of
the first adder C−1, as follows:

C0 = G0 + P0 ⋅ C−1, (3.10)
C1 = G(1) + P1 ⋅ C0 = G1 + P1 ⋅ G0 + P1 ⋅ P0 ⋅ C−1, (3.11)
C2 = G(2) + P2 ⋅ C1 = G2 + P2 ⋅ G1 + P2 ⋅ P1 ⋅ G0 + P2 ⋅ P1 ⋅ P0 ⋅ C−1, (3.12)

C3 = G(3) + P3 ⋅ C2 = G3 + P3 ⋅ G2 + P3 ⋅ P2 ⋅ G1 + P3 ⋅ P2 ⋅ P1 ⋅ G0
+ P3 ⋅ P2 ⋅ P1 ⋅ P0 ⋅ C−1. (3.13)
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 FPGA-based Implementation of Signal Processing Systems

Adder Comparisons
It is clear from the expressions in equations (3.10)–(3.13) that this results in a very
expensive adder structure due to this unrolling. If we use the gate model by Omondi
(1994), where any gate delay is given by T and gate cost or area is defined in terms of
2n (a two-input AND gates is 2, a three-input AND gates is 3, etc.) and EXORs count
as double (i.e. 4n), then this allows us to generate a reasonable technology-independent
model of computation. In this case, the critical path is given as 4T , which is only one
more delay than that for the one-bit adder of Figure 3.4(b).

For the CRA adder structure in Figure 3.4(b), it can be seen that the adder complexity
is determined by two 2-input AND gates (cost 2 × 2), i.e. 4, and one 2-input NOR gate,
i.e. 2, and then two 2-input EXOR gates, which is 2 × 4 (remember there is a double cost
for EXOR gates). This gives a complexity of 14, which if we multiply up by 16 gives a
complexity of 224 as shown in the first line of Table 3.2. The delay of the first adder cell
is 3T , followed by n − 2 delays of 2T and a final delay of T , this giving an average of 2nT
delays, i.e. 32T .

If we unloop the computation of equations (3.10)–(3.13) a total of 15 times, we can
get a structure with the same gate delay of 4T , but with a very large gate cost i.e. 1264,
which is impractical. For this reason, a merger of the CLA technique with the ripple
carry structure is preferred. This can be achieved either in the form of the block CLA
with inter-block ripple (RCLA) which in effect performs a four-bit addition using a CLA
and organizes the structure as a CRA (see Figure 3.6(a)), or a block CLA with intra-
group, carry ripple (BCLA) which uses the CLA for the computation of the carry and
then uses the lower-cost CRA for the reset of the addition (see Figure 3.6(b)).

S3        S2         S1        S0S7        S6         S5        S4

 A7 B7 A6 B6 A5 B5 A4 B4  A3 B3 A2 B2 A1 B1 A0 B0

S15      S14      S13     S12

 A15 B15 A14 B14 A13 B13 A12 B12

C–1
C15

(a) RCLA (m = 4)

(b) BCLA (m = 4)

 A3    B3

SN–1

C–1

A1      B1

S2  S1                          S0

A2      B2

Carry-Lookahead 

P3  G3 P2  G2 P1  G1 P0  G0

 A0    B0A7      B7

S7

C3

A5      B5

S6   S5  S4

A6     B6

Carry-Lookahead

P7  G7 P6  G6 P5  G5 P4  G4

 A4    B4

Figure . Alternative CLA structures
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Arithmetic Basics 

These circuits also have varying critical paths as indicated in Table 3.3. A detailed
examination of the CLA circuit reveals that it takes 3T to produce the first carry, then
2T for each of the subsequent stages to produce their carry as the Gi terms will have
been produced, and finally 2T to create the carry in the final CLA block. This gives a
delay for the 16-bit RCLA of 10T .

The performance represents an estimation of speed against gate cost given as cost unit
(CU) and is given by cost multiplied by time divided by 10,000. Of course, this will only
come in to play when all circuits meet the timing requirements, which is unusual as it
is normally speed that dominates with choice of lowest area then coming as a second
measure. However, it is useful in showing some kind of performance measure.

3.3.3 Adder Final Remarks

To a large extent, the variety of different adder structures trade off gate complexity
with system regularity, as many of the techniques end up with structures that are
much less regular. The aim of much of the research which took place in the 1970s and
1980s was to develop higher-speed structures where transistor switching speed was the
dominant feature. However, the analysis in the introduction to this book indicates the
key importance of interconnect, and somewhat reduces the impact of using specialist
adder structures. Another critical consideration for FPGAs is the importance of being
able to scale adder word sizes with application need, and in doing so, offer a linear scale
in terms of performance reduction. For this reason, the ripple-carry adder has great
appeal in FPGAs and is offered in many of the FPGA structures as a dedicated resource
(see Chapter 5).

In papers from the 1990s and early 2000s there was an active debate in terms of adder
structure (Hauck et al. 2000; Xing and Yu 1971). However, it is clear that, even for adder
trees that are commonly used to sum numerous multiplication operations as commonly
occurs in DSP applications, the analysis outlined in (Hoe et al. 2011) supports the use
of the dedicated CRA adder structures on FPGAs.

3.3.4 Multipliers

Multiplication can be simply performed through a series of additions. Consider the
example below, which illustrates how the simple multiplication of 5 by 11 is carried
out in binary. The usual procedure in computer arithmetic is to align the data in a ver-
tical line and shift right rather than shift left, as shown below. However, rather than
perform one single addition at the end to add up all the multiples, each multiple is
added to an ongoing product called a partial product. This means that every step in the

Table . 16-bit adder comparisons

Adder type Time (gate delay) Cost (CUs) Performance

CRA (Figure 3.5) 32 224 0.72
Pure CLA 4 1264 0.51
RCLA (m = 4) (Figure 3.6(a)) 10 336 0.34
BCLA (m = 4) (Figure 3.6(b)) 14 300 0.42
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 FPGA-based Implementation of Signal Processing Systems

computation equates to the generation of the multiples using an AND gate and the use
of an adder to compute the partial product.

5 = 00101 multiplicand
11 = 01011 multiplier

00101
00101

00000
00101

00000
55 = 000110111

5 = 00101 multiplicand
11 = 01011 multiplier

00000 initial partial product
00101 add 1st multiple partial product
00101
000101 shift right
00101 add 2nd multiple partial product
00101
000101 shift right
00000 add 3rd multiple partial product
0001111
00001111 shift right
00101 add 4th multiple partial product
00110111
000110111shift right
00000 add 5th multiple partial product

55= 000110111

A parallel addition can be computed by performing additions at each stage of the mul-
tiplication operation. This means that the speed of operation will be defined by the time
required to compute the number of additions defined by the multiplicand. However, if
the adder structures of Figure 3.5 were to be used, this would result in a very slow mul-
tiplier circuit. Use of alternative fast adders structures (some of which were highlighted
in Table 3.3) would result in improved performance but this would be a considerable
additional cost.

Fast Multipliers
The received wisdom in speeding up multiplications is to either speed up the addition
or reduce the number of additions. The latter is achieved by recoding the multiplicand,
commonly termed Booth’s encoding (discussed shortly). However, increasing the addi-
tion speed is achieved by exploiting the carry-save adder structure of Figure 3.7. In con-
ventional addition, the aim is to reduce (or compress) two input numbers into a sin-
gle output. In multiplication, the aim is to reduce multiple numbers, i.e. multiplicands,
down to a single output value. The carry-save adder is a highly efficient structure that
allows us to compress three inputs down to two outputs at the cost of a CRA addition
but with the speed of the individual cells given in Figure 3.4(b) or (c), namely two or
three gate delays.

Thus it is possible to create a carry-save array multiplier as shown in Figure 3.8.
An addition is required at each stage, but this is a much faster, smaller CSA addition,
allowing a final sum and carry to be quickly generated. A final adder termed a carry
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Arithmetic Basics 

FA

An–1Bn–1Cn–2

  Cn–1Sn–1

FA

A1 B1 C0

C1 S1

FA

A0 B0 C–1

C0 S0

Figure . Carry-save adder

propagation adder (CPA) is then used to compute the final addition using one of the
fast addition circuits from earlier.

Even though each addition stage is reduced to two or three gate delays, the speed of
the multiplier is then determined by the number of stages. As the word size m grows,
the number of stages is then given as m − 2. This limitation is overcome in a class of
multipliers known as Wallace tree multipliers (Wallace 1964), which allows the addition
steps to be performed in parallel. An example is shown in Figure 3.9.

As the function of the carry-save adder is to compress three words to two words, this
means that if n is the input wordlength, then after each stage, the words are represented
as 3k + l , where 0 ≤ l ≤ 2. This means that the final sum and carry values are produced
after log1.5 n rather than n − 1 stages as with the carry-save array multiplier, resulting in
a much faster implementation.

3rd multiple

1st multiple

    CSA1

2nd multiple

4th multiple

    CSA2

5th multiple

    CSA3

    CPA 

Figure . Carry-save array multiplier
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 FPGA-based Implementation of Signal Processing Systems

3rd multiple 

1st multiple

    CSA1

2nd multiple 

    CSA2

    CSA3

    CPA 

6th multiple 

4th multiple

    CSA1

5th multiple 

Figure . Wallace tree multiplier

Booth Encoding
It was indicated earlier that the other way to improve the speed of a multiplier was to
reduce the number of additions performed in the multiplications. At first thought, this
does not seem obvious as the number of additions is determined by the multiplicand
(MD). However, it is possible to encode the binary input in such a way as to reduce the
number of additions by two, by exploiting the fact that an adder can easily implement a
subtraction.

The scheme is highlighted in Table 3.4 and shows that by examining three bits of the
multiplier (MR), namely MRi+1, MRi and MRi−1, it is is possible to reduce two bit oper-
ations down to one operation, either an addition or subtraction. This requires adding
to the multiplier the necessary conversion circuitry to detect these sequences. This is

Table . Modified Booth’s algorithm

MRi+1,i MRi−1 Action

00 0 Shift partial product by 2 places
00 1 Add MD and shift partial product by 2 places
01 0 Add MD and shift partial product by 2 places
01 1 Add 2 × MD and shift partial product by 2 places
10 0 Subtract 2 × MD and shift partial product by 2 places
10 1 Subtract MD and shift partial product by 2 places
11 0 Subtract MD and shift partial product by 2 places
11 1 Shift partial product by 2 places
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Arithmetic Basics 

known as the modified Booth’s algorithm. The overall result is that the number of addi-
tions can be halved.

The common philosophy for fast additions is to combine the Booth encoding scheme
with Wallace tree multipliers to produce a faster multiplier implementation. In Yeh and
Jen (2000), the authors present an approach for a high-speed Booth encoded parallel
multiplier using a new modified Booth encoding scheme to improve performance and
a multiple-level conditional-sum adder for the CPA.

. Alternative Number Representations

Over the years, a number of schemes have emerged for either faster or lower-cost imple-
mentation of arithmetic processing functions. These have included SDNR (Avizienis
1961), LNS (Muller 2005), RNS (Soderstrand et al. 1986) and the CORDIC represen-
tation (Voider 1959; Walther 1971). Some of these have been used in FPGA designs
specifically for floating-point implementations.

3.4.1 Signed Digit Number Representation

SDNRs were originally developed by Avizienis (1961) as a means to break carry prop-
agation chains in arithmetic operations. In SDNR, each digit is associated with a sign,
positive or negative. Typically, the digits are represented in balanced form and drawn
from a range −k to (b − 1) − k, where b is the number base and typically k =

⌊
b
2

⌋
. For

balanced ternary which best matches conventional binary, this gives a digit set for x
where x ∈ (−1, 0, 1), or strictly speaking (1,0,1) where 1 represents −1. This is known as
signed binary number representation (SBNR), and the digits are typically encoded by
two bits, namely a sign bit, xs, and a magnitude bit, xm, as shown in Table 3.5. Avizienis
(1961) was able to demonstrate how such a number system could be used for perform-
ing parallel addition without the need for carry propagation (shown for an SBNR adder
in Figure 3.10), effectively breaking the carry propagation chain.

A more interesting assignment is the (+,−) scheme where an SBNR digit is encoded as
(x+, x−), where x = x+ + (x− − 1). Alternatively, this can be thought of as x− = 0 imply-
ing −1, x− = 1 implying 0, x+ = 0 implying 0, and x+ = 1 implying 1. The key advantage
of this approach is that it provides the ability to construct generalized SBNR adders from
conventional adder blocks.

Table . SDNR encoding

SDNR representations

SDNR digit Sig-and-mag +∕− coding

x xs xm x+ x−
0 0 0 0 1
1 0 1 1 0
1 0 1 0 1
0 or X 1 0 1 0
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 FPGA-based Implementation of Signal Processing Systems

FA FA

B0 B0

S0 S0

FA FA

A0 A0
+      –

+      –B1 B1

A1 A1
+      –

+      –

+      –S0 S0
+   –

FA

Sn–1 Sn–1

FA

+         –

+         –

An–1 An–1

[–1,0]

[0,1]

+         –Bn–1 Bn–1

 1

0

Figure . SBNR adder

This technique was effectively exploited to allow the design of high- speed circuits
for arithmetic processing and digital filtering (Knowles et al. 1989) and also for Viterbi
decoding (Andrews 1986). In many DSP applications such as filtering, the filter is cre-
ated with coefficient values such that for fixed-point DSP realizations, the top part of
the output word is then required after truncation. If conventional pipelining is used, it
will take several cycles for the first useful bit to be generated, seemingly defeating the
purpose of using pipelining in the first place.

Using SBNR arithmetic, it is possible to generate the result msb or strictly most signifi-
cant digit (msd) first, thereby allowing the computation to progress much more quickly.
In older technologies where speed was at a premium, this was an important differen-
tiator and the work suggested an order-of-magnitude improvement in throughput rate.
Of course, the redundant representation had to be converted back to binary, but several
techniques were developed to achieve this (Sklansky 1960).

With evolution in silicon processes, SBNR representations are now being overlooked
in FPGA design as it requires use of the programmable logic hardware and is relatively
inefficient, whereas conventional implementations are able to use the dedicated fast
adder logic which will be seen in later chapters. However, its concept is very closely
related to binary encoding such as Booth’s encoding. There are many fixed-point appli-
cations where these number conventions can be applied to reduce the overall hardware
cost whilst increasing speed.

3.4.2 Logarithmic Number Systems

The argument for LNS is that it provides a similar range and precision to floating-point
but offers advantages in complexity over some floating-point applications. For exam-
ple, multiplication and division are simplified to fixed-point addition and subtraction,
respectively (Haselman et al. 2005; Tichy et al. 2006).

If we consider that a floating-point number is represented by

F = −1S × 1.M × 2Exp, (3.14)
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Arithmetic Basics 

then logarithmic numbers can be viewed as a specific case of floating-point numbers
where the mantissa is always 1, and the exponent has a fractional part (Koren 2002).
The logarithmic equivalent, L, is then described as

L = −1SA × 2ExpA , (3.15)

where SA is the sign bit which signifies the sign of the whole number and ExpA is a
two’s complement fixed-point number where the negative numbers represent values less
than 1.0. In this way, LNS numbers can represent both very large and very small num-
bers. Typically, logarithmic numbers will have a format where two bits are used for the
flag bit (to code for zero, plus/minus infinity, and Not a Number (NaN (Detrey and de
Dinechin 2003)), and then k bits and l bits represent the integer and fraction respectively
(Haselman et al. 2005).

A major advantage of the LNS is that multiplication and division in the linear domain
ares replaced by addition or subtraction in the log domain:

log2

(
x
y

)
= log2(x) − log2(y). (3.16)

However, the operations of addition and subtraction are more complex. In Collange
et al. (2006), the development of an LNS floating-point library is described and it is
shown how it can be applied to some arithmetic functions and graphics applications.

However, LNS has only really established itself in small niche markets, whereas
floating-point number systems have become a standard. The main advantage comes
from computing a considerable number of operations in the algorithmic domain where
the advantages are seen as conversion is problem. Conversions are not exact and error
can accumulate for multiple conversions (Haselman et al. 2005). Thus whilst there has
been some floating-point library developments, FPGA implementations have not been
very common.

3.4.3 Residue Number Systems

RNS representations are useful in processing large integer values and therefore have
application in computer arithmetic systems, as well as in some DSP applications (see
later), where there is a need to perform large integer computations. In RNS, an integer is
converted into a number which is an N-tuple of smaller integers called moduli, given by
(mN , mN−1,… , m1). An integer X is represented in RNS by an N-tuple (xN , xN−1,… , x1),
where Xi is a non-negative integer, satisfying

X = mi.qi + xi, (3.17)

where qi is the largest integer such that 0 ≤ qi ≤ (mi − 1) and the value xi is known as the
residue of X modulo mi. The main advantage of RNS is that additions, subtractions and
multiplications are inherently carry-free due to the translation into the format. Unfor-
tunately, other arithmetic operations such as division, comparison and sign detection
are very slow and this has hindered the broader application of RNS. For this reason, the
work has mostly been applied to DSP operations that involve a lot of multiplications and
additions such as FIR filtering (Meyer-Baese et al. 1993) and transforms such as the FFT
and DCT (Soderstrand et al. 1986).
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 FPGA-based Implementation of Signal Processing Systems

Table . CORDIC functions

Configuration Rotation Vectoring

Linear Y = X × Y Y = X∕Y

Hyperbolic X = cosh(X) Z = arctanhY = sinh(Y )

Circular X = cos(X) Z = arctanh(Y )
Y = sin(Y ) X = sqr(X2 + Y 2)

Albicocco et al. (2014) suggest that in the early days RNS was used to reach the max-
imum performance in speed, but now it is used primarily to obtain power efficiency
and speed–power trade-offs and for reliable systems where redundant RNS are used.
It would seem that the number system is suffering the same consequences as SDNRs
as dedicated, high-speed computer arithmetic has now emerged in FPGA technology,
making a strong case for using conventional arithmetic.

3.4.4 CORDIC

The unified CORDIC algorithm was originally proposed by Voider (1959) and is used in
DSP applications for functions such as those shown in Table 3.6. It can operate in one
of three configurations (linear, circular and hyperbolic) and in one of two modes (rota-
tion and vectoring) in those configurations. In rotation, the input vector is rotated by a
specified angle; in vectoring, the algorithm rotates the input vector to the x-axis while
recording the angle of rotation required. This makes it attractive for computing trigono-
metric operations such as sine and cosine and also for multiplying or dividing numbers.

The following unified algorithm, with three inputs, X, Y and Z, covers the three
CORDIC configurations:

Xi+1 = Xi − m × Yi × di × 2i

Yi+1 = Yi + Xi × di × 2i

Zi+1 = Zi − ×ei.
(3.18)

Here m defines the configuration for hyperbolic (m = −1), linear (m = 0) or circular
(m = 1), and di is the direction of rotation, depending on the mode of operation. For
rotation mode di = −1 if Zi < 0 else +1, while in vectoring mode di = +1 if Yi < 0
else −1. Correspondingly, the value of ei as the angle of rotation changes depending
upon the configuration. The value of ei is normally implemented as a small lookup table
within the FPGA and is defined in Table 3.7 and outlines the pre-calculated values that
are typically stored in LUTs, depending upon the configuration.

The reduced computational load experienced in implementing CORDIC operations
in performing rotations (Takagi et al. 1991) means that it has been used for some DSP

Table . CORDIC angle of rotation

Configuration ei

Linear 2−i

Hyperbolic arctanh(2−i)
Circular arctan(2−i)
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Arithmetic Basics 

applications, particularly those implementing matrix triangularization (Ercegovac and
Lang 1990) and RLS adaptive filtering (Ma et al. 1992) as this latter application requires
rotation operations.

These represent dedicated implementations, however, and the restricted domain of
the approaches where a considerable performance gain can be achieved has tended to
limit the use of CORDIC. Moreover, given that most FPGA architectures have dedicated
hardware based on conventional arithmetic, this somewhat skews the focus towards
conventional two’s-complement-based processing. For this reason, much of the descrip-
tion and the examples in this text have been restricted to two’s complement. However,
both main FPGA vendors have CORDIC implementations in their catalogs.

. Division

Division may be thought of as the inverse process of multiplication, but it differs in sev-
eral aspects that make it a much more complicated function. There are a number of ways
of performing division, including recurrence division and division by functional itera-
tion. Algorithms for division and square root have been a major research area in the
field of computer arithmetic since the 1950s. The methods can be divided into two main
classes, namely digit-by-digit methods and convergence methods. The digit-by-digit
methods, also known as direct methods, are somewhat analogous to the pencil-and-
paper method of computing quotients and square roots. The results are computed on
a digit-by-digit basis, msd first. The convergence methods, which include the Newton–
Raphson algorithm and the Taylor series expansion, require the repeated updating of an
approximation to the correct result.

3.5.1 Recurrence Division

Digit recurrence algorithms are well-accepted subtractive methods which calculate quo-
tients one digit per iteration. They are analogous to the pencil-and-paper method in that
they start with the msbs and work toward the lsbs. The partial remainder is initialized
to the dividend, then on each iteration a digit of the quotient is selected according to the
partial remainder. The quotient digit is multiplied by the divisor and then subtracted
from the partial remainder. If negative, the restoring version of the recurrence divider
restores the partial remainder to the previous value, i.e. the results of one subtraction
(comparison) determine the next division iteration of the algorithm, which requires the
selection of quotient bits from a digit set. Therefore, a choice of quotient bits needs to
be made at each iteration by trial and error. This is not the case with multiplication, as
the partial products may be generated in parallel and then summed at the end. These
factors make division a more complicated algorithm to implement than multiplication
and addition.

When dividing two n-bit numbers, this method may require up to 2n + 1 additions.
This can be reduced by employing the non-restoring recurrence algorithm in which
the digits of the partial remainder are allowed to take negative and positive values; this
reduces the number of additions/subtractions to n. The most popular recurrence divi-
sion method is an algorithm known as the SRT division algorithm which was named for
the three researchers who independently developed it, Sweeney, Robertson and Tocher
(Robertson 1958; Tocher 1958).
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 FPGA-based Implementation of Signal Processing Systems

1 bit

1 2 3 5 4

2 bits 
 4 bits 

 8 bits 

32 bits 

Number of 
correct bits: 

Iteration:

16 bits

6

64 bits 

Figure . Quadratic convergence

The recurrence methods offer simple iterations and smaller designs, however, they
also suffer from high latencies and converge linearly to the quotient. The number of bits
retired at each iteration depends on the radix of the arithmetic being used. Larger radices
may reduce the number of iterations required, but will increase the time for each itera-
tion. This is because the complexity of the selection of quotient bits grows exponentially
as the radix increases, to the point that LUTs are often required. Therefore, a trade-off
is needed between the radix and the complexity; as a result, the radix is usually limited
to 2 or 4.

3.5.2 Division by Functional Iteration

The digit recurrence algorithms mentioned in the previous subsection retire a fixed
number of bits at each iteration, using only shift and add operations. Functional iter-
ative algorithms employ multiplication as the fundamental operation and produce at
least double the number of correct bits with each iteration (Flynn 1970; Ito et al. 1995;
Obermann and Flynn 1997; Oklobdzija and Ercegovac 1982). This is an important fac-
tor as there may be as many as three multiplications in each iteration. However, with
the advantage of at least quadratic convergence, a 53-bit quotient can be achieved in six
iterations, as illustrated in Figure 3.11.

. Square Root

Methods for performing the square root operation are similar to those for performing
division. They fall broadly into the two categories, digit recurrence methods and meth-
ods based on convergence techniques. This section gives a brief overview of each.
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Arithmetic Basics 

3.6.1 Digit Recurrence Square Root

Digit recurrence methods can be based on either restoring or non-restoring techniques,
both of which operate msd first. The algorithm is subtractive, and after each iteration
the resulting bit is set to 0 if a negative value is found, and then the original remainder
is ’restored’ as the new remainder. If the digit is positive, a 1 is set and the new remain-
der is used. The “non-restoring” algorithm allows the negative value to persist and then
performs a compensation addition operation in the next iteration. The overall process
of the square root and division algorithms is very similar, and, as such, there have been
a number of implementations of systolic arrays designed to perform both arithmetic
functions (Ercegovac and Lang 1991; Heron and Woods 1999).

The performance of the algorithms mentioned has been limited due to the dependence
of the iterations and the propagated carries along each row. The full values need to be
calculated at each stage to enable a correct comparison and decision to be made. The
SRT algorithm is a class of non-restoring digit-by-digit algorithms in which the digit can
assume both positive and negative non-zero values. It requires the use of a redundant
number scheme (Avizienis 1961), thereby allowing digits to take the values 0, −1 or 1.
The most important feature of the SRT method is that the algorithm allows each itera-
tion to be performed without full-precision comparisons at each iteration, thus giving
higher performance.

Consider a value R for which the algorithm is trying to find the square root, and Si the
partial square root obtained after i iterations. The scaled remainder, Zi, at the ith step is

Zi = 2i(R − S2
i
)
, (3.19)

where 1∕4 ≤ R < 1 and hence 1∕2 ≤ S < 1. From this, a recurrence relation based on
previous remainder calculations can be derived as (McQuillan et al. 1993)

Zi = 2iZi−1 − si
(
2Si−1 + si2−i), i = 2, 3, 4,… , (3.20)

where si is the root digit for iteration i − 1. Typically, the initial value for Z0 will be
set to R, while the initial estimate of the square root, S1, is set to 0.5 (due to the initial
boundaries placed on R).

There exist higher-radix square root algorithms (Ciminiera and Montuschi 1990;
Cortadella and Lang 1994; Lang and Montuschi 1992). However, for most algorithms
with a radix greater than 2, there is a need to provide an initial estimate for the square
root from a LUT. This relates to the following subsection.

3.6.2 Square Root by Functional Iteration

As with the convergence division in Section 3.6.1, the square root calculation can be per-
formed using functional iteration. It can be additive or multiplicative. If additive, then
each iteration is based on addition and will retire the same number of bits with each
iteration. In other words, they converge linearly to the solution. One example is the
CORDIC implementation for performing the Givens rotations for matrix triangulariza-
tion (Hamill et al. 2000). Multiplicative algorithms offer an interesting alternative as they
double the precision of the result with each iteration, that is, they converge quadratically
to the result. However, they have the disadvantage of increased computational complex-
ity due to the multiplications within each iterative step.
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 FPGA-based Implementation of Signal Processing Systems

Similarly to the approaches used in division methods, the square root can be estimated
using Newton–Raphson or series convergence algorithms. For the Newton–Raphson
method, an iterative algorithm can be found by using

xi+1 = Xi −
f (xi)
f ′(xi)

(3.21)

and choosing f (x) that has a root at the solution. One possible choice is f (x) = x2 − b
which leads to the following iterative algorithm:

xi+1 = 1
2

(
Xi −

b
xi

)
. (3.22)

This has the disadvantage of requiring division. An alternative method would be to aim
to drive the algorithm toward calculating the reciprocal of the square root, 1∕x2. For
this, f (x) = 1∕x2 − b is used, which leads to the following iterative algorithm:

xi+1 =
xi
2
(
3 − bx2

i
)

(3.23)

Once solved, the square root can then be found by multiplying the result by the original
value, X, that is, 1∕

√
X × X =

√
X.

Another method for implementing the square root function is to use series conver-
gence, i.e. Goldschmidt’s algorithm (Soderquist and Leeser 1995), which produces equa-
tions similar to those for division (Even et al. 2003). The aim of this algorithm is to com-
pute successive iterations to drive one value to 1 while driving the other value to the
desired result. To calculate the square root of a value a, for each iteration:

xi+1 = xi × r2
i , (3.24)

yi+1 = yi × ri, (3.25)

where we let x0 = y0 = a. Then by letting

ri =
3 − yi

2
, (3.26)

x → 1 and consequently yi →
√

a. In other words, with each iteration x is driven closer
to 1 while y is driven closer to

√
a. As with the other convergence examples, the algo-

rithm benefits from using an initial estimate of 1∕
√

a to pre-scale the initial values of x0
and y0.

In all of the examples given for both the division and square root convergence algo-
rithms, vast improvements in performance can be obtained by using a LUT to provide
an initial estimate to the desired solution. This is covered in the following subsection.

3.6.3 Initial Approximation Techniques

The number of iterations for convergence algorithms can be vastly reduced by provid-
ing an initial approximation to the result read from a LUT. For example, the simplest
way of forming the approximation R0 to the reciprocal of the divisor D is to read an
approximation to 1∕D directly from a LUT. The first m bits of the n-bit input value D
are used to address the table entry of p bits holding an approximation to the reciprocal.
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Arithmetic Basics 

Table . Precision of approximations for example values of g and m

Address bits Guard bits g Output bits Precision

m 0 m m + 0.415 bits
m 1 m + 1 m + 0.678 bits
m 2 m + 2 m + 0.830 bits
m 3 m + 3 m + 0.912 bits

The value held by the table is determined by considering the maximum and minimum
errors caused by truncating D from n to m bits.

The time to access a LUT is relatively small so it provides a quick evaluation of the
first number of bits to a solution. However, as the size of the input value addressing the
LUT increases, the size of the table grows exponentially. For a table addressed by m bits
and outputting p bits, the table size will have 2m entries of width p bits. Therefore, the
size of the LUT soon becomes very large and will have slower access times.

A combination of p and m can be chosen to achieve the required accuracy for the
approximation, with the smallest possible table. By denoting the number of bits by which
p is larger than m as the number of guard bits g, the total error Etotal (Sarma and Matula
1993) may be expressed as

Etotal = 2m+1
( 1

2g+1

)
. (3.27)

Table 3.8 shows the precision of approximations for example values of g and m. These
results are useful in determining whether adding a few guard bits might provide suffi-
cient additional accuracy in place of the more costly step in increasing m to m + 1 which
more than doubles the table size.

Another simple approximation technique is known as read-only memory (ROM)
interpolation. Rather than just truncating the value held in memory after the mth bit, the
first unseen bit (m + 1) is set to 1, and all bits less significant than it are set to 0 (Fowler
and Smith 1989). This has the effect of averaging the error. The resulting approximation
is then rounded back to the lsb of the table entry by adding a 1 to the bit location just
past the output width of the table. The advantage with this technique is its simplicity.
However, it would not be practical for large initial approximations as there is no attempt
to reduce the table size.

There are techniques for table compression, such as bipartite tables, which use two or
more LUTs and then add the output values to determine the approximation (Schulte
et al. 1997). To approximate a reciprocal function using bipartite tables, the input
operand is divided into three parts as shown in Figure 3.12.

The n0 + n1 bits provide the address for the first LUT, giving the coefficient a0 of length
p0 bits. The sections d0 and d2, equating to n0 + n2 bits, provide addresses for the second
LUT, giving the second coefficient a1 of length p1 bits. The outputs from the tables
are added together to approximate the reciprocal, R0, using a two-term Taylor series
expansion. The objective is to use the first n0 + n1 msbs to provide the lookup for the
first table which holds coefficients based on the values given added with the mid-value
of the range of values for d2. The calculation of the second coefficient is based on the
value from sections d0 and d2 summed with the mid-value of the range of values for d1.
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 FPGA-based Implementation of Signal Processing Systems

n bits 

      d2

Table
a0(d0,d1)

         adder 

n0 bits

d0         d1

Table
a0(d0,d2)

n1 bits n2 bits

P0 bits P1 bits

P bits

Figure . Block diagram for bipartite
approximation methods

This technique forms a method of averaging so that the errors caused by truncation are
reduced. The coefficients for the reciprocal approximation take the form

a0(d0, d1) = f (d0 + d1 + 𝛿2), (3.28)
a0(d0, d1) = f ′(d0 + 𝛿1 + 𝛿2)(d2 − 𝛿2), (3.29)

where 𝛿1 and 𝛿2 are constants exactly halfway between the minimum and maximum
values for d1 and d2, respectively.

The benefit is that the two small LUTs will have less area than the one large LUT
for the same accuracy, even when the size of the addition is considered. Techniques to
simplify the bipartite approximation method also exist. One method (Sarma and Matula
1995) eliminates the addition by using each of the two LUTs to store the positive and
negative portions of a redundant binary reciprocal value. These are “fused” with slight
recoding to round off a couple of low-order bits to obtain the required precision of the
least significant bit. With a little extra logic, this recoding can convert the redundant
binary values into Booth encoded operands suitable for input into a Booth encoded
multiplier.

. Fixed-Point versus Floating-Point

If the natural assumption is that the “most accurate is always best,” then there appears to
be no choice in determining the number representation, as floating-point will be chosen.
Historically, though, the advantage of FPGAs was in highly efficient implementation of
fixed-point arithmetic as some of the techniques given in Chapter 7 will demonstrate.
However, the situation is changing as FPGA vendors start to make architectural changes
which make implementation of floating-point much more attractive, as will be seen in
Chapter 5.

The decision is usually made based on the actual application requirements. For exam-
ple, many applications vary in terms of the data word sizes and the resulting accuracy.
Applications can require different input wordlengths, as illustrated in Table 3.9, and
can vary in terms of their sensitivity to errors created as a result of limited, internal
wordlength. Obviously, smaller input wordlengths will have smaller internal accuracy
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Arithmetic Basics 

Table . Typical wordlengths

Application Word sizes (bits)

Control systems 4–10
Speech 8–13
Audio 16–24
Video 8–10

requirements, but the perception of the application will also play a major part in deter-
mining the internal wordlength requirements. The eye is tolerant of wordlength limi-
tations in images, particularly if they appear as distortion at high frequencies, whereas
the ear is particularly intolerant to distortion and noise at any frequency, but specifically
high frequency. Therefore cruder truncation may be possible with some image process-
ing applications, but less so in audio applications.

Table 3.10 gives an estimation of the dynamic range capabilities of some fixed-point
representations. It is clear that, depending on the internal computations being per-
formed, many DSP applications can give an acceptable signal-to-noise ratio (SNR) with
limited wordlengths, say 12–16 bits. Given the performance gain of fixed-point over
floating-point in FPGAs, fixed-point realizations have dominated, but the choice will
also depend on application input and output wordlengths, required SNR, internal com-
putational complexity and the nature of computation being performed, i.e. whether spe-
cialist operations such as matrix inversions or iterative computations are required.

A considerable body of work has been dedicated to reducing the number precision to
best match the performance requirements. Constantinides et al. (2004) look to derive
accurate bit approximations for internal wordlengths by considering the impact on
design quality. A floating-point design flow is presented in Fang et al. (2002) which takes
an algorithmic input and generates floating-point hardware by performing bit width
optimization, with a cost function related to hardware, but also to power consumption.
This activity is usually performed manually by the designer, using suitable fixed-point
libraries in tools such as MATLAB® or LabVIEW, as suggested earlier.

3.7.1 Floating-Point on FPGA

Up until recently, FPGAs were viewed as being poor for floating-point realization. How-
ever, the adoption of a dedicated DSP device in each of the main vendors’ FPGA families
means that floating-point implementation has become much more attractive, particu-
larly if a latency can be tolerated. Table 3.11 gives area and clock speed figures for float-
ing core implementation on a Xilinx Virtex-7 device. The speed is determined by the
capabilities of the DSP48E1 core and pipelining within the programmable logic.

Table . Fixed wordlength dynamic range

Wordlength (bits) Wordlength range Dynamic range dB

8 −127 to +127 20 log 28 ≈ 48
16 −32768 to +32767 20 log 216 ≈ 96
24 −8388608 to +8388607 20 log 224 ≈ 145
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 FPGA-based Implementation of Signal Processing Systems

Table . Xilinx floating-point LogiCORE v7.0 on Virtex-7

Function DSP LUT Flip-flops Speed (MHz)

Single range multiplier 2 96 166 462
Double range multiplier 10 237 503 454
Single range accumulator 7 3183 3111 360
Double range accumulator 45 31738 24372 321
Single range divider 0 801 1354 579
Double range divider 0 3280 1982 116.5

The area comparison for floating-point is additionally complicated as the relation-
ship between multiplier and adder area is now changed. In fixed-point, multipliers are
generally viewed to be N times bigger than adders, where N is the wordlength. How-
ever, in floating-point, the area of floating-point adders is not only comparable to that
of floating-point multipliers but, in the case of double point precision, is much larger
than that of a multiplier and indeed slower. This corrupts the assumption, at the DSP
algorithmic stage, that reducing the number of multiplications in favor of additions is a
good optimization.

Calculations in Hemsoth (2012) suggest that the current generation of Xilinx’s Virtex-
7 FPGAs is about 4.2 times faster than a 16-core microprocessor. This figure is up from
a factor of 2.9× as reported in an earlier study in 2010 and suggests that the inclusion
of dedicated circuitry is improving the floating-point performance. However, these fig-
ures are based on estimated performance and not on a specific application implementa-
tion. They indicate 1.33 tera floating-point operations per second (TFLOPS) of single-
precision floating-point performance on one device (Vanevenhoven 2011).

Altera have gone one stage further by introducing dedicated hardened circuitry into
the DSP blocks to natively support IEEE 754 single-precision floating-point arithmetic
(Parker 2012). As all of the complexities of IEEE 754 floating-point are built within the
hard logic of the DSP blocks, no programmable logic is consumed and similar clock rates
to those for fixed-point designs are achieved. With thousands of floating-point opera-
tors built into these hardened DSP blocks, the Altera Arria® 10 FPGAs are rated from
140 giga floating-point operations per second (GFLOPS) to 1.5 TFLOPS across the
20 nm family. This will also be employed in the higher-performance Altera 14 nm
Stratix® 10 FPGA family, giving a performance range right up to 10 TFLOPS!

Moreover, the switch to heterogeneous SoC FPGA devices also offers floating-point
arithmetic in the form of dedicated ARM processors. As will be seen in subsequent
chapters, this presents new mapping possibilities for FPGAs as it is now possible to map
the floating-point requirements into the dedicated programmable ARM resources and
then employ the fixed-point capabilities of dedicated SoC.

. Conclusions

This chapter has given a brief grounding in computer arithmetic basics and given some
idea of the hardware needed to implement basic computer arithmetic functions and
some more complex functions such as division and square root. Whilst the chapter
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Arithmetic Basics 

outlines the key performance decisions, it is clear that the availability of dedicated adder
and multiplier circuitry has made redundant a lot of FPGA-based research into new
types of adder/multiplier circuits using different forms of arithmetic.

The chapter has also covered some critical aspects of arithmetic representations and
the implications that choice of either fixed- or floating-point arithmetic can have in
terms of hardware implementation, particularly given the current FPGA support for
floating-point. It clearly demonstrates that FPGA technology is currently very appro-
priate for fixed-point implementation, but increasingly starting to include floating-point
arithmetic capability.
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