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ABSTRACT: Scanning electrochemical microscopy (SECM) is an electroanalytical
scanning probe technique capable of imaging substrate topography and local reactivity
with high resolution. Since its inception in 1989, it has expanded into a wide variety of
research areas including biology, corrosion, energy, kinetics, instrumental development,
and surface modification. In the past 25 years, over 1800 peer-reviewed publications
have focused on SECM, including several topical reviews. However, these reviews often
omit key details, forcing readers to search the literature. In this review, we provide a
comprehensive summary of the experimental parameters (e.g., solvents, probes, and
mediators) used in all SECM publications since 1989, irrespective of the application. It
can be used to rapidly assess experimental possibilities and make an informed decision
about experimental design. In other words, it is a practical guide to SECM.

CONTENTS

1. Introduction 13234
2. Principles of SECM 13234

2.1. Instrumentation 13234
2.2. Modes of Operation 13235

2.2.1. Feedback Mode 13236
2.2.2. Generation/Collection Modes 13236
2.2.3. Redox Competition Mode 13237
2.2.4. Direct Mode 13237
2.2.5. Potentiometric Mode 13237

3. Experimental Design 13237
3.1. Mediators 13237
3.2. Solvents 13244
3.3. Probes 13246

3.3.1. Amperometric Probes 13247
3.3.2. Potentiometric Probes 13247

4. Applications 13247
4.1. Instrumental Development 13249
4.2. Biological 13251
4.3. Enzymes 13252
4.4. Living Cell Studies 13253
4.5. Corrosion 13256
4.6. Energy 13258
4.7. Surface Modification 13259
4.8. Kinetics 13262

5. Summary and Future Perspectives 13263
Author Information 13264

Corresponding Author 13264
Notes 13264
Biographies 13264

References 13264

1. INTRODUCTION

Scanning electrochemical microscopy (SECM) was first
introduced in 1989 concurrently by the Bard1 and Engstrom2

research groups. Twenty-five years later, more than 1800 peer-
reviewed articles involving SECMhave been published, including
several general reviews3−6 and two monographs.7,8

In its simplest form, SECM is a scanning probe technique in
which a small scale electrode is scanned across an immersed
substrate while recording the current response. This response is
dependent on both the surface topography and the electro-
chemical activity of the substrate. Consequently, using an array of
operational modes, a wide variety of substrates and experimental
systems can be characterized. The strength of SECM lies in its
ability to quantify material flux from a surface with a high spatial
and temporal resolution. As a result, it has been used in a variety
of application fields (Figure 1).
In this review, we will first describe the fundamentals of

SECM, including the required instrumentation and the
principles of the most frequently used operational modes.
Following this basic understanding of SECM principles, we then
move toward a comprehensive summary of the critical
parameters for any SECM experiment. More specifically, we
will discuss in detail redoxmediators, probes, and solvent systems
that have been used in SECM experiments since 1989. Each of
these parameters has been summarized in exhaustive tables for
easy reference, and provide an ideal overview of the field. Finally,
we will discuss recent applications of SECM, with an emphasis on
the last five years (2009−2015).
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2. PRINCIPLES OF SECM

2.1. Instrumentation

A typical scanning electrochemical microscope consists of four
essential components (Figure 2). First, a low current
bipotentiostat (≤pA) is used to precisely measure and control
the current and potential at both a probe and a substrate. A high
resolution three-dimensional (3D) positioning system allows for
accurate movement of a probe and a substrate using an x, y, z
stage with stepper and piezoelectric motors for coarse and finer

movements, respectively. The third component is a small scale
probe with dimensions in the low micrometer to nanometer
range, also referred to as a SECM tip. This critical component
defines the resolution of an SECM measurement and will be
described in detail in section 3.3. Finally, a data acquisition
system (i.e., computer) is required to synchronize and coordinate
each component to perform a successful measurement. Depend-
ing on the application, additional components can be added to a
SECM instrument, including an inverted optical microscope for
biological measurements involving live cells, a fluorescence
detection system, or a constant distance unit. Although many
research groups have opted to manufacture their own in-house
SECM system, an increase in demand has caused several
commercial systems to become available (e.g., BioLogic, CH
Instruments, Heka Electronik, Sensolytics, Uniscan Instru-
ments).
2.2. Modes of Operation

SECM measurements can be performed using different opera-
tional modes. Historically, feedback and generation/collection
modes were the first to be introduced.1,2 Since these initial
reports in the early 1990s, a wide variety of new SECM modes
have been developed in order to accommodate expanding
applications. The principles of the most prevalent SECMmodes,
based on number of publications, will be discussed below. We
will assume that the redox mediator (i.e., electroactive species) in
solution is in its reduced form R.
It is important to note that, in the context of SECM data,

lowercase i designates raw current, while an uppercase I
designates normalized current. Current normalization is typically
performed by dividing the measured tip current iT with the
steady-state current iT,∞ (see eq 2). Distances are also reported as
normalized distance L, whereby tip-to-substrate distance, d, is

Figure 1. Experimental SECM applications.

Figure 2. Schematic of a SECM instrument.
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normalized by the probe radius, a. These normalizations allow a
comparison between measurements performed using different
probe dimensions.
2.2.1. Feedback Mode. The most common operational

mode used during SECM experiments is the feedback mode. Due
to its great versatility, it has been used in virtually every SECM
field of application. In feedback mode, a biased probe is
approached toward a substrate of interest, and a redox mediator
R is oxidized at the probe, according to the following reaction:

− →−nR e O tip reaction (1)

The faradaic current resulting from the electrochemical reaction
of the mediator is recorded at the probe and depends on the
topography and the electrochemical activity of the substrate.
When a probe is positioned at a tip-to-substrate distance

greater than 10 times the radius of the electroactive core (d >
10a), also known as bulk solution (Figure 3A), the measured

current, iT, equals the diffusion limited current, iT,∞ (i.e., steady-
state current).9 For a probe with disk geometry, the steady-state
current is defined as

β= *∞i nFDC a4T, (2)

where n is the number of electrons exchanged in the redox
reaction, F is the Faraday constant (96 485 A s mol−1), D is the
diffusion coefficient of the redox species R in solution (cm2 s−1),
C* is the concentration of the redox mediator in solution (mol

cm−3), a is the radius of the electroactive surface of the electrode
(cm), and β is a geometric coefficient.10

When a probe approaches an inert substrate, diffusion of redox
species R to the probe tip is hindered by the physical presence of
the substrate, resulting in a decrease in current relative to steady-
state conditions (iT < iT,∞). This process, shown in Figure 3B, is
referred to as a negative feedback response. As the probe
approaches a conducting substrate such as a biased Pt electrode,
the diffusion of species R to the tip is again hindered by the
presence of the substrate. However, in this case, the conducting
substrate allows for the reduction of species O back to R,
resulting in an increased local flux of R and thus an increase in
current relative to steady-state conditions (iT > iT,∞). This is
called a positive feedback response and is shown in Figure 3C.
An important component of SECM feedback experiments is

the measurement of current response with decreasing tip-to-
substrate distance, which is called an approach curve (plot of iT vs
d). The three behaviors described above, namely bulk, pure
negative feedback, and pure positive feedback, are diffusion
limiting cases, and usually an approach curve will fall somewhere
in between positive and negative feedback behaviors. The current
response recorded during these approach curve measurements,
which is dependent on both tip-to-substrate distance and
apparent kinetics, has been described using analytical approx-
imations, and these equations are neatly summarized in a recent
review.10 It should be noted that, since the current response in
feedback mode is highly dependent on tip-to-substrate distance,
it is preferable to use as small a distance as possible (without
crashing) to increase sensitivity.

2.2.2. Generation/Collection Modes. The term “gener-
ation/collection (GC) mode” is used to encompass a wide
variety of experiments. These experiments can be performed in
either amperometric mode, as discussed here, or in potentio-
metric mode, as discussed in section 2.2.5. The twomain types of
experiments are substrate generation/tip collection (SG/TC)
and tip generation/substrate collection (TG/SC), with the main
difference being the origin of the redox reaction, either at the
substrate or at the tip.
In SG/TC mode (Figure 3D), an electroactive species is

generated at a substrate and collected at a biased tip according to
the following reactions (assuming only R is initially in solution):

− →−nR e O substrate reaction (3)

+ →−nO e R tip reaction (4)

These reactions represent the simplest depiction of this mode,
assuming that the system contains only R, without the possibility
of other side reactions. Evidently, although the reduction of R at
the substrate produces O, following electrochemical or chemical
reactions can also occur to produce a completely different
product.
Typically, SG/TC mode is used for the measurements of

concentration profiles or chemical flux from a substrate. In order
to obtain this information, currents are measured at both the tip
and the substrate. The sizes of the substrate as and the tip a are an
important consideration, and usually as/a ≫ 1 such that the
diffusion layer of the substrate is much larger than that of the tip.
This mode assumes no feedback contribution to the measured
current, such that no current would be recorded at the tip prior to
biasing of the substrate. However, SG/TC suffers from several
disadvantages, including a low collection efficiency, interference
between substrate and tip reactions, and a lack of steady state at

Figure 3. Schematic of SECM operational modes. (A) Steady-state
behavior (diffusion-limited) in bulk solution. (B) Feedback mode over
an inert substrate (negative feedback). (C) Feedback mode over a
conducting substrate (positive feedback). (D) Substrate-Generation/
Tip-Collection (SG/TC) mode. (E) Tip-Generation/Substrate-Collec-
tion (TG/SC) mode. (F) Redox competition (RC) mode. (G) Direct
mode, where “M” is a metal precursor in solution with charge n (n =
integer) and M is a solid metal. (H) Potentiometric mode with an ion-
selective electrode, where “X” is an ion in solution with charge n (n =
integer).
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large substrate. Nevertheless, this mode has proven quite useful
in both corrosion and enzymatic measurements.
In TG/SC mode (Figure 3E), the electroactive species is

generated at the tip and subsequently collected by the substrate.

+ →−nO e R substrate reaction (5)

− →−nR e O tip reaction (6)

As with SG/TC mode, currents are measured at both the tip and
the substrate. Immediately after biasing both working electrodes,
substrate current, iS, is close to zero as species R (generated at the
tip reaction) has not yet been produced and/or had time to
diffuse to the substrate. However, as time increases, iS also
increases and eventually, when a steady state is achieved, the
difference between iS and iT becomes negligable. When the
distance between the tip and the substrate is small (L ≤ 2), tip-
generated species R will mainly diffuse to the substrate and a high
collection efficiency (iS/iT > 0.99) can be achieved.11 TG/SC
mode is predominantly used for the measurement of reaction
kinetics and to perform modifications to the substrate.
2.2.3. Redox Competition Mode. The use of redox

competition (RC) mode is less prominent than feedback and
GC, but since its development by Schuhmann and co-workers,12

it has found a niche in the measurement of surface catalytic
activity and corrosion.12,13 In this mode, the SECM tip and the
substrate, which are in close proximity to each other, compete for
the same redox species, as shown in Figure 3F. Similar to TG/SC
mode, the use of a bipotentiostat is necessary in such experiments
in order to apply potentials to both the substrate and the SECM
tip. However, unlike TG/SC mode, the current is measured at
the SECM tip and not the substrate, which means that the
background current contribution is significantly decreased,
resulting in an increased sensitivity toward the measurement of
catalytic activity.
To avoid complete depletion of the redox mediator within the

tip-to-substrate gap, the substrate is biased at a reduction
potential, while a reductive potential pulse is applied to the
SECM tip. When scanning over an inactive region of the
substrate, the reductive current measured at the SECM tip
remains constant. Over an active region of the substrate where
the reduction process occurs, i.e. the catalytic spot, the redox
species is consumed at both the SECM tip and the substrate,
leading to a decrease in measured current at the SECM tip. This
decrease in current can then be correlated with substrate activity.
2.2.4. Direct Mode. Direct mode is a specific subset of

SECM in which the electrochemical cell configuration is reversed
such that the microelectrode tip is used as the counter electrode
and the substrate is used as the working electrode, as illustrated in
Figure 3G. When a potential is applied, the electric field is
localized between the tip and the substrate (shown by the shaded
area in Figure 3G). Consequently, small tip-to-substrate
distances allow for higher patterning resolution. In the SECM
community, direct mode has been mainly used in the context of
surface modification, particularly for semiconductor etching,
enzyme deposition, and micropatterning.14−16

2.2.5. Potentiometric Mode. The one common point
between the modes described above is that they all involve an
amperometric measurement. In potentiometric mode SECM,
the measured signal is a potential and not a current. The use of
this mode provides several advantages, including high selectivity
and measurement of nonelectroactive species or electroactive
species with standard reduction potentials outside the solvent
window. Furthermore, since no faradaic reaction is occurring or

required, the concentration and oxidation state of the analyte
species is unchanged during the measurement.
In this mode, the potential is measured between an ion-

selective electrode (ISE) and an external reference electrode.
Specific examples will be discussed in Table 5, but typically an
ISE used in SECM is composed of an internal reference
electrode, inserted into a glass capillary filled with a constant
activity solution of the ion of interest and an ion-selective
membrane at the tip. When the ISE is immersed in a sample
solution containing the ion of interest, chemical recognition of
the analyte at the ion-selective membrane causes the formation of
a junction potential. The difference in chemical activity between
the internal and external solutions creates a junction potential
which can then be measured at the internal reference electrode.
The measured potential is linearly dependent on the activity of
the ion of interest. As such, the tip-to-substrate bears no influence
on the measured signal and is less important than in other
operational modes (e.g., feedback mode).
Potentiometric probes are not limited to the use of an ion-

selective membrane, but still require the presence of a
component capable of differentiating species. For instance,
oxide films deposited on a microelectrode core have shown great
capabilities to monitor local variations in pH.17

3. EXPERIMENTAL DESIGN
Designing a SECM experiment is not trivial, and requires the
careful consideration of several important factors including the
following:

• mediator and/or substrate being investigated

• solvent in which the electrochemical reaction(s)
will occur

• probe that should be used
The success of an experiment relies on the identification of the

right combination of these three parameters. In this section,
mediators, solvents, and probes will be discussed in the context of
a SECM experiment. An exhaustive list of the parameters used in
the literature since 1989 is also tabulated for each section.
3.1. Mediators

A redox mediator is an electroactive molecule/atom that can be
oxidized or reduced. A direct redox mediator is defined as a
molecule that is already present in solution (e.g., O2), while an
indirect mediator designates a molecule that has been added to
solution prior to the experiment (e.g., FcMeOH). Although no
strict rules exist in terms of which mediator should be employed
with a specific operational mode, most experiments have
common properties which can be used for the selection of an
ideal mediator for a specific application.
The selection of a given mediator for a SECM experiment

greatly depends on the nature of the sample studied and the
mode of SECM used. The mediator will typically need to be
chemically stable in the solvent environment and inert in the
presence of the working, counter, and reference electrodes. The
charge, hydro-/lipophilicity, size, permeability coefficient, stand-
ard redox potential, and pH dependent behaviors are also
important factors that can alter the observed SECM measure-
ments.18,19 Additional requirements such as photostability,
toxicity, thermal stability, and solubility may also apply.
In addition to the nature of the mediator, its concentration

needs to be carefully considered based on the reaction rates at the
sample. If we consider self-assembled monolayer films20−22 or
conductive polymer films,23 the observed feedback response
could be a combination of the diffusion flux in solution and the
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Table 1. Redox Mediators Used in Feedback Mode SECMa

abbrev mediator redox reaction solvent E0 (V vs NHE) application

A adenosine A•+ + e− → A aqueous 1.72226 kinetics26

AA/DHAA ascorbic acid/dehydroascorbic acid DHAA + 2H+ + 2e− → AA aqueous 0.713b27 kinetics27,28

AB azobenzene AB + e− → AB•− DMF 1.05929 kinetics29,30

MeCN −1.37830 SM31,32

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonate)

ABTS + e− → ABTS•− aqueous 1.11333 ITIES33

ABTS•− + e− → ABTS2− 0.70333

ADPA 1,4-amino-diphenylamine ADPA+ + e− → ADPA MeCN 0.52234 energy34

ADPA2+ + e− → ADPA+ 0.97234

An anthracene An + e− → An•− DMF −1.65935 kinetics36,37

[Et3BuN][TFSI] −2.350d36 SM31,35

BN benzonitrile BN + e− → BN•− DMF −2.01935 SM35

BQ/HQ benzoquinone/hydroquinone BQ + 2H+ + 2e− → HQ aqueous 0.10238 enzymes40,41

BQ + e− → BQ•− MeCN −0.27830 living cell18

BQ•− + e− → BQ2− PC −1.000b39 SM39,42

Br bromine Br2 + 2e− → 2Br− aqueous 1.08243 corrosion43

Br3
−+ 2e− → 3Br− MeCN 1.29344 kinetics45−48

3Br2 + 2e− → 2Br3
− MeCN 1.66344 SM49,50

B12 vitamin B12 B122+ + e− → B12+ aqueous −0.51851 ITIES51

C60 C60 C60 + e− → C60•− DCB −1.100c52 kinetics52,54

PhCN −1.100d52

MeCN −0.41053

C70 C70 C70 + e− → C70•− PhCl −0.409 to
−1.856
(4e−)54

kinetics54

Cl chlorine Cl2 + 2e− → 2Cl− aqueous 1.36755 corrosion56,57

Co(bpy)3 tris(4,4′-bipyridine)cobalt(II) chloride [Co(bpy)3]
3+ + e− →

[Co(bpy)3]
2+

aqueous 0.30058 biological59

energy60,61

SM58

Co(dapa)2 (2,6-bis[1-(phenylimino)-ethyl]pyridine)cobalt [Co(dapa)2]
3+ + e− →

[Co(dapa)2]
2+

DMF 0.56262 kinetics62

[Co(dapa)2]
2+ + e− →

[Co(dapa)2]
+

DMF −0.31862 kinetics62

Co(phen)3 tris(1,10-phenanthroline)cobalt(II) [Co(phen)3]
3+ + e− →

[Co(phen)3]
2+

aqueous 0.588b63 kinetics63

Co(sep) cobalt(III) sepulchrate trichloride [Co(sep)]3+ + e− →
[Co(sep)]2+

aqueous −0.31564 ITIES65,66

kinetics62,64

DA/DOQ dopamine/dopamine-o-quinone DOQ + 2H+ + 2e− → DA aqueous 1.08767 kinetics67

ITIES68

DBDMB 2,5-di-tert-butyl-1,4-dimethoxybenzene DBDMB+ + e− →
DBDMB

EC 0.87569 energy69

DcMeFc decamethylferrocene [DcMeFc]+ + e− →
DcMeFc

MeCN 0.03170 ITIES72,76

DCM 0.09171

DCE 0.26172

NPOE 0.36873

TFT 0.22274

nitrobenzene 0.11375

DEA diethoxyanthracene DEA + e− → DEA•− DMF −1.66932 kinetics31

SM32

DiMeFc dimethylferrocene [DiMeFc]+ + e− →
DiMeFc

MeCN 0.56177 corrosion79

DCE 0.74278

DCM 0.52171 ITIES78,80

DF dimethyl fumarate DF + e− → DF•− DMF −1.100c11 kinetics11

DMAMFc dimethylamino-methylferrocene [DMAMFc]+ + e− →
DMAMFc

aqueous 0.55181 corrosion81−83

enzymes84

DMPPD N,N-dimethyl-p-phenylenediamine DMPPD+ + H+ + 2e− →
DMPPD

aqueous 0.29785 kinetics86

DP 2,2′-dipyridyl DP + e− → DP•− DMF −1.95929 kinetics29,35

DP 2,4′-dipyridyl DP + e− → DP•− DMF −1.70935 kinetics35
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Table 1. continued

abbrev mediator redox reaction solvent E0 (V vs NHE) application

DP 4,4′-dipyridyl DP + e− → DP•− DMF −1.65929 kinetics29

DPA diphenylanthracene DPA + e− → DPA•− MeCN −2.15987 SM87

EtnyFc ethynylferrocene [EtnyFc]+ + e− → EtnyFc MeCN 0.83137 kinetics37,71

DCM 0.81171 kinetics37,71

EV ethylviologen EV2+ + e− → EV+ MeCN −0.250c88 energy89

EV+ + e− → EV MeCN −0.65362 kinetics62

EV2+ + e− → EV+ PC −0.852b89

Fc ferrocene Fc+ + e− → Fc MeCN 0.66590 ITIES94,95

DCM 0.65171

DMF 0.69191 energy96,97

PC 0.17592 enzymes98

ChCl TFA 0.52293 kinetics99,100

FcCOOH ferrocenecarboxylic acid [FcCOOH]+ + e− →
FcCOOH

aqueous 0.541101 biological102,103

corrosion104,105

enzymes106,107

ITIES108

kinetics109,110

living cell18,111

SM112,113

Fc(COOH)2 ferrocenedicarboxylic acid [Fc(COOH)2]
+ + e− → Fc

(COOH)2
aqueous 0.64918 living cell18

FcEmiTFSI 1-(ferrocenylmethyl)-3-methylimidazolium bis
(trifluoromethanesulfonyl) amide

[FcEmiTFSI]+ + e− →
FcEmiTFSI

[Emi][TFSI] 0.200d114 kinetics114

FcMeOH ferrocenemethanol [FcMeOH]+ + e− →
FcMeOH

aqueous 0.500115

DMF 0.661116 corrosion64,119

MeCN 0.672117 enzymes120,121

DCM 0.691116 kinetics122−125

ethylene 0.280c118 living cell126,127

glycol
Fc(MeOH)2 ferrocenedimethanol [Fc(MeOH)2]

+ + e− → Fc
(MeOH)2

aqueous 0.457128 biological129

kinetics63,73,103

Fc-Napth-Fc ferrocenyl naphthalene diimide [Fc-Napth-Fc]+ + e− →
Fc-Napth-Fc

aqueous 0.988130 kinetics130

FcTMA ferrocenylmethyl trimethylammonium [FcTMA]+ + e− → FcTMA aqueous 0.652131 biological132,133

kinetics134

Fe iron Fe3+ + e− → Fe2+ aqueous 0.772135 SM136

ITIES65

kinetics137

Fe(bpy)3 iron(III) tris(bipyridine) [Fe(bpy)3]
3+ + e− →

[Fe(bpy)3]
2+

aqueous 1.022138 SM53,138

Fe(CN)6 hexacyanoferrate(III) [Fe(CN)6]
4+ + e− →

[Fe(CN)6]
3+

aqueous 0.491139 biological103,140

catalysis141

corrosion142−144

energy41

enzymes145

ITIES146,147

kinetics100,148

living cell149,150

SM151,152

Fe(EDTA) iron(III) ethylenediamine tetraacetic acid [Fe(EDTA)]− + e− →
[Fe(EDTA)]2−

aqueous 0.120153 kinetics147,154

Fe(phen)3 iron(II) tris(1,10- phenanthroline) [Fe(phen)3]
3+ + e− →

[Fe(phen)3]
2+

aqueous 1.241155 kinetics156

SM155

FeTTP iron porphyrin [FeTTP]3+ + e− →
[FeTTP]2+

nitrobenzene 1.163157 ITIES157

FN fumaronitrile FN + e− → FN•− DMF −1.100c11 kinetics11

G guanosine G+ + e− → G aqueous 1.39226 kinetics26,158

DMF 1.590158

H hydrogen 2H+ + 2e− → H2 aqueous 0.000159 biological160
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Table 1. continued

abbrev mediator redox reaction solvent E0 (V vs NHE) application

catalysis159

energy161

kinetics162−164

H2O2 hydrogen peroxide O2 + 2H+ + 2e− → H2O2 aqueous 0.670165 biological166

energy167,168

enzymes165

ITIES169

kinetics170

living cell171

H2PO4
− dihydrogen orthophosphate 2H2PO4

− + 2e− →
2HPO4

2− + H2

aqueous −0.592172 kinetics172

HV heptylviologen HV2+ + e− → HV+ MeCN −0.72862 kinetics62

I iodide I3
− + 2e− → 3I− aqueous 0.963173 corrosion175,176

energy174,177

I2 + 2e− → 2I− MeCN 0.180c174 kinetics178

aqueous 0.53243 living cell179

InCl3 indium chloride In3+ + 2e− → In+ aqueous −0.400180 kinetics180

IrCl6 iridium chloride [IrCl6]
2− + e− → [IrCl6]

3− aqueous 0.870181 biological59,182

corrosion64

ITIES94,183

kinetics184−186

living cell187

Ir(CN)6 hexacyanoiridate(III) [Ir(CN)6]
2− + e− → [Ir

(CN)6]
3−

aqueous 0.950188 kinetics188

LV laurylviologen LV2+ + e− → LV+ MeCN −0.67862 kinetics62

MB meldola blue MB+ + 2H+ + 2e− →
MBH2

aqueous 0.118189 kinetics189

MeB methylene blue MeB+ + 2H+ + 2e− →
MeBH2

aqueous −0.079190 kinetics190

MD/MDH menadione/menadiol MD + 2H+ + 2e− → MDH aqueous −0.047191 biological19

living cell18,179

M-NMP+ 1-methoxy-5-methyl phenazine methosulfate M-NMP+ + H+ + 2e− →
M-NMPH

aqueous 0.098189 catalysis189

MNP 2-methyl-2-nitropropane MNP + e− → MNP•− [Et3BuN][TFSI] −2.020d36 kinetics36

Mo(CN)8 octacyanomolybdate(IV) [Mo(CN)8]
3− + e− →

[Mo(CN)8]
4−

aqueous 0.75762 ITIES65,147

kinetics62

MV methylviologen MV2+ + e− → MV+ aqueous −0.446159 biological193

catalysis194

MV+ + e− → MV −0.663192 enzymes145,195

kinetics139,159

N naphthalene N + e− → N•− DMF −2.15929 kinetics29

NB nitrobenzene NB + e− → NB•− DMF −0.75929 kinetics29,196

4NB 4-nitrobenzonitrile 4NB + e− → 4NB•− DMF 0.65931 kinetics31

SM32

NM 2-nitromesitylene NM + e− → NM•− [Pyr][TFSI] −1.680d36 kinetics36

[BMIM][TFSI] −1.550d36

[Et3BuN][TFSI] −1.760d36

NMP+ N-methyl phenazine methosulfate NMP+ + H+ + 2e− →
NMPH

aqueous 0.113189 catalysis189

NO nitric oxide NO + e− → NO•− aqueous 0.972b197 living cell197,198

NQ 1,2-naphthoquinone NQ + 2H+ + 2e− → NQH aqueous 0.07718 living cell149,199

NQ 1,4-naphthoquinone NQ + 2H+ + 2e− → NQH aqueous −0.04518 living cell18

NT 4-nitrotoluene NT + e− → NT•− [Pyr][TFSI] −1.460d36 kinetics36

[BMIM][TFSI] −1.370d36

[Et3BuN][TFSI] −1.530d36

NX 3-o-nitroxylene NX + e− → NX•− DMF −0.999200 kinetics200

O2 oxygen O2 + 2H+ + 2e− → H2O2 aqueous −0.387201 biological205,206

O2 + 4H+ + 4e− → 2H2O aqueous −0.243111

O2 + e− → O2
•− DMSO −0.498202 corrosion207

DMF −0.097203 ITIES208

IL −0.659204 living cell201,209

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00067
Chem. Rev. 2016, 116, 13234−13278

13240

http://dx.doi.org/10.1021/acs.chemrev.6b00067


Table 1. continued

abbrev mediator redox reaction solvent E0 (V vs NHE) application

Os(bpy)3 Os(bpy)3 [Os(bpy)3]
3+ + e− →

[Os(bpy)3]
2+

aqueous 0.834182 biological182,210

kinetics62,211

MeCN 0.45262 SM155

Os(bpy)2fpy Os(2,2′-bipyridine)-2-(4-formylpyridine) [Os(bpy)2fpy]
2+ + e− →

[Os(bpy)2fpy]
+

aqueous 0.763107 biological107

P phenanthridine P + e− → P•− DMF −1.78935 SM35

PN phthalonitrile PN + e− → PN•− DMF −1.34935 SM35

PP 4-phenylpyridine PP + e− → PP•− DMF −1.90935 SM35

PTN p-tolunitrile PTN + e− → PTN•− DMF −2.119212 SM212

PYO pyocyanin PYO+ + 2H+ + 2e− → PYO aqueous 0.040213 living cell213

Re(dmpe)3 tris(1,2-bis-dimethyl-phosphino ethane)
rhenium(I)

[Re(dmpe)3]
2+ + e− →

[Re(dmpe)3]
+

aqueous 0.037b214 kinetics214

R-NO 4-(3-nitrosophenyl)-2,6-dimethyl-3,5-
diisopropiloxycarbonyl-1,4-dihydropyridine

R-NO + 2H+ + 2e− →
RNHOH

aqueous 0.162215 kinetics215

Ru(bpy)3 tris(2,2′-bipyridine) ruthenium(II) [Ru(bpy)3]
3+ + e− →

[Ru(bpy)3]
2+

MeCN 1.556216 biological133

aqueous 1.501217 ITIES108,218

kinetics219

Ru(CN)6 hexacyanoruthenate(II) [Ru(CN)6]
3− + e− →

[Ru(CN)6]
4−

aqueous 0.90762 biological205

ITIES76,220

kinetics62,221

living cell18

Ru(NH3)6 hexaammineruthenium(II) [Ru(NH3)6]
3+ + e− →

[Ru(NH3)6]
2+

aqueous −0.059222 biological107,223

corrosion64,224,225

ITIES226

kinetics162

living cell111,149

Ru(phen)3 tris(1,10-phenanthroline) ruthenium(II) [Ru(phen)3]
3+ + e− →

[Ru(phen)3]
2+

aqueous 1.270227 SM227

Ru(phen)2dppz bis(1,10-phenanthroline) dipyrido[3,2-a:2′,3′-c]
phenazine ruthenium(II)

[Ru(phen)2dppz]
3+ + e− →

[Ru(phen)2dppz]
2+

aqueous 1.518228 catalysis228

SV stearylviologen SV2+ + e− → SV+ MeCN −0.70862 kinetics62

T 1-methy-1H-tetrazole-5-thiolate T2 + 2e− → 2T•− MeCN −0.45760 energy60,229

TBNB 2,4,6-tri-tert-butylnitrobenzene TBNB + e− → TBNB•− [BMIM][TFSI] −0.165d36 kinetics36

[Pyr][TFSI] −1.740d36

[Et3BuN][TFSI] −1.830d36

TCNQ tetracyanoquinodimethane TCNQ + e− → TCNQ•− aqueous 0.356230

DCE 0.502146 ITIES66,76

MeCN 0.32230

nitrobenzene 0.100c231 kinetics232

TCNQ•−+ e− → TCNQ2− DMF 0.54132

TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl TEMPO•+ + e− →
TEMPO

aqueous 0.66618 kinetics232

living cell18

Th thianthrene Th+ + e− → Th MeCN 1.35234 energy34

TMB/TMBD tetramethylbenzidine/tetramethylbenzidine
diimine

TMBD + 2H+ + 2e− →
TMB

aqueous 0.422b233 enzymes233

TMPD tetramethyl-p-phenylenediamine TMPD2+ + e− → TMPD+ aqueous 0.668179

TMPD+ + e− → TMPD aqueous 0.258179

MeCN 0.341100 kinetics11,100

MeOH 0.341100 living cell199,234

DMF 0.54311

DMSO 0.482202

TPA tri-p-tolylamine TPA+ + e− → TPA MeCN 1.04137 kinetics37,71

DCM 1.00171

TPN terephthalonitrile TPN + e− → TPN•− DMF −1.259212 SM212

TTF tetrathiafulvalene TTF2+ + e− → TTF+ MeCN 0.59390 kinetics90,91,235

TTF+ + e− → TTF MeCN 0.94390

DMF 0.66191

V vanadium V3+ + e− → V2+ aqueous 0.065b236 ITIES65,66

SM236
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lateral electron transfer in the film. To specifically observe this
lateral transport, the concentration of mediator in solution has to
be reduced considerably. This is also the case when substrate
reactions exhibit an equilibrium involving the mediator used in
the SECM measurement.24 Overall, the establishment of a
concentration cell in the tip-to-substrate gap drives the lateral
charge transport and interfacial reactions of the substrate.5

Finally, to investigate a complex sample with SECM, probes of
different sizes should be used as they address different ranges of
lateral resolution25 and heterogeneous constants (Table 3 in ref
5). For example, as the electrode area shrinks, the mass transport
from the solution becomes more efficient, increasing the
background signal, and effectively competing with the reactant
flux from the substrate, thereby decreasing the achievable
contrast.
Since its inception, 133 molecules have been used or

investigated with amperometric detection in SECM (molecules
detected potentiometrically will be described in section 3.3.2).
Several molecules have been used in more than one operational
mode. Feedback mode has been used with the most mediators
(102mediators), followed by GCmodes (45mediators), and RC
mode (7 mediators). Readers should note that the following
descriptions should be used as a guideline and do not necessarily
consist of universal statements that can be applied to all systems.
In feedback mode, a redox mediator should be a molecule or

ion that undergoes oxidation and reduction reversibly (or quasi-
reversibly). Furthermore, in order to investigate the reactivity of
a substrate, the mediator being used should have fast
heterogeneous kinetics at the SECM tip, such that substrate
kinetics are rate limiting. In most cases, the tip reaction occurs
through a one-electron process (>80% for feedback mode). The
majority of molecules used in feedback mode are indirect redox
mediators, since they are species that have been added to the
solution. In summary, ideal mediator properties in feedback
mode include electrochemical reversibility, fast heterogeneous
kinetics at the SECM tip, and a one-electron reaction.
Feedback and GC share 17 mediators which have been used in

both modes. Unlike feedback mode, more than half of the GC
mode mediator electrochemical reactions involve two or more
electrons. Species measured in GC mode can be produced by
several different pathways:

• homogeneous chemical reactions with other molecules in
solution (e.g., A + B → C)

• homogeneous chemical reactions at a substrate (e.g.,
enzymatic reactions)

• heterogeneous electrochemical reactions at a substrate
As for RC mode, the limited number of redox mediators (7)

have also all been used in GC mode. Consequently, the
properties they share are identical.
Tables 1−4 present an exhaustive compilation of all the

molecules/atoms that have been used or investigated in SECM
experiments from 1989 to 2015. They have been divided
according to the SECMmode in which they were employed, with
several molecules being used in multiple modes. Tables have
been ordered alphabetically in terms of mediator abbreviations.
For each molecule, the associated electrochemical reactions, the
standard redox potential in specific solvents, and SECM
applications are given.
Potentials have been adjusted from the original publication,

considering reference electrode type and electrolyte concen-
trations, in order to be reported versus a normal hydrogen
electrode (NHE). However, in certain cases this was not
possible, and some redox potentials are given versus a quasi-
reference electrode or the ferrocene/ferrocenium (Fc/Fc+)
standard couple, and readers should refer to the original
publication for exact experimental conditions. Furthermore, if
the standard redox potential was unavailable or undefined, the
potential applied at the tip during experimentation (Etip) is given.
Also, in cases where pH sensitivity is pertinent, readers should
assume that all potentials are reported for measurement at pH 7.
The last column of each table describes all the applications in

which each mediator has been used. These include the following
possible classifications: biological, catalysis, kinetics, corrosion,
energy, enzymes, interface between two immiscible electrolyte
solutions (ITIES), living cell, and surface modification (SM).
Although some of these categories are related, we believe that it is
much more useful to show specific terms such as “living cell”
instead of simply “biological”. Representative references are also
provided for each application.
The choice of redox mediator for the investigation of a specific

system can affect the local electrochemistry of the substrate. By
answering the following questions, the choice of possible
mediator begins to narrow:

• Which SECM mode will be used for measurement?

• Must an indirect redox mediator be added into the
solution or can a direct mediator be used?

• Does the application have specific restrictions?

Table 1. continued

abbrev mediator redox reaction solvent E0 (V vs NHE) application

W(CN)8 octacyanotungstate(IV) [W(CN)8]
3− + e− →

[W(CN)8]
4−

aqueous 0.60866 ITIES66

ZnPor 5,10,15,20-tetraphenyl 21H,23H-porphyrin zinc ZnPor+ + e− → ZnPor DCE 1.172237

benzene 1.072220

nitrobenzene 1.17276 ITIES147,220

ZnPor2+ + e− → ZnPor+ DCE 1.572237

benzene 1.342220

nitrobenzene 1.57276

aAbbreviations used: dimethylformamide (DMF), acetonitrile (MeCN), butyltriethylammonium bis(trifluoromethylsulfonyl)amide) ([Et3BuN]-
[TFSI]), propylene carbonate (PC), dichlorobenzene (DCB), benzonitrile (PhCN), chlorobenzene (PhCl), ethylylene carbonate (EC),
dichloromethane (DCM), dichloroethane (DCE), o-nitrophenyloctyl ether (NPOE), trifluorotoluene (TFT), choline chloride tetrafluoroacetamide
(ChCl TFA), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emi][TFSI]), N-methyl-N-butylpyrrolidinium bis[(trifluoromethyl)-
sulfonyl]amide ([Pyr][TFSI]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([BMIM][TFSI]), dimethyl sulfoxide (DMSO), and
butyltriethylammonium bis(trifluoromethylsulfonyl)amide [Et3BuN][NTf2].

bEtip (potential applied at the tip).
cPotential vs QRE. dPotential vs Fc/

Fc+.
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Table 2. Redox Mediators Used in Generation-Collection Mode SECMa

abbrev mediator redox reaction solvent E0 (V vs NHE) application

A anethole A + e− → A•− MeCN 1.641238 kinetics238

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) ABTS + e− → ABTS•− aqueous 1.11333 enzymes33,239

ABTS•− + e− → ABTS2− 0.70333

AQDS/AHQDS anthraquinone-2,6-disulfonate AQDS + 2H+ + 2e− → AHQDS aqueous 0.252240 corrosion240

AQS/AHQS anthraquinone-2-sulfonate AQS + 2H+ + 2e− → AHQS aqueous 0.212240 corrosion240

ArO 4-nitrophenolate ArO• + e− → ArO− MeCN 0.990241 kinetics241

BH4
− borohydride BH4

− + 8OH− → BO2
− + 6H2O

+ 8e−
aqueous −0.087242 kinetics242

BQ/HQ benzoquinone/hydroquinone BQ + 2H+ + 2e− → HQ aqueous 0.10238

BQ + e− → BQ•− MeCN −0.27830 biological243−245

BQ•− + e− → BQ2− PC −1.000b39 enzymes243,246

BQSA/HQSA benzoquinone sulfonic acid/hydroquinone
sulfonic acid

BQSA + 2H+ + 2e− → HQSA aqueous 0.812240 corrosion240

Br bromine Br2 + 2e− → 2Br− aqueous 1.08243 corrosion247

Br3
−+ 2e− → 3Br− MeCN 1.29344 kinetics43,45

3Br2 + 2e− → 2Br3
− MeCN 1.66344

Cl chlorine Cl2 + 2e− → 2Cl− aqueous 1.36755 catalysis248

CO2 carbon dioxide CO2 + 2H+ + 2e− → HCOOH aqueous −0.278249 catalysis249

Cu copper Cu2+ + e− → Cu+ aqueous 0.773250

Cu2+ + 2e− → Cu 0.953250 SM251,252

Cu++ e− → Cu 1.133250

DA/DOQ dopamine/dopamine-o-quinone DOQ + 2H+ + 2e− → DA aqueous 1.08767 kinetics253

DF dimethyl fumarate DF + e− → DF•− DMF −1.100c11 kinetics11

DHBA 2,3-dihydroxybenzoic acid DHBA[−2H+
] + 2H+ + 2e− →

DHBA
aqueous 0.872253 kinetics253

DMA N,N-dimethylaniline DMA•+ + e− → DMA MeCN 0.920b88 kinetics88

DMPPD N,N-dimethyl-p- phenylenediamine DMPPD+ + H+ + 2e− →
DMPPD

aqueous 0.29785 kinetics254

DTBN di-tert-butyl nitroxide DTBN•+ + e− → DTBN MeCN 0.550c255 kinetics255

EP/EPQ epinephrine/epinephrinequinone EPQ + 2H+ + 2e− → EP aqueous 0.341256 kinetics256,257

Fc ferrocene Fc+ + e− → Fc MeCN 0.66590

DCM 0.65171

DMF 0.69191 kinetics258

PC 0.17592

ChCl TFA 0.52293

FcCOOH ferrocenecarboxylic acid [FcCOOH]+ + e− → FcCOOH aqueous 0.541101 enzymes259

FcMeOH ferrocenemethanol [FcMeOH]+ + e− → FcMeOH aqueous 0.500115

DMF 0.661116 biological260,261

MeCN 0.672117 enzymes262,263

DCM 0.691116 kinetics115,117

ethylene glycol 0.280c118 living cell264

FcTMA ferrocenylmethyl-trimethylammonium [FcTMA]+ + e− → FcTMA aqueous 0.652131 kinetics265

Fe iron Fe3+ + e− → Fe2+ aqueous 0.772135 corrosion267,268

Fe2+ + 2e− → Fe −0.447266 SM136,266,269

Fe(CN)6 hexacyanoferrate(III) [Fe(CN)6]
4+ + e− →

[Fe(CN)6]
3+

aqueous 0.491139 catalysis141

kinetics258

Fe(phen)3 iron(II) tris(1,10-phenanthroline) [Fe(phen)3]
3+ + e− →

[Fe(phen)3]
2+

aqueous 1.241155 kinetics270

FN fumaronitrile FN + e− → FN•− DMF −1.100c11 kinetics11

H hydrogen 2H+ + 2e− → H2 aqueous 0.000159 SM16

corrosion271,272

kinetics273

HAuCl4 chloroauric acid AuCl4
−+ 3e− → Au + 4Cl− aqueous 1.308274 SM274−276

H2O2 hydrogen peroxide O2 + 2H+ + 2e− → H2O2 aqueous 0.670165 corrosion135

energy167

enzymes14,277

kinetics278,279

I iodide I3
− + 2e− → 3I− aqueous 0.963173

MeCN 0.180c174 corrosion43,173

I2 + 2e− → 2I− aqueous 0.53243

Li lithium Li+ + e− → Li(Hg) PC −2.03289 energy89,280
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• Can the mediator produce other side reactions at the

substrate or at the tip (pH changes, phase changes, etc.)?
For example, using feedback mode limits the choice to

mediators that display electrochemical reversibility. Next, the
experimental system will determine whether a direct mediator
(e.g., oxygen) is present in solution. It will also dictate whether
electrochemically produced species can react with other solution
components (homogeneous reactions) at the tip. Finally, the

application will determine if specific mediators can be used (e.g.,
nontoxic mediators must be used for live cells). In this capacity,
Tables 1−4 provide a guide to which mediators have been used
for a specific application, and can be used as an excellent starting
point for experimental design.
3.2. Solvents

In any electrochemical experiment, including SECM, selection of
the proper combination of a solvent and a supporting electrolyte,

Table 2. continued

abbrev mediator redox reaction solvent E0 (V vs NHE) application

MD/MDH2 menadione/menadiol MD + 2H+ + 2e− → MDH2 aqueous −0.047191 kinetics281

living cell191,282

MNZ metronidazole MNZ + 2H+ + 2e− → MNZH2 DMSO −0.848283 kinetics283

NO2
− nitrite NO3

− + 2H+ + 2e− → NO2
− +

H2O
aqueous 1.400c266 SM266

O2 oxygen O2 + 2H+ + 2e− → H2O2 aqueous −0.387201 corrosion207,267

O2 + 4H+ + 4e− → 2H2O aqueous −0.243111 energy284

O2 + e− → O2
•− DMSO −0.498202 enzymes285

DMF −0.097203 kinetics286

IL −0.659204 living cell287

PAP/PQI p-aminophenol/p-quinone imine PQI + 2H+ + 2e− → PAP aqueous 0.493288 enzymes289,290

kinetics288

living cell291,292

Pa824 protemanid Pa824 + e− → Pa824•− DMSO −0.978283 kinetics283

PYO pyocyanin PYO + 2H+ + 2e− → PYOH2 aqueous 0.040213 biological213

RSSR/RSH L-cystine/L-cysteine RSSR + 2H+ + 2e− → RSH aqueous −1.30b293 catalysis293

Sn tin Sn2+ + 2e− → Sn aqueous 0.072294 kinetics294

Sn4+ + 2e− → Sn2+ 0.472294

TCNQ tetracyanoquinodimethane TCNQ + e− → TCNQ•− aqueous 0.356230

DCE 0.502146 corrosion295

MeCN 0.32230 kinetics230

nitrobenzene 0.100c231

TCNQ•−+ e− → TCNQ2− DMF 0.54132

Th thiodione Th+ + e− → Th aqueous 0.713b296 living cell191,297

Tl thallium Tl+ + e− → Tl(Hg) aqueous −0.347298 kinetics298

TMPD tetramethyl-p-phenylenediamine TMPD2+ + e− → TMPD+ aqueous 0.668179

TMPD+ + e− → TMPD aqueous 0.258179

MeCN 0.341100 kinetics11

MeOH 0.341100

DMF 0.54311

DMSO 0.482202

Table 3. Redox Mediators Used in Redox Competition Mode SECMa

abbrev mediator redox reaction solvent E0 (V vs NHE) application

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) ABTS + e− → ABTS•− aqueous 1.11333 enzymes33,239

ABTS•− + e− → ABTS2− 0.70333

Cl chlorine Cl2 + 2e− → 2Cl− aqueous 1.36755 catalysis248

Fe iron Fe3+ + e− → Fe2+ aqueous 0.772135 kinetics299

Fe(CN)6 hexacyanoferrate(III) [Fe(CN)6]
4+ + e− → [Fe(CN)6]

3+ aqueous 0.491139 energy299

catalysis300

H hydrogen 2H+ + 2e− → H2 aqueous 0.000159 corrosion301

H2O2 hydrogen peroxide O2 + 2H+ + 2e− → H2O2 aqueous 0.670165 energy167

O2 oxygen O2 + 2H+ + 2e− → H2O2 aqueous −0.387201

O2 + 4H+ + 4e− → 2H2O aqueous −0.243111 corrosion302,303

O2 + e− → O2
•− DMSO −0.498202 energy304

DMF −0.097203 kinetics12,305

IL −0.659204 living cell287

aAbbreviations used: dimethylformamide (DMF), butyltriethylammonium bis(trifluoromethylsulfonyl)amide (IL).
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defined here as the solvent system, is important. While an in-
depth discussion of electrochemical solvent system properties is
beyond the scope of this review, it is useful to briefly consider
several aspects during experimental design, especially in the
context of SECM measurements.
The first important parameter, conductivity of the solvent

system (inversely referred to as solution resistance), relies on the
addition of excess amounts of a supporting electrolyte (typically
dissolved salts, e.g. KCl). The role of this supporting electrolyte is
particularly important, since it supports current flow between
electrodes by minimizing solution resistance and effectively
eliminates the contribution of migration during treatment of
SECM data. From Tables 1−4, >99% of all SECM experiments
were carried out in >0.1 mM electrolyte concentration.326

It should be noted that significant changes in the concentration
of the supporting electrolyte can cause variations in solution
conductivity and result in misinterpretation of data. Evidently,
the ability of the solvent to dissolve both the supporting
electrolyte and the redox mediator (i.e., solubility) should also be
considered, especially when significant changes in concentration
could occur during the experiment (e.g., SG/TC). The reactivity
or stability of the solvent system is perhaps the most important
parameter in terms of SECM measurements. This reactivity is
often interpreted in terms of the potential window, defined as the
potential range in which the experimental system remains
electrochemically inert. SECM measurement should be

performed within this potential window. Outside these three
parameters, the choice of solvent system is often restricted by the
application, such as biological measurements involving live cells.
Predictably, most SECM experiments are performed in

aqueous solution (∼91%), albeit with varying electrolytes and
pH. However, limitations such as a relatively small potential
window have resulted in the use of several organic solvents such
as acetonitrile (MeCN; ∼5%), dichloroethane (DCE; ∼3.7%),
and dimethylformamide (DMF; ∼2.3%). Investigation of
electron and ion transfer processes in biphasic systems (i.e.,
ITIES measurements) have also used even less conventional
solvents, including benzene,147 DMSO,122 and heptane.327

Furthermore, the use of ionic liquids as solvents in SECM has
also been explored (∼12 publications) and recently reviewed.328
In total, 23 different solvents have been used in SECM

experiments (considering different aqueous combinations as a
single solvent). Figure 4 illustrates the useful potential window
for most of these solvents (data was not available for decane,329

dichlorohexane,330 heptane,327 and methanol79). The potentials
are reported with respect to a specific electrode material, noted in
parentheses, and with a particular supporting electrolyte. In the
case where full potential windows are not described or are not
available, experimental parameters are given from a specific
publication in SECM literature. Consequently, the actual
potential window may be wider than reported. Readers should

Table 4. Redox Mediators Used in Other SECM Modesa

abbrev mediator redox reaction solvent E0 (V vs NHE) mode application

Ag silver Ag+ + e− → Ag aqueous 0.611306 ASV-SECM biological307

APAP N-acetyl-p-aminophenol
(acetaminophen)

[APAP]ox + 2H+ + 2e− → APAP aqueous 0.722308 FSCV-SECM biological85,309

Cd cadmium Cd2+ + 2e− → Cd(Hg) aqueous −0.352310 ASV-SECM kinetics310−312

DMPPD N,N-dimethyl-p-phenylenediamine DMPPD+ + H+ + 2e− → DMPPD aqueous 0.297254 FSCV-SECM kinetics86

FA formic acid FA+ + e− → FA aqueous 0.300313 MD/SC kinetics313

Fc(MeOH)2 ferrocenedimethanol [Fc(MeOH)2]
+ + e−→ Fc(MeOH)2 aqueous 0.442128 SI-SECM catalysis128

kinetics314

Fe iron Fe3+ + e− → Fe2+ aqueous 0.772135 direct kinetics315,316

Fe(EDTA) iron(III) ethylenediaminetetraacetic
acid

[Fe(EDTA)]− + e− →
[Fe(EDTA)]2−

aqueous 0.120153 SI-SECM kinetics153

H hydrogen 2H+ + 2e− → H2 aqueous 0.000159 induced
desorption

kinetics317

IrCl6 iridium chloride [IrCl6]
2− + e− → [IrCl6]

3− aqueous 0.870181 SI-SECM energy181,318

kinetics128

Li lithium Li+ + e− → Li(Hg) PC −2.03289 ASV-SECM energy89,280

Hg mercury Hg2+2 + 2e− → 2Hg aqueous 0.722319 ASV-SECM kinetics319

MV methylviologen MV2+ + e− → MV+ aqueous −0.446159 induced transfer biological320

MV+ + e− → MV −0.663192

Ni nickel Ni2+ + 2e− → Ni(Hg) aqueous 0.338321 ASV-SECM corrosion321

Pb lead Pb2+ + 2e− → Pb(Hg) aqueous −0.121310 ASV-SECM kinetics310,322

Ru(bpy)3 tris(2,2′-bipyridine)ruthenium(II) [Ru(bpy)3]
3+ + e− → [Ru(bpy)3]

2+ MeCN 1.556216 ECL-SECM kinetics216,217

aqueous 1.501217

TMPD tetramethyl-p-phenylenediamine TMPD2+ + e− → TMPD+ aqueous 0.668179 SI-SECM kinetics323

TMPD+ + e− → TMPD aqueous 0.258179

MeCN 0.341100

MeOH 0.341100

DMF 0.54311

DMSO 0.482202

TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl TEMPO•+ + e− → TEMPO aqueous 0.66618 FSCV-SECM kinetics324

Zn zinc Zn2+ + 2e− → Zn(Hg) aqueous −0.578325 ASV-SECM corrosion312,325

aAbbreviations used: anodic stripping voltammetry (ASV), fast scan cyclic voltammetry (FSCV), micropipet-delivery/substrate-collection (MD/
SC), surface interrogation (SI), propylene carbonate (PC), acetonitrile (MeCN), electrogenerated chemiluminescence (ECL), and
dimethylformamide (DMF).
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also note that a change in electrolyte and probe could result in a
change of the potential window.

3.3. Probes

The last important parameter to consider for the design of a
successful SECM experiment is the probe. The spatial resolution
of a SECM measurement is strongly dependent on the
dimensions of the probe, and consequently, a significant amount
of SECM literature has focused on the design and fabrication of
sophisticated small scale tips with sizes in the low micrometer to
nanometer range. Fabrication protocols and characterization
techniques have been the subject of several reviews.331,332 The
small size of SECM tips also provides several other advantages
including fast steady-state response and low iR drop. Readers
should note that the term “ultramicroelectrode” is commonly
used in SECM literature, and it is defined as an electrode with at
least one dimension smaller than 25 μm.333

SECM tips can generally be divided into two different types:
amperometric and potentiometric. Each type has its own
strengths and weaknesses, but the vast majority of SECM
measurements have been performed with amperometric probes
(>99%), compared to their potentiometric counterparts (<1%).

Amperometric probes have many advantages, including high
robustness (i.e., they can function for several years if properly
manipulated), fast response times (∼nanoseconds to milli-
seconds), and relative ease in probe positioning. However, this
type of probe suffers from low selectivity, such that the measured
signal can be a convolution of several different faradaic processes.
In this context, potentiometric probes provide the significant
advantage of high selectivity toward a specific analyte. Addition-
ally, the analyte concentration and oxidation state remain
unchanged during measurement, allowing minimal disturbance
to the experimental system. However, unlike amperometric tips,
potentiometric probes suffer from relatively slow response times
(∼milliseconds to seconds), small lifetimes (i.e., probe function
degrades within a few weeks), and difficult probe positioning.
After a significant effort in the miniaturization of SECM tips

(i.e., nanometer-sized electrodes down to 3 nm),123,334,335 recent
years have seen an increase in the development of combined
probes, such as those used for scanning ion conductance
microscopy (SICM-SECM) and atomic force microscopy
(AFM-SECM). Advancements in the fabrication of these
combined probes have been recently reviewed and will thus
only be minimally discussed here.336 Nevertheless, a general

Figure 4. Potential windows for all solvent systems used in SECM measurements from 1989 to 2015. The active material of the working electrode is
indicated in brackets. aPotential vs quasi-reference electrode. bPotential range used during experiment; full window may be wider. Abbreviations used:
TBABF4, tetra-n-butylammonium tetrafluoroborate; THAPC, tetrahexylammonium perchlorate; TEAP, tetraethylammonium perchlorate; TBAP,
tetrabutylammonium perchlorate; ChCl, choline chloride; TFA, trifluoroacetamide; TBAHFP, tetrabutylammonium hexafluorophosphate;
BTPPATPBCl, bis(triphenylphosphoranylidene)ammonium tetrakis(4-chlorophenyl)borate.
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overview of all the probes that have been used in SECM will be
given.
3.3.1. Amperometric Probes. As the name implies, the

recorded signal with an amperometric probe is a current,
produced by a faradaic reaction occurring at the SECM tip. These
probes typically consist of an electroactive core surrounded by an
insulating sheath (e.g., glass). The size of these tips can vary over
the low micrometer (≤25 μm) to nanometer scale. Several
different geometries have been elucidated over the years,
including conical,337 hemispherical,338 ring,339 and ring−disk.27
However, the most common geometry is definitely disk
microelectrodes.340

Perhaps the most important component of SECM tip
geometry is the ratio between the insulating sheath (e.g., glass)
and the electroactive core, defined as the RG. A smaller RG
decreases the risk of tip crashing during experimentation and
controls the amount of back diffusion. For example, at L = 0.1
over an insulating surface, the current at a microelectrode with an
RG= 2 is 91% higher that with an RG = 10, which demonstrates a
tremendous difference that back diffusion has on the recorded
current.341,342 For this reason, although early SECM experiments
used microelectrodes with an RG = 10 (obtained through
extensive manual polishing), recent literature shows an increase
in the use of small RG electrodes (RG < 3).
Although the RG is a dominant geometrical parameter for

microdisk tips, other geometries (hemispherical, conical,
beveled) can be strongly influenced by additional parameters
such as recession/protrusion, bluntness, aspect ratio, insulation
angle, off-center positioning of the metal wire, uneven insulation,
insulation gaps, and cracks. Their weighted impact on the tip
response is best deconvoluted using numerical simulations. For
example, Denuault and co-workers demonstrated that, in the case
of conical tips, the importance of the above-mentioned
parameters varied greatly with the aspect ratio and that generally
the relative differences became larger as the dimensions of the
tips became smaller.342 They found that bluntness, insulation
defects/cracks, and uneven insulation had significant impact
because they lead to an increase in the electroactive area, whereas
off-centering of the metal wire had minimal effect. For
microdisks, off-centering and insulation angle variations can
have detrimental effects during the quantitative high-speed
SECM measurements.25,343

Some examples of frequently used SECM tip geometries are
shown in Figure 5. The electroactive material can vary, but the
most popular electrode cores are platinum (74%), carbon
(10.8%), gold (9.5%), mercury (2.1%), and silver (1.7%). Disk
microelectrodes composed of these materials can be fabricated
in-house using relatively simple protocols, but they are also
commercially available (excluding Hg) from several sources (e.g.,
CH Instruments, Heka Electronik, Metrohm, and Sensolytics),
with prices between US$140 and 400 per probe.340

The use of some less-common cores has also been reported.
For example, cobalt and tungsten microelectrodes were used for
surface patterning applications,16,136 whereas aluminum was
used to study corrosion processes.347 Gallium was also used as
the amperometric component in a combined amperometric−
potentiometric probe,348 and a manganese microelectrode was
used to investigate multireactional electrochemical interfaces.349

Despite extensive use of SECM to study the enzymatic activity
of a substrate, only a limited number of reports describe the use
of amperometric biosensors, whereby an enzyme is immobilized
onto the surface of an electrode. This most likely is the result of
relatively slow response times and difficulty in achieving

reproducible enzyme deposition. Nevertheless, glucose oxidase
has been immobilized on carbon,350 gold,351 and platinum
microelectrodes.165 Glucose and lactate concentration profiles
above living cells (fibroblasts) were imaged using enzymatic
biosensors.352 Using a dual probe containing both glucose
oxidase and hexokinase, the release of adenosine-5′-triphosphate
(ATP) was measured above bone cells. Therefore, although the
number of reports is limited, enzymatic amperometric probes
(i.e., biosensors) can also be used in the context of SECM.

3.3.2. Potentiometric Probes. The second category of
SECM probes is potentiometric. These types of probes have
predominantly been used in either corrosion,353,354 ki-
netics,348,355 or biological measurements.356,357 In more than
50% of potentiometric mode publications, they are used for
localized pH measurements. Table 5 shows all the potentio-
metric probes that have been reported in SECM literature,
classified according to the ion of interest. The ion-selective
component, the response time (when available), and example
references for each type of probe are also provided.

4. APPLICATIONS
The versatility of SECM has allowed it to expand into a wide
variety of applications, which were summarized in Figure 1. In
the last five years, approximately 100 manuscripts per year have
been published focusing on SECM. Areas such as corrosion and

Figure 5. Examples of SECM tip geometries. (A) 25 μm Pt disk
microelectrode. (B) 200 nm Pt disk nanoelectrode. (C) 25 μm Hg
hemispherical microelectrode. (D) Au conical microelectrode. (E) 0.7
μm Au ring microelectrode. (F) AFM-SECM tip with 100 nm Au layer.
(A and C) Reprinted from ref 340. Copyright 2015 American Chemical
Society. (B) Reprinted with permission from ref 334. Copyright 2002
John Wiley & Sons, Ltd. (D) Reprinted with permission from ref 344.
Copyright 2004 Elsevier Ltd. (E) Reprinted from ref 345. Copyright
2005 American Chemical Society. (F) Reprinted from ref 346.
Copyright 2001 American Chemical Society.
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energy have showed increasing interest as they gain public
attention, while surface modification using SECM is declining.
Instrumental development remains a significant focus, partic-
ularly in terms of hyphenated techniques. Recent trends in
SECM research have shifted more toward applications, but a
significant amount of fundamental investigations are still being
pursued. Figure 6 illustrates SECM publications over the last five
years and provides a breakdown based on the application, with
only experimental SECM manuscripts being considered. In the
following sections, the various applications of SECM from 2009
to 2015 will be discussed, with pertinent application-specific
reviews being provided. Additional information about the
breadth of SECM applications can also be obtained in the
SECM monograph.8

Table 5. Probes Used in Potentiometric Mode SECM

ion of interest ion-selective component response timea ref

ammonium
(NH4

+)
nonactin 300 ms (τ100) 358

calcium
(Ca2+)

ETH1001 N/A 357

ETH129 N/A 359
carbon
dioxide
(CO2)

antimony N/A 360

chloride (Cl−) chloride ionophore I 710 ms (τ95) 354
ETH9009 710 ms (τ95)
AgCl 1 s (τ95) 361

copper (Cu2+) tetraethylthiuram disulfide 16 s (τ90) 355
hydrogen
(H+)

antimony N/A 362

ETH1907 1 s (τ90) 363
IrOx 10 s (τ90) 17
PtOx 30 ms 364

magnesium
(Mg2+)

bis-N,N-dicyclohexyl-malonamide 27.7 s (τ95) 365

potassium
(K+)

BME 44 300 ms (τ100) 358

valinomycin N/A 356
DB18C6 N/A 366

silver (Ag+) AgI N/A 367
sodium (Na+) ETH157

bis[(12-crown-4) methyl]
dodecylmethylmalonate

bis[(12-crown-4) methyl]2,2-
didodecylmalonate

640 ms (τ95) 354

4-tert-butylcalix[4]arene-tetraacetic
acid tetraethylester

zinc (Zn2+) N′,N′-dicyclohexylbisamide 300 ms (τ100) 358
N-phenyliminodiacetic acid bis-
N′,N′-dicyclohexylamide

N/A 353

aResponse time (τ) is defined as the time needed to attain a certain
percentage of the peak signal. The reporting method varies in each
publication such that the peak percentage used is shown in
parentheses. For example, τ90 corresponds to time required to attain
90% of the peak signal. N/A is shown when data was not available in
the original publication.

Figure 6. Experimental SECM publications from 2009 to 2015, divided
by application.

Figure 7. Schematic view of the temperature-controlled measuring cell
(A) and its cross section (B). (C) Feedback-mode images of band
electrodes at different temperatures (10 μm Pt disk electrode, 5 mM
Ru(NH3)6

3+, −350 mV vs Ag/AgCl, d = 6 μm). Reprinted with
permission from ref 368. Copyright 2013 Royal Society of Chemistry.
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4.1. Instrumental Development

Perhaps the most important application of SECM has been the
continuing effort in instrumental development. This consists of
the establishment of additional operational modes, the
fabrication of smaller and more sensitive probes, and, last but
not least, the combination of SECM with complementary
techniques. The former was described in section 3.3 and will thus
only be minimally discussed here. In the last five years,
instrumental development has comprised 19.6% of all SECM
reports.
One variable that is often overlooked in SECM experiments is

the temperature during measurement, which is assumed to
simply be “room temperature″. Interestingly, Schuhmann and
co-workers recently reported the development of a SECM
system with a precise temperature control unit.368 As shown by
the schemes in Figure 7A,B, they integrated a heat reservoir, a
Peltier element, a temperature sensor, and a water supply into
their SECM system, allowing for controlled temperatures
between 0 and 100°C. Using this experimental setup, the
authors measured the electrochemical activity of Pt band
electrodes at four different temperatures between 0 and 60°C
(Figure 7C). Lower temperatures (0 and 5°C) increased spatial

resolution due to the decreased diffusion coefficient of the redox
mediator. They also noted that future studies were necessary to
evaluate the effect of natural and forced convection on image
resolution. Although their study did not explicitly describe a new
SECM operational mode, it did demonstrate the importance of
temperature control, a concept which could be universally
applied to all SECM experiments.
A significant portion of instrumental advancements have

focused on the development of current decoupling method-
ologies in order to independently measure surface topography
and electrochemical reactivity during SECM measurements, and
this topic has recently been reviewed.369 Several possibilities have
been proposed, including but not limited to intermittent-contact
SECM (IC-SECM),370 hopping-intermittent-contact SECM
(HIC-SECM),371 and alternating-current SECM (AC-
SECM).372,373 However, the most prominent approach has
been the utilization of shear-force SECM (SF-SECM),374−379

developed by the Schuhmann research group.380,381 In a recent

Figure 8. (A) SEM images of the nanoelectrode tip from a side and
perpendicular view to the electrode. (B) Scheme of the holder by which
the piezoelectric plates are mechanically mounted to the nanoelectrode.
The holder is attached to the Z-stepper motor of the SECM setup. (C)
SECM image of a 10 μm× 3.5 μmportion of CD surface obtained with a
47 nm radius Pt microelectrode (RG = 5). The scale bar represents
current in nanoamperes. (D) Shear force topography image. The scale
bar represents tip-to-substrate distance in nanometers. Reprinted with
permission from ref 335. Copyright 2014 Elsevier Ltd.

Figure 9. (A) Schematic illustration of the SECM-SICM system and
probe with SEM micrograph of probe tip. (B) Topographic (left) and
electrochemical (right) images of a Pt band microarray in 0.50 mM
FcMeOH + 0.1 M KCl. The SECM nanoring and SICM nanopipet
electrodes were held at 500 and 300 mV vs Ag/AgCl, respectively. Scan
range was 50 μm × 50 μm. (C) Topographic (left) and electrochemical
(right) images of a portion of the HRP spot immobilized on a glass
substrate before adding 0.5 mM H2O2 in 0.50 mM FcMeOH and PBS.
The SECM nanoring and SICM nanopipet electrodes were held at 50
and 300 mV vs Ag/AgCl, respectively. Scan range was 50 μm × 50 μm.
Reprinted from ref 261. Copyright 2010 American Chemical Society.
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example, Mauzeroll and co-workers demonstrated this concept
by combining SF-SECM with disk nanoelectrodes to image
surfaces with a constant distance between a probe and a
substrate.335 After fabrication of a Pt disk nanoelectrode (Figure
8A), they mounted two piezoelectric plates, one dither and one
receiver, onto the shaft of the nanoelectrode, as shown in Figure
8B. A mechanical oscillation of known frequency was induced at
the dither plate and detected at the receiver plate. Interaction
between the nanoelectrode and a surface in close proximity
dampens the oscillation. By varying the tip-to-substrate distance

to maintain a specific oscillation frequency, independent images
of surface topography and electrochemical activity were
obtained, as shown in Figure 8C,D. Therefore, a significant
improvement in SECM instrumentation has involved the
integration of constant-distance hardware, such as shear-force
units.
Another approach used for constant-distance measurements

has been the combination of SECM with scanning ion
conductance (i.e., SECM-SICM). Matsue and co-workers
reported the fabrication of a nanopipet/nanoring probe allowing
for simultaneous imaging of topography and electrochemical
activity.261 As shown in Figure 9A, this new probe consisted of a
gold nanoring to be used as a SECM tip, while the nanoscale
aperture was used for SICM distance regulation. Using this
probe, the authors imaged the topography and electrochemical
activity of Pt bands and HRP enzyme spots, as shown in Figure
9B,C. Interestingly, they demonstrated that if the image shown in
Figure 9C would have been obtained using conventional GC
mode with distance regulation, the response (caused here by
topography) could have been misconceived to be due to
enzymatic activity. Consequently, the authors demonstrated that
their SECM-SICM methodology allowed them to obtain
independent images of topography and electrochemical activity
using a single probe.
Over the past several years, SECM instrumentation has been

adapted and modified in order to be combined with several
different techniques. Reported combinations include SECMwith
scanning force microscopy (SFM),25 infrared attenuated total
reflection spectroscopy,382,383 scanning probe lithography
(SPL),50 impedance,384 surface plasmon resonance
(SPR),319,385 scanning Kelvin probe (SKP),386,387 scanning ion

Figure 10. (A) Side view schematic of the fabricated quad probe with
two carbon working electrodes in the barrel of the probe, two open
barrels filled with electrolyte, and AgCl coated Ag wire QRCEs. (B)
Schematic top view of the fabricated quad probe with an SEM of a
typical probe. (C) Schematic of imaging in surface generation/tip
collection mode with a five-electrode configuration. The substrate
(SWNT) was held at a potential that generated FcTMA2+, while the two
carbon electrodes in the probe were held at a potential to collect any
FcTMA2+ produced. (D) Generator, Collector 1, and Collector 2 maps
recorded on a SWNT. Adapted from ref 401. Copyright 2015 American
Chemical Society.

Figure 11. (A) Schematic (not to scale) diagram of SECM imaging of
latent fingerprints. (B) Optical image of a ZAO-deposited fingerprint on
glass. (C) High-resolution SECM image (4 mm × 1.5 mm) of sample
with a scan rate of 320 μm s−1. The SECM image area corresponds
approximately to the rectangular region marked in (B). The black and
white lines correspond to the ridges and valleys, respectively. Measuring
conditions: 25 μm Pt microelectrode, 2 mM FcMeOH in 0.1 M KNO3,
Eprobe = 0.3 V vs Ag QRE, probe−substrate distance of approximately 10
μm. Total scan time takes ∼40 min. Reprinted with permission from ref
411. Copyright 2012 Elsevier Ltd.
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conductance (SICM),388−391 and fluorescence microsco-
py.392,393 The most used combination has been SECM with
atomic force microscopy (AFM).342,394−400 As mentioned in
section 3.3, the combination of these two techniques, particularly
in terms of probe fabrication, has been recently reviewed and will
thus not be discussed here.336 On the other hand, Unwin and co-
workers recently reported the fabrication of a “quad probe” in
order to combine SECM with another technique, namely
scanning electrochemical cell microscopy (SECCM).401 As
shown in Figure 10A,B, a four barrel pipet was pulled and cut
using a focused ion beam (FIB). Two barrels were then filled

with carbon, acting as independent working electrodes, and the
other two barrels were filled with electrolyte solution and Ag/
AgCl QRCEs. The authors demonstrated the functionality of this
newly developed probe by imaging the electrochemical activity of
an individual single-walled carbon nanotube (SWNT) using a
five-electrode configuration in a SECM-SECCM type measure-
ment (Figure 10C). The images obtained for each working
electrode are shown in Figure 10D, and demonstrate the
feasibility of this combinatorial technique for high-resolution
imaging of surfaces.

4.2. Biological

Immediately after it was first reported, SECM was applied to a
biological substrate to measure photosynthesis over a Ligustrum
sinensus leaf (grass).140 Since then, the application of SECM to
the measurement of biological processes and systems has grown
tremendously. A wide variety of biomolecules and substrates
have been investigated including proteins (i.e., amino acids,
peptides, and protein complexes), DNA, enzymes, and single
cells. The latter two systems have been thoroughly explored and
will be discussed in greater detail below (see sections 4.3 and
4.4). The importance of this application has not decreased within
the past five years, and still represents 20.5% of SECM
publications.
One emphasis of biological SECMmeasurements has been the

characterization of proteins and their building blocks. Several
different systems have been investigated in the past five years,
including tryptophan (amino acid),402 Tat(44-57) and melittin
(peptides),403 azurin (protein),404 bacterial flaggelin (pro-
tein),405 cytochrome c (protein),406 ovalbumin (protein),407

and photosystem I (protein complex).193 An interesting “real
world” application involving proteins has been the analysis of
latent fingerprints on various surfaces.408−410 For example,
Zhang and co-workers used direct current magnetron sputtering
(based on vacuummetal deposition) to deposit a thin conductive
film of Al-doped ZnO (ZAO) onto a surface containing a latent
fingerprint.411 The conductive ZAO film deposited only in the
valleys of the fingerprint (i.e., bare surface), resulting in variations
of conductivity. Using feedback mode (Figure 11A), they imaged
a latent fingerprint with micrometer resolution (Figure 11B,C),
demonstrating that areas with ZAO film displayed positive
feedback behavior, while areas with fingerprint ridge residues

Figure 12. (A) Typical SECM image recorded over dsDNA microarray
on Au substrate in the absence of Zn2+. Each sample was spotted twice
from left to right in the following order: 1 + 2, 1 + 3, 1 + 4, and 1 + 5. (B)
Typical SECM image recorded above DNA microarray in the presence
of Zn2+. Data were obtained for the same sample as shown in (A) but
after incubation in Zn(ClO4)2 solution. Experiment carried out in 1 mM
K4Fe(CN)6, 50 mMNaClO4, 20 mM Tris−ClO4 (pH 8.6), with 25 μm
Pt tip, ET = 0.5 V vs Ag/AgCl. Adapted with permission from ref 419.
Copyright 2009 The Royal Society of Chemistry.

Figure 13. (A) Schematic of SECM imaging for binding reaction of CD10 and anti-CD10. (B) SECM SG/TC image displaying the reduction current
collected for the modified electrode with CD10 antigen. The small arrows represent the binding of antigen and antibody, detected in a solution of 1 mM
H2O2, PBS (0.01 M, pH 7.4) with 1.0 mM Fe(CN)6

3− and Fe(CN)6
4− containing 0.1 M KCl. Adapted with permission from ref 421. Copyright 2012

Elsevier Ltd.
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displayed negative feedback behavior. The authors suggested that
the use of SECM was advantageous when samples were under
wet conditions or had a multicolor background. They did note
that although their use of SECM for this measurement provided a
higher sensitivity relative to optical microscopy, analysis time was
unacceptably long. To remedy this limiting parameter, the
authors proposed the use of linear microelectrode arrays to
decrease total analysis time.
Immobilized DNA has been another major biological substrate

investigated using SECM, and was first explored more than a
decade ago.130,412 More recently, the focus has been on the
identification of mismatches in double-stranded DNA
(dsDNA).413−418 For example, Kraatz and co-workers demon-
strated that the presence of Zn2+ ions allowed increased
sensitivity for the detection of single-nucleotide mismatches
along with their location in dsDNA.419 They performed feedback
approach curves and imaged an array of dsDNA spots with
different mismatches, in the absence (Figure 12A) and presence
of Zn2+ (Figure 12B). They showed that the presence of Zn2+

ions increased measured currents and suggested that this
occurred because the ions reduced electrostatic repulsion
between the phosphate backbone and the mediator, allowing
for easier diffusion. Furthermore, they demonstrated that not
only did the presence of a mismatch increase the heterogeneous
rate constant, but the location of the mismatch within the
dsDNA also had a significant effect, increasing the kinetic rate
constant within higher mismatch positioning in the dsDNA.
The interaction between antigens and their antibodies has also

been a focus for biological measurements.102,420 Contrary to
most reports using feedback mode to image a surface, Hu and co-
workers used SG/TCmode to characterize the interaction of the
CD10 antigen with its antibody (anti-CD10).421 First, they
attached anti-CD10 onto a gold electrode surface, followed by
addition of CD10. They then exposed the modified electrode to a
solution containing gold nanoparticles linked with more anti-
CD10 and horseradish peroxidase (HRP), as shown in Figure
13A. By adding Fe(CN)6 as an indirect redox mediator, the
authors imaged a modified gold electrode surface without
antigen and with antigen. The absence of antigen produced no
current change over the entire surface, while an interaction with
the antigen produced a large increase in current (Figure 13B),
and it was concluded that binding was specific. Furthermore, by
increasing the concentration of CD10 antigen, the current
response increased linearly such that a dynamic range of 10−60
pM could be achieved. Therefore, the authors concluded that
their sandwich immunoassay measured by SECM was useful for
characterization of antibody interactions.

4.3. Enzymes

SECM has been extensively used to quantify the activity of
various enzymes immobilized on several different surfaces.145,162

Earlier work in this application has been thoroughly reviewed,
dating back to 2001.422 In that review, Wittstock describes in
great detail the use of feedback and SG/TC modes for the
measurement of enzymatic activity. Briefly, enzymatic activity
determination using feedback mode is identical to the concept
shown in Figure 3C. In this case, the conducting substrate is an
immobilized enzyme, which allows for the regeneration of an
indirect redox mediator. The magnitude of the positive feedback
signal produced is correlated with the activity of the enzyme.
Similarly, using SG/TCmode (see Figure 3D), the measurement
of a local concentration profile can be correlated to the enzymatic
activity. Although feedback mode provides a higher spatial

resolution because the redox reactions only occur locally near the
probe, SG/TC mode measurements allow for higher sensitivity
since the background current is very low.422

In the past five years, the use of SECM for the study of
enzymatic reactions has somewhat decreased, with only 23
investigations being reported (∼3.2% of SECM reports).
Following a more widespread use in its first two decades,
where SECM studies were elaborated in order to demonstrate
the applicability of the technique to various different enzymes,
recent work has mostly focused on the use of SECM for
optimization of enzymatic immobilization and bioassays,
especially those involving glucose oxidase. For example, the
robustness of a covalent immobilization protocol for glucose
oxidase was investigated with the feedback mode of SECM.
Using probe approach curves to extract Michaelis−Menten
constants, Hapiot and co-workers demonstrated that the
enzymatic activity of immobilized glucose oxidase remained
comparable to enzyme in free solution even after their covalent

Figure 14. (A) SECM measurement head with controlled atmosphere.
(B and C) SECM images of laccase−silicate film deposited on glass in
0.1 mM K3Fe(CN)6 in 0.1 M phosphate buffer, pH 4.8, ET = 0 V, a =
12.5 μm, RG = 10, νT = 7.7 μm s−1, d = 20 μm: (B) Ar-saturated and (C)
O2-saturated solutions. Higher activity is shown as hills. Reprinted with
permission from ref 41. Copyright 2010 The Royal Society of
Chemistry.
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immobilization protocol.423 Similar uses of SECM for the
characterization of the enzymatic activity have also been recently
reported, namely for ceruloplasmin,424 glucose oxidase,425

horseradish peroxidase (HRP),426 galactosidase,427 and
NADPH dehydrogenase.263

A particularly significant improvement on the use of SECM for
enzymatic activity characterization was reported by Wittstock
and co-workers.41 As shown in Figure 14A, they developed an
enclosed system such that the entire SECM measurement could
be performed in a controlled atmosphere. Using feedback mode
SECM with Fe(CN)6 as an indirect redox mediator, they
measured the enzymatic activity of laccase in oxygen-free (e.g.,
argon used) and oxygen-rich environments. As shown in Figure
14B,C, the presence of oxygen significantly increased the
reductive current measured, demonstrating the role of oxygen
in the enzymatic reaction of laccase. Additionally, the authors

used confocal laser scanning microscopy and SECM to compare
the activities of codeposited laccase and bilirubin oxidase spots in
solutions of varying pH, and determined that bilirubin oxidase
was significantly more active than laccase at pH 7. The versatility
of their methodology allows for improved characterization of the
enzymatic behavior in various controlled environments.
Contrary to most recent reports describing enzymatic activity

measurements, SECM has also been used for surface
modification to produce arrays of enzymatic spots. Higson and
co-workers used a 30 μm diameter pulled microcapillary filled
with HRP and a SECM system to deposit small enzyme droplets
onto a silanized glass microscope slide in an array config-
uration.246 Subsequently, the enzymatic activity of the
immobilized enzyme spots was measured using SG/TC mode
SECM, as shown in Figure 15. Using their deposition technique,
the authors varied the concentration of enzyme in the
microcapillary to investigate its effect on peak current signal,
and determined that a plateau was reached at HRP
concentrations greater than 1 mg/mL. Therefore, the authors
were able to use SECM to both construct enzyme arrays and
quantify enzymatic activity.

4.4. Living Cell Studies

The application of SECM to the study of living cells, commonly
referred to as Bio-SECM,428,429 provides the extremely
interesting advantage of high spatial resolution while being a
relatively noninvasive technique. Initial reports investigated
cellular respiration201,430 and cancer cell redox activity.149 Several
reviews have focused on Bio-SECM investigations,9,431−435

including a recent review in 2013 which looked at constant-
distance methodologies for studying single cells.436

Over 70 studies focusing on Bio-SECM have been reported in
the past five years, which represents ∼10.2% of SECM literature.
A wide variety of experimental systems were investigated,
including single cells (e.g., HeLa cells),437 confluent cell
monolayers,438 and bacteria.439 The source of the living cells
has also not been limited to human species, and has also included

Figure 15. Background subtracted area scan over HRP modified array
using pH 7.1 buffered solution containing 1 mM hydroquinone and 0.6
mM H2O2. Reprinted with permission from ref 246. Copyright 2011
The Royal Society of Chemistry.

Figure 16. (A) Schematic diagrams of EGFR detection using generation-collection mode. SECM image in substrate generation/tip collection mode:
(B) EGFR/CHO cell and (C) normal CHO cell. The electrode was set at 15 μm above the substrate, and the scan rate was 5 μm s−1. The scan range was
200 μm × 200 μm, and the step size was 5 μm. Reprinted from ref 292. Copyright 2009 American Chemical Society.
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samples from boars,440 dogs,441 hamsters,292 leeches,287 mice,442

plants,443 and rats.444

Matsue’s research group has focused heavily on the use of
SECM for the measurement of cellular expression of proteins.
For example, they measured the expression of secreted alkaline
phosphatase (ALP) in HeLa cells,445 MCF7 cells,446 and mouse
embryoid bodies.442 In another recent report, Matsue and co-
workers measured the expression of the epidermal growth factor
receptor (EGFR), a membrane protein associated with cancer,
on the surface of single Chinese hamster ovary (CHO) cells and

human epidermoid carcinoma (A431) cells.292 As shown in
Figure 16A, EGFR was labeled with an antibody containing
alkaline phosphatase. Using SG/TC mode SECM and the
indirect redox mediator p-aminophenylphosphate (PAPP), the
presence of ALP-tagged EGFR on the cell membrane allowed for
the enzyme-catalyzed hydrolysis of PAPP into p-aminophenol
(PAP). PAP was subsequently oxidized at a 20 μm Pt disk
microelectrode to produce a current. Using this methodology,
they measured the expression of EGFR at normal CHO cells
(Figure 16C) and EGFR-overexpressing CHO cells (Figure

Figure 17. (A) Diagram of SECM setup along with a schematic showing the pathway of triggering the inflammatory and detection of reactive oxygen
species. (B) Time-lapsed SECM images of a T24 cell (45 μm× 45 μm) after the addition of heat-killed E. coli (hk-UPEC). Adapted with permission from
ref 454. Copyright 2010 Elsevier Ltd.

Figure 18. SECM imaging and decoupling of feedback response for HeLa and HeLa-R cell coculture substrate. (A) Optical micrograph of a coculture
pattern containing seven HeLa-R cells (left) and six HeLa cells (right). (B) Fluorescence micrograph of the sample shown in (A), with HeLa-R cells
stained green and HeLa cells stained red. (C and D) Normalized SECM currents recorded with the same sample at 12 μm above the substrate in 1 mM
[Ru(NH3)6]

3+ (C) and 1 mM FcMeOH (D). (E) Extracted tip-to-substrate distance profile (μm). (F) Profile of the extracted apparent heterogeneous
rate constant (10−6 cm s−1) for the sample shown in (A). (Scale bar: 50 μm.) Reprinted with permission from ref 455. Copyright 2013 National
Academy of Sciences.
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16B), demonstrating a clear difference in expression levels. The
authors state that their method is clearly advantageous since it is
noninvasive and does not require detachment of the adherent
cells prior to the expression measurement. Similar expression
measurements have involved the transmembrane protein
CD44447 and green fluorescent protein.448

Bio-SECM has also been considerably employed in the study
of cellular response to environmental stimuli. Cellular response is
correlated to the release of reactive oxygen species (ROS) and/or
by a change in cellular respiration (i.e., change in O2 levels
around the cell), and is measured using SG/TC mode. Examples
of stimuli used to induce cellular response include Ag+,449

cadmium,450 cisplatin,451 ferrocenemethanol,437 hydrogen per-
oxide,452 Triton X-100,150 and ZnO nanoparticles.453 In a more
specific example, Ding and co-workers exposed single human
urinary bladder (T24) cells to heat-killed uropathogenic
Escherichia coli GR-12 bacteria (hk-UPEC).454 As shown in
Figure 17A, using SG/TC mode, they measured cellular
respiration and the release of reactive oxygen species from the
cell (i.e., hydrogen peroxide and superoxide) in response to the
bacteria’s presence. After 115 min of exposure, a 45% increase in
ROS production was observed. Additionally, the measured
response (i.e., release of ROS) was localized to different areas of
the cell: ROS release near the cell nuclei and mitochondria was
higher and ROS release near the cell plasma was lower.
In addition to the measurement of protein expression at the

cell surface, SECM has also been used to quantify the activity of
transmembrane proteins. Recently, Mauzeroll and co-workers

quantified the activity of multidrug resistance-associated protein
1 (MRP1), a protein associated with poor cancer prognosis, in
normal HeLa cells and MRP1-overexpressing HeLa cells.455

Using feedback mode over cocultured single cells (i.e., both cell
lines patterned side-by-side on a single substrate; Figure 18A,B),
they obtained one SECM image using the highly charged redox
mediator [Ru(NH3)6]

3+ (Figure 18C), and another image over
exactly the same cells using the uncharged redox mediator
FcMeOH (Figure 18D). The authors proposed that since
[Ru(NH3)6]

3+ was cell impermeable and thus had no interaction
with the patterned cells, a topography profile of the cells could be
extracted, as shown by the map of tip-to-substrate distance in
Figure 18E. Using this topography map and both SECM images,
an apparent heterogeneous rate constant profile was extracted
(Figure 18F) and correlated back to the activity of the MRP1
protein. Therefore, the convoluted current signal in a constant-
height feedback measurement, which is composed of both
topography and electrochemical reactivity, was numerically
decoupled into separated profiles and used to quantify the
activity of a transmembrane protein.
Contrary to this approach, which involved a constant-height

feedback measurement, Unwin, Matsue, and co-workers
developed a new mode called voltage-switching mode SECM
(VSM-SECM) to allow deconvolution of the current response
using a constant-distance measurement.440 This approach
requires the presence of two distinct redox mediators in solution
at the same time (e.g., [Ru(NH3)6]

3+ was used for topography
and PAPP for electrochemical activity). First, a reductive
potential is applied at a carbon disk nanoelectrode, which is

Figure 19. (A) Schematic illustration of voltage-switching mode SECM,
in which a signal for the hindered diffusion of a mediator is implemented
in hopping mode (probe approach at each pixel) to trace the topography
of the surface (left) and at each set point (closest distance) an interfacial
flux measurement (electrochemical activity) is made after switching the
voltage (right). (B) Topography (left) and electrochemical (right)
images of A431 cells. The carbon electrode was held at −500 mV
(topography) and 350 mV (electrochemical activity) vs Ag/AgCl in
HEPES buffer containing 10 mM [Ru(NH3)6]

3+ and 4.7 mM PAPP.
The electrode radius is 721.5 nm. Reprinted with permission from ref
440. Copyright 2012 National Academy of Sciences.

Figure 20. (A) Schematic of the microtrap-SECM system for measuring
PYO in real time. (B) A 3D confocal reconstruction was used to count
the number of cells (∼700) in the microtrap. The walls appear green,
and the bacteria appear red. (Scale bar: 10 μm.) (C) A SECM reactive
image for PYO collected above amicrotrap containingWT P. aeruginosa.
The SECM tip was biased at 0 V vs Ag/AgCl to oxidize PYO, and a 2D
scan was acquired by moving the tip in the x−y direction over the
microtrap containing P. aeruginosa at a fixed height of 2 μm above the
roof. The change in the current response is highest (red) directly over
the bacteria producing PYO (∼2.7 μM) in the chamber. The scan area
was 65 μm× 65 μm. Reprinted with permission from ref 439. Copyright
2014 National Academy of Sciences.
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then moved closer/further to the surface to obtain a constant-
current response, which is correlated with the surface topography
(Figure 19A, left). Subsequently, the potential is rapidly switched
to an oxidative potential, which then provides a measure of the
electrochemical activity (Figure 19A, right). Using this method-
ology with antibody-labeled A431 cells, the authors imaged cell
topography using [Ru(NH3)6]

3+ as a mediator (Figure 19B, left)
and then obtained an electrochemical image (Figure 19B, right)
showing the expression levels of EGFR on the cell membrane
(i.e., electrochemical activity) using PAPP. The authors point out
that, although their approach is similar to constant-current
imaging, it is more advantageous since it only requires the use of a
single probe and can provide information on both topography
and electrochemical activity, unlike other reports on constant-
current imaging which only provide topography.186

Another very interesting advance in this application has been
the combination of micro-3D printing with Bio-SECMmeasure-
ments. Bard, Whiteley, and co-workers recently described the use
of this platform to spatially arrange living bacterial populations
(Pseudomonas aeruginosa) into small micro-3D printed cages and
study communication between populations in separate cages
(also known as quorum sensing).439 As shown in Figure 20A, a
microelectrode probe was positioned above a caged population
of P. aeruginosa bacteria (Figure 20B) and the release of a
quorum-sensing metabolite (i.e., pyocyanin) by these bacteria
was measured. As shown by the SECM in Figure 20C, the
authors successfully measured release of PYO using electro-
chemical oxidation at the SECM tip. They applied this technique
to a varying number of bacterial aggregates to determine the
minimum number of bacterial cells necessary to produce a
measurable signal, which they determined was 500. The authors
concluded that their methodology was very useful for
investigating communication between bacterial aggregates, a
subject that is essential to understanding infection and bacterial
resistance.
4.5. Corrosion

Corrosion is the result of a heterogeneous electron transfer
between a metal and its surrounding environment, and depends

on the composition of a material (i.e., alloys) or the local
environment. SECM has the ability to monitor this heteroge-
neous electron transfer with high spatial resolution, making it
advantageous for the comprehension of corrosion mechanisms
and corrosion mitigation strategies. For these reasons, the
investigation of corrosion has seen growing interest since the
initial reports,43,247,456,457 and it has represented more than
17.4% of the SECM literature in the past five years, including
several reviews.458−460

To probe the corrosion of a material, the feedback mode of
SECM offers many possibilities (Figure 21A,B). For instance,
due to the presence of heterogeneities in alloys, an indirect redox
mediator was used to probe the difference in intrinsic reactivity of
the various phases composing an alloy (Figure 21B).461

Analytical approximations have been developed to extract the
rate of regeneration of the indirect redox mediator.10 Not only is
the feedback mode capable of quantifying the intrinsic change in
reactivity of the immersed sample, but it is also sensitive to small
changes in the substrate topography. This property was
employed to monitor the formation of blisters within coatings,
as this process reduced the tip-to-substrate distance (Figure
21A).462

The GC modes of SECM are the most used to investigate
corrosion properties, mainly due to their ability to probe a direct
mediator (see Figure 21C,D). In most cases, upon immersion of
a metal, the latter dissolves and produces ions/molecules that can
be collected at a nearby microelectrode, as shown in Figure 21C.
For example, the flux of iron ions or molecules such as oxygen

Figure 21. Different modes employed to monitor corrosion of a sample
and their respective current responses measured at the microelectrode.
(A) Negative feedback SECM measurement to record the changes in
coating morphology using an indirect redox mediator. (B) Positive
feedback measurement over a metal presenting heterogeneities in
composition. (C) Substrate-generation/tip-collection measurement of
ions/molecules generated from a coated/uncoated metal surface. (D)
Pitting corrosion monitored using the redox-competition mode.

Figure 22. (A) Local alkalinization of the corroding media to induce the
local dissolution of the Al thin film. (B) Atomic force microscopy 2D
topographic mapping of copper particles embedded in a pure aluminum
matrix after 15 min of polarization at −0.8 V vs SCE in 0.1 M sulfate
solution. (C) Atomic force microscopy 2D profile of the surface sample
compared to simulated profile with 2.5 μm radius particle. Reprinted
with permission from ref 464. Copyright 2013 John Wiley & Sons, Ltd.
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can be monitored upon immersion of a steel sample to
characterize the local rates of corrosion.462 In addition, by
applying a significant anodic potential to the substrate of interest,
pitting corrosion can be initiated locally and monitored through
the collection of iron ions. A subset of the GC modes, described
earlier as ASV-SECM, has also been employed to monitor ions
that are reduced at very low potential (e.g., zinc) using a mercury
hemisphere microelectrode.463

As mentioned in section 3.2, a limited solvent window (see
Figure 4) can sometimes prevent the monitoring of certain ions
produced during corrosion due to their low reduction potential.
To circumvent this problem, potentiometric mode SECM has
demonstrated the possibility of gaining local insights into the
generation of certain ions produced at the metal surface, such as
Zn2+.353 Determining the location and concentration of
electrolytes over the metal substrate (e.g., Na+ and Cl−) is also
crucial to further understanding the corrosion mechanism.
Potentiometric mode can also be used for this purpose, and an
investigation of these fluxes over steel samples has been
reported.354

The corrosion of steel also involves the presence of oxygen,
which depending on its concentration can generate the
formation of pits locally on the surface. The severity of such
phenomenon was probed using RC mode SECM by monitoring
oxygen as a mediator, as shown in Figure 21D.13 This is achieved
by biasing the microelectrode to reduce oxygen while a
simultaneous collection of the mediator occurs at the steel
surface without inducing the formation of a feedback loop.

Higher currents (absolute values) are recorded over an area not
experiencing any pitting corrosion in comparison to lower
currents above an area competing for the mediator.
While these represent the usual strategies employed to

investigate corrosion using SECM, over the past five years,
SECM corrosion literature has focused on studying steel,
aluminum, or magnesium in aqueous media with the objective
of better understanding their respective corrosion mechanisms.
An example of the strengths of SECM to study corrosion was

presented by Sorriano and co-workers, who investigated the
microstructural corrosion of aluminum alloys and implemented a
numerical finite elementmodel to validate the results obtained by
SECM.464 The experiment consisted in using TG/SC mode,
where oxygen is being reduced to hydroxyl ions capable of
inducing the local dissolution of an Al thin film, as shown in
Figure 22A. The authors were able to reproduce the damages that
an aluminum alloy would suffer due to the presence of cathodic
copper particles that are usually formed during alloy fabrication
and were previously described as corrosion initiation sites
(Figure 22B). Using the Nernst−Planck equation, local
dissolution induced by the SECM tip was measured by atomic
force microscopy and successfully corroborated (Figure 22C).
Therefore, this approach would have the ability to simulate the
corrosion of aluminum alloys at the micrometer level.
Less-common corroding materials, such as uranium, have also

been studied using SECM. Shoesmith and co-workers
investigated the hyperstoichiometry of uranium oxide (electron
micrograph in Figure 23A) and its effect on the local reactivity of
the material.119 On top of performing Raman characterization of
the sample to determine the local stoichiometry of the studied
material, SECM current maps (Figure 23B) and probe approach
curves (Figure 23C) were recorded when the uranium sample
was immersed in a solution containing an indirect redox
mediator, ferrocenemethanol. A nonlinear fitting of the analytical
approximation to the experimental probe approach curves
recorded over specific locations helped determine the rate of
regeneration of the indirect redox mediator and thus that the
highest stoichiometry possessed the highest reactivity.

Figure 23. Characterization of various properties of the UO2.1 surface.
(A) Electron micrograph of grain morphologies. (B) SECM image of
the feedback current recorded under natural corrosion condition, and
selected locations for the measurement of probe approach curves. (C)
Determination of corrosion kinetics on selected grains obtained by
fitting experimental approach curves (solid lines) to simulated curves
(open symbols). Reprinted with permission from ref 119. Copyright
2010 Elsevier Ltd.

Figure 24. Detection of H2 evolution at the interface of uncoated and
PEDOT-coated AZ31B. (A and B) SECM tip current images (A) after
30 min and (B) after 24 h immersion in 0.01 M NaCl aqueous solution.
(C and D) pH maps measured with Pt/IrOx microprobe operated in
potentiometric mode of SECM (C) after 30 min and (D) after 24 h
immersion in 0.01 M NaCl. The scan area was 500 μm × 500 μm.
Reprinted with permission from ref 467. Copyright 2015 The
Electrochemical Society.
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Although mechanistic investigations are important to better
understand corrosion, an important task consists of the
prevention of the reactions that take place on metals, as they
will be used as structural components. While more than half of
the corrosion SECM publications focused on investigating
corrosion mechanisms, a large number studied corrosion
mitigation strategies. Several strategies are routinely employed
to prevent corrosion and have been studied using SECM and can
be grouped as described below:

(1) conversion coatings82

(2) corrosion inhibitors465

(3) polymer coatings462

(4) surface treatments, i.e. mechanical stress466

Poly(3,4-ethylenedioxythiophene), a conductive polymer, has
recently been electrodeposited on a magnesium alloy, AZ31B,
using an ionic liquid solution.467 The ability to prevent corrosion
was then investigated using several electrochemical imaging
techniques such as scanning vibrating electrode technique
(SVET) and SECM operated in SG/TC and potentiometric
modes. Mauzeroll and co-workers showed that the hydrogen
evolution monitored using a Pt microelectrode was significantly
higher over the uncoated side of the magnesium alloy, as shown
in Figure 24A. The cathodic activity (also measured using SVET)
recorded over the uncoated side of the material was corroborated
by higher local pHsmeasured using a Pt−Ir oxide microelectrode
operated under potentiometric control (Figure 24C). However,
over longer immersion times, the conductive polymer was shown
not to mitigate corrosion efficiently, as the pH and hydrogen

evolution started to increase significantly over the coated side of
the sample (Figure 24B).
Although not considered as a coating, the presence of bacteria

to mitigate corrosion was investigated over a low carbon steel
material envisioned for high-level radioactive waste contain-
ers.468 Using SG/TC mode, Vivier and co-workers investigated
the evolution of hydrogen as carbon steel corroded, and this in a
controlled anaerobic environment. The authors showed that 15%
of the H2 evolved from the material was consumed by the
presence of bacteria.
The examples presented above and in the current literature

show that the development of more rapid screening approaches
would benefit SECM investigations of corrosion. This could be
achieved by developing multifunctional probes capable of
monitoring simultaneously more than one flux at a time while
recording the changes in topography of the surface which can be
beneficial to better track the coating shapes. Moreover, the field is
also devoted to developing multidisciplinary projects as more
metals are being used daily in vivo. To grasp the complexity of
these systems, the use of controlled environments will thus be
mandatory and will have to be interfaced with SECM.

4.6. Energy

In the growing search for new and more efficient materials,
characterization of the electrochemical activity of a surface can
provide valuable information. The use of SECM for this type of
characterization has seen an increased interest, with the topic
being reviewed in 2010.469 Various types of materials and devices
have been investigated, including batteries,300 fuel cells,168

Figure 25. (A) An ultramicroelectrode (UME) tip is reducing protons at a diffusion-limited rate over a Pt-rich area of the film and the degree of positive
feedback is due to both Pt content and differences in sample topography. (B) UME tip is reducing protons at a diffusion limited rate over a C-rich area of
the film and the degree of negative feedback is due to differences in sample topography. (C) High magnification field-emission electron microscopy
images of 6−4 Pt−C spin-cast (8 mg mL−1, 2000 rpm) films on silanized silicon substrates. (D) SECM map of a spin-cast (8 mg mL−1, 2000 rpm, 4
layers) 6−4 Pt−C film deposited on a HOPG substrate immersed in 10 mM sulfuric acid and 50 mM potassium sulfate. Proton reduction was driven at
the UME tip (−0.8 V vs Ag/AgCl). Tip radius and initial tip−substrate distance 5 μm. Color scale corresponds to normalized current; ibulk = 96 nA. Scan
speed 15 μm s−1 and scan area 200 μm × 200 μm. Reprinted with permission from ref 161. Copyright 2009 Elsevier Ltd.
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quantum dots,470 solar cells,471 and supercapacitors.472 This
application represented approximately 8.7% of SECM reports in
the last five years.
One of the main focuses for SECM research in this application

has been the development and characterization of fuel cells. This
includes biofuel cells,473 polymer electrolyte fuel cells,168,474,475

and proton exchange membrane fuel cells (PEMFC).476

Nicholson and co-workers recently reported the use of SECM
for characterization of platinum-loaded carbon nanoparticle films
in a PEMFC.161 As shown by the schematics in Figure 25A,B,
constant-height feedback mode scans were used to determine the
electrocatalytic activity of a Pt−C spin-cast film toward hydrogen
oxidation. The field-emission electron microscopy images
(Figure 25C) demonstrated that the distribution of the film
appeared to be heterogeneous, and this was confirmed by the
obtained SECM image (Figure 25D), which showed variations in
the electrocatalytic activity of the film. Consequently, the authors
demonstrated that SECM imaging was well-suited to character-
ize heterogeneity in catalyst films. They did note that the use of
nanoelectrodes would provide a much higher resolution and
provide them with the ability to characterize individual
nanoparticles.
Several research groups have used SECM to characterize the

performance of solar cells, or more specifically dye-sensitized
solar cells (DSSCs).471,477−479 For example, Wittstock and co-
workers investigated the dye (D149) regeneration kinetics in a

ZnO-based DSSC.480 First, they used feedback approach curves
with an indirect redox mediator (I3

−) to determine the dye
regeneration rate constant under different illumination param-
eters (wavelength and intensity). Then, using SG/TC mode in
the setup illustrated in Figure 26A, they imaged a DSSC that was
illuminated with a focused LED (Figure 26B). Their results
demonstrated that this mode could be used to image differences
in electron transfer rates for an illuminated/nonilluminated
DSSC. The authors noted that their methodology could be very
useful for the identification and development of new redox
couples to be used in DSSCs.
An interesting development in the characterization of battery

materials has been the integration of SECM systems into a
glovebox. The highly reactive nature of these materials
necessitates measurements under complete anaerobic condi-
tions, making the use of a glovebox essential. Several reports have
described the use of this instrument configuration.89,92,481 For
example, Jung and co-workers investigated the transportation of
Li+ ions at the interface of a charging LiCoO2 electrode in a
glovebox.280 Using SG/TC mode in anaerobic conditions, they
scanned a Pt microelectrode over a LiCoO2 substrate biased at
increased oxidative potentials, measuring the release of Li+ ions
caused by dissociation of the substrate (Figure 27A). The SECM
images (Figure 27B) showed that dissociation increased as the
potential applied at the substrate (i.e., charging density) was
increased. The authors concluded that SECM imaging allowed
for the characterization of the dissociation ability, but also
demonstrated the nonuniformity of the electrode surface.
Therefore, the electrochemical activity and uniformity of Li+

ion battery materials could be analyzed using SECM under
anaerobic conditions in a glovebox.
Evidently, feedback and GC modes have been the most

popular for the characterization of energy-related materials.
However, Bard and co-workers developed a new methodology,
surface-interrogation mode (SI-SECM), which can be used to
study adsorbed surface species on an electrode.181,482 In SI-
SECM, a reactive species A is adsorbed at a substrate electrode
(Figure 28A). A SECM tip is used to generate a titrant R,
produced by reduction of an indirect redox mediator O (Figure
28B). The titrant R reacts with A to regenerate O, producing
positive feedback. As the adsorbed species A is depleted from the
surface, the regeneration of the redox mediator decreases until
negative feedback is detected. In this way, SI-SECM acts as a
transient feedback mode, allowing for the quantification of
adsorbed species on a surface. Using this concept, Bard and co-
workers studied the photochemistry at a W and Mo doped
BiVO4 semiconductor electrode.181 After irradiation to cause
water oxidation, hydroxyl radicals were generated and adsorbed
on the surface of the W/Mo−BiVO4 electrode. By measuring the
regeneration of IrCl6

3− (indirect redox mediator), represented by
a positive feedback response, they determined the concentration
of hydroxyl radicals formed at the surface under varying
irradiation times (Figure 28E,F). They also determined that
only 1% of absorbed photons were used for water oxidation.
Consequently, the authors demonstrated that SI-SECM was
useful for characterization of surface adsorption in energy-related
materials.

4.7. Surface Modification

The high spatial resolution afforded by SECM makes it ideal for
surface modification, whether it be etching or deposition, and
this principle has long been investigated since the initial reports
by the Bard research group in 1989.155,275 In the past five years,

Figure 26. (A) Basic arrangement of SECM substrate-generation tip-
collection mode experiment of DSSC. The light is focused on a small
scale area on the sensitized electrode. (B) SECM SG/TC image of
ZnO/D149 film electrode with I− mediator obtained by scanning UME
across a focused light illuminated area. The circular region at the middle
of the image corresponds to the illuminated spot on the electrode. a =
12.5 μm, vT = 20 μm/s, d = 30 μm, ET = −0.7 V. Reprinted with
permission from ref 480. Copyright 2010 Elsevier Ltd.
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Figure 28. Schematic of the proposed mechanism for the surface interrogation. (A) Reactive species A is adsorbed at the substrate. (B) The SECM tip
generates titrant R, which reacts at the surface of the substrate to produce positive feedback. (C) Depletion of the adsorbate causes negative feedback.
(D) Tip response during SI-SECM. Reprinted from ref 482. Copyright 2008 American Chemical Society. (E and F) Chronoamperograms during SI-
SECM using Au UME on the W/Mo−BiVO4 electrode with different decay times of (E) 0.5 and (F) 5 s after UV−visible irradiation for 5 s (yellow). A
scan without irradiation is shown as a black solid line. Etip = 0.5 V vs NHE, and Esubstrate = 0.6 V. Measurements were done in 1 mM K2IrCl6 and 0.1 M
Na2SO4 aqueous solution. d = 12 μm. Reprinted from ref 181. Copyright 2013 American Chemical Society.

Figure 27. (A) SEM images of LiCoO2 substrate to be studied in glovebox. (B) SECM images of LiCoO2 substrate with increasing charging depth. The
probe used was Pt, and Li metal was the reference electrode. Reprinted with permission from ref 280. Copyright 2011 Springer.
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this application has represented 5.5% of reports using SECM. In
terms of operational mode, feedback, TG/SC, and direct modes
are the most commonly used methodologies for surface
modification.
The number of SECM reports involving the etching of surfaces

have diminished in recent years. Nevertheless, methodologies for
the etching of several different materials have been reported,
including copper,138,276 silicon wafers,42 polystyrene,483 and
ZnO films.484 In constrast, most investigations involve the
deposition or patterning of conducting and nonconducting
surfaces. This includes the deposition of alumina films,485

chitosan,486 gold nanoparticles,276,487−489 silver nanopar-
ticles,306,488,490 and vinylic monomers.491

Recently, there has been particular interest in the use of
diazonium salts for surface modification.70,212,492,493 One
common approach involves the reduction of diazonium salts at
a SECM tip in order to achieve deposition. However, this leads to
tip passivation and consequently limited application. Belanger
and co-workers avoided this problem by proposing a new
methodology in which they use TG/SC mode to oxidize amine-
containing compounds (Figure 29A).494 Initially, a nitro-
containing compound is reduced at a SECM tip to produce an
amine. This amine then diffuses to the biased substrate surface

and is oxidized, allowing for the deposition of an organic moiety.
As shown by the SECM image in Figure 29B, the authors were
able to selectively create a small micropattern (diameter ∼15
μm), and they suggested that their methodology could be used
for complex organic micropatterning of surfaces.
On the theme of deposition of noble metals, Radtke and co-

workers provided an example for the micropatterning of
platinum on a nonconducting surface.495 As shown in Figure
30A, a thin layer of platinum dichloride (i.e., metal precursor “p”)
was deposited onto a surface. A biased SECM tip was then used
to reduce the indirect redox mediator methylviologen. This
reduced form of the mediator diffuses to the platinum dichloride
surface, acting as a reducing agent and allowing for the formation
of platinum metal. Figure 30B shows optical micrographs of
several micropatterned platinum lines deposited on glass.
Variations in line thickness were caused by increases in the
scan speed of the SECM tip during precursor reduction. This
surface was also characterized using SECM, as shown in Figure
30C. Consequently, the authors demonstrated that platinum

could be deposited with high resolution using SECM.
Interestingly, they also noted that this methodology could be
applied for the deposition of other metals such as palladium.
The use of SECM for living cell studies was discussed in

section 4.4. In several examples, cells were arranged in a specific
configuration in order to facilitate SECM measurements. In
other words, patterned surfaces were used to encourage a
particular cellular alignment. In most cases, these patterning
schemes are created using some form of lithography. However,
Wittstock and co-workers demonstrated that SECM could in fact
be used for the fabrication of micropatterns on modified
surfaces.50 First, a gold surface was covered with self-assembled
monolayers (SAMs) terminated with oligomers of ethylene
glycol (OEG). OEG SAMs have been shown to minimize
nonspecific adhesion of cells or proteins. A biased SECM tip was
then used to electrochemically generate bromine and modify
specific areas of the OEG SAMs, as shown in Figure 31A. The
bromine cleaves the OEG part of the monolayer and
consequently exposes the CH3-terminated alkyl chain of the
SAM, which is cell-adhesive. As shown in Figure 31B, circular
micropatterns were successfully fabricated and imaged using
SECM. These surfaces were then used for subsequent
investigation of bacterial interaction. Therefore, the authors

Figure 30. (A) Schematic SECM setup for the local reduction of a metal precursor (p) to the metal (m) by a reduced mediator generated at an
ultramicroelectrode. (B and C) Line-shaped platinum microstructures on glass. (B) Light microscope image. Numbers indicate velocity in μm s−1. (C)
SECM-feedbackmode image. Both images reveal different areas within the lines ascribable with different grades of reduction of the PtCl2. Reprinted with
permission from ref 495. Copyright 2009 Elsevier Ltd.

Figure 29. (A) Reaction system suitable for SECM patterning of
surfaces in TG/SC mode based on oxidation of amine-containing
compounds. (B) SECM image of a micropattern of organic moieties
deposited on a gold sample by oxidation of an amine electrogenerated at
the tip. Microstructure imaging conditions: ET = 0.5 V, ES = −0.1 V, d =
3 μm, translation speed = 5 μm s−1. Reprinted with permission from ref
494. Copyright 2009 John Wiley & Sons, Ltd.
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demonstrated that SECM provided a useful tool to produce and
manipulate micropatterns for fundamental studies.
4.8. Kinetics

Above all else, SECM has been used to characterize reaction
kinetics (i.e., electrochemical activity) at a substrate. Specific
subsets have been discussed above (e.g., biological samples,
energy-related materials, etc.), but the principles used remain the
same. The measurement of surface kinetics, whether it be at a
solid−liquid interface or a liquid−liquid interface, has
represented over 28.3% of all SECM reports since 2009. This

particular “application” is used to group measurements that do
not fall within the context of other applications presented above.
In general, it consists of measuring electron transfer rates for a
wide variety of processes occurring at different substrates. Some
particular subcategories include measurement of catalytic
activity, surface imaging, and measurements at liquid interfaces.
In the vast majority of SECM experiments, the electrochemical

process is occurring at a solid−liquid interface. However, a small
portion of SECM literature has also focused on the study of
kinetics at the liquid−liquid interface, also known as the interface
between two immiscible electrolyte solutions (ITIES), and the
topic has been summarized previously.496 In the last five years,
SECM research focusing on ITIES has decreased significantly,
representing only 2.2% of reports. Nevertheless, several different
behaviors have been investigated, including silver particle
growth,306 conductive gold nanoparticle mirror self-assembly,327

metalloporphyrin species properties with different substitu-
ents,157 and the diffusion of molecules through an ionic liquid−
organic interface.497 Particular interest has also been explored for
the generation and measurements of hydrogen, hydrogen
peroxide, oxygen, and superoxides at ITIES.74,169,498,499 Mirkin
and co-workers recently reported the detection of short-lived
intermediates of electrocatalytic oxygen reduction at a nanoscale
liquid−liquid interface.500 As shown in Figure 32A, a nanopipet
was filled with an organic solvent (benzotrifluoride) saturated
with oxygen, and approached toward a catalytic substrate (e.g.,
platinum) in aqueous solvent. The oxygen diffused from the
organic phase into the aqueous phase and was reduced at the
platinum substrate, producing a superoxide intermediate, which
subsequently diffused back into the nanopipet. By measuring the
ion transfer current at potentials specific to the superoxide
intermediate, the authors confirmed the formation of a short-

Figure 32. (A) Schematic representation of the detection of superoxide
intermediate (O2

•−) generated during ORR at the Pt substrate by ET/
IT SECM technique: (I) oxygen partitioning from organic filling
solution to the external aqueous phase; (II) diffusion; (III) transfer of
O2

•− anion across the liquid/liquid nanointerface. (B and C)
Experimental (symbols) and theoretical (solid lines) current−distance
curves for oxygen delivery from the nanopipet to the Pt substrate and
collection of the superoxide intermediate. The tip was a 69 nm radius
pipet containing BTF solution (cell 1) saturated with O2, and the
substrate was a 25 μm diameter Pt disk. Both the substrate (B) and tip
(C) currents are normalized by the diffusion-limiting flux of oxygen
from the nanopipet. ET = 0.4 V and ES = −0.5 V. The approach speed
was 50 (B) and 1 nm s−1 (C). Reprinted from ref 500. Copyright 2015
American Chemical Society.

Figure 33. (A) TEM pictures of preferentially spherical, cubic,
hexagonal, and tetrahedral−octahedral platinum NPs. Scale bars
represent 20 nm. (B) SECM TG/SC image displaying the reduction
current collected for ORR in 0.1MHClO4 solution at a Pt NP array. (C)
SECM TG/SC image displaying the reduction current collected for
ORR in 0.5 M H2SO4 solution at a Pt NP array. Scan rate = 125 μm s−1.
ES = 0.7 V. Adapted from ref 505. Copyright 2010 American Chemical
Society.

Figure 31. (A) SECM method for template-free micropatterning. The
OEG SAM was locally modified by using electrochemically generated
Br2. (B) Characterization of the microfabricated OEG substrate for the
micropatterning of bacteria using SECM. SECM feedback images of
microfabricated patterns on the OEG SAM substrate. The images were
recorded using Ru(NH3)6

3+ as the electron-transfer mediator in 0.1 M
PBS buffer (pH 7.4) after SECM microfabrication. The higher current
(dark regions) in the images indicates a higher permeability of the
monolayer. ET =−400 mV, a = 25 μm, d = 5 μm, and translation speed =
10 μm s−1. Reprinted from ref 50. Copyright 2010 American Chemical
Society.
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lived superoxide intermediate (see Figure 32B,C). They thus
concluded that their newly developed methodology (electron
transfer/ion transfer (ET/IT) SECM) could be very useful for
the detection of charged reaction intermediates, including those
with lifetimes on the order of nanoseconds.
In the context of heterogeneous electron transfer at solid−

liquid interfaces, a particularly important role of SECM has been
in the evaluation of the catalytic activities of different substrates.
In the past five years, several different catalysts have been
evaluated, including Au nanoparticles,273,501 bimetallics (Pd−
Co, Pt−Ag, Pd−W),305,474,476 C−Pd and C−Au,502 CoPi,128

nanosheet ZnCo2O4/carbon nanotube composites,503 and
RuO2.

504 Herroro and co-workers investigated the effect of
shape of the catalytic activity of platinum nanoparticles.505 As
shown in Figure 33A, four different geometries of nanoparticles
were synthesized (spherical, cubic, hexagonal, and tetrahedral−
octahedral), with average sizes between 4.5 and 11.5 nm. Using
TG/SC mode, the authors measured the oxygen reduction
reaction (ORR) over arrays of different shaped Pt nanoparticles
in two different acidic solutions (0.1 M HClO4 and 0.5 M
H2SO4). Interestingly, as shown in Figure 33B,C, the catalytic
activity of each Pt nanoparticle was highly dependent on its
shape. In both solvents, hexagonal nanoparticles displayed the
highest catalytic activity. However, the SECM images also
showed that, in the case of cubic and tetrahedral−octahedral
nanoparticles, acid electrolyte composition was also significant,
with a sharp decrease in catalytic activity in sulfuric acid.
Nevertheless, the authors noted that SECM imaging was
particularly useful for characterizing the electrochemical activity
of catalysts.
The measurement of reaction kinetics using SECM has also

proven useful in terms of so-called “surface imaging”. Ren and co-
workers imaged the surface of graphene sheets with varying
defect densities.506 The resulting SECM images allowed them to
establish a quantitative correlation between heterogeneous
electron transfer rate and defect density. In another example,
MacPherson, Unwin, and co-workers imaged the surface of
polycrystalline boron-doped diamond (pBDD) electrodes
(Figure 34A) with high spatial resolution using intermittent-
contact SECM.507 They demonstrated that electrochemical
activity of pBDD was dependent on the region, either low-boron
or high-boron facets. Furthermore, the SECM images (Figure
34B) showed that there was no enhanced electron transfer at the
grain boundaries, which is a controversial topic in the literature.

5. SUMMARY AND FUTURE PERSPECTIVES

Following an overview of the principles of SECM, this review has
provided a comprehensive summary of the experimental
parameters used between 1989 and 2015, including all of the
electrochemical redox mediators, solvents, and probes. We hope
that the included compilation and discussion of these parameters
can allow scientists to grasp the concepts and components
necessary to integrate SECM measurements into their research,
and be used as a practical guide to SECM.
More than 25 years after its inception, SECM has emerged

from its infancy and matured into a versatile electroanalytical
technique capable of characterizing substrates in a wide variety of
applications (see Figure 1). This success stems from the
exceptional spatial resolution provided by SECM, and its
advancement as a characterization technique has relied mostly
on the improvement of this aspect, as demonstrated by the vast
amount of literature focusing on probe miniaturization.
Probe miniaturization down to the nanoelectrode level is

attractive because it offers several benefits including the ability to
carry out electrochemistry in small spaces (drops,508,509

microemulsions,51 vesicles,510 single cells,127 nucleus103,111) or
resistive environments. The decreased electrical double layer
capacitance results in decreased time constants allowing
nanosecond time scale measurements. In scaling down to
achieve single molecule electrochemistry, radial diffusion
becomes the dominant form of mass transport and we are
confronted with technical and fundamental challenges. For
example, nanoelectrode characterization is particularly onerous
regardless of the method of preparation since it requires
knowledge of the electrode geometry, which leads to a significant
investment in imaging, or the availability of a controlled
geometry fabrication protocol, which currently are all serial in
nature. Specific to SECM, the stability of the nanogaps required
during imaging with nanoelectrodes is subject to severe thermal
drifts (5−150 nm/min) that should be corrected using an
isothermal chamber, a significant instrument modification.511

The fundamental behavior of nanoelectrodes also changes
with decreasing size, which requires us to be even more careful in
our choice of experimental conditions. For example, changes in
supporting electrolyte concentrations can have drastic effects on
the limiting current,512,513 which are ascribed to promotion or
inhibition of redox fluxes frommigration. What causes the strong
enhancement or inhibition remains unclear. Several possibilities,
reviewed at length elsewhere,514 have been put forth including
decreased electron-transfer rate and the dynamic nature of the
electrical double layer, which depends on the charge of redox
species, the size of the electrode, and the dielectric properties of
the double layer.
Whether the micro- or nanoelectrochemical sensors are

electrode arrays, soft stylus probes, or multifunctional probes,
there is a clear trend to multiplex and cross-correlate the signals
obtained from different redox species involved in complex
electrochemical systems within the same microenvironment at
similar time points.515,516 This strategy is critical to the more
widespread adoption of SECM in a broader community since it
promotes higher throughput, a multivariate analysis, and the
possibility to develop quality control. For example, large-scale
integration-based chips containing over 400 sensors in a single
device517,518 allow for increased imaging size, and also decrease
overall imaging time. The system faces significant engineering
problems related to the ideal spatial arrangement and geometry,
which affects the achievable resolution,519 the optimal method to

Figure 34. (A) Image (70 μm × 70 μm) of pBDD obtained using FE-
SEM recorded with an in-lens detector at 2 kV. (B) IC-SECM SG/TC
map for the collection of Ru(NH3)6

2+ (by oxidation), electrogenerated
at the surface of pBDD (η =−0.004 V). Reprinted with permission from
ref 507. Copyright 2012 John Wiley & Sons, Ltd.
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move/align/orient the supraelectrode assemblies and sub-
strate,515 and the ideal design morphology to limit recycling,
cross-talk, and shielding.520 Notwithstanding the engineering
challenges, significant effort is needed to develop a generally
usable plotting and data treatment software that can deal with the
large data sets and image processing filters to remove recycling
and cross-talk effects. It is difficult to see how a significant
numerical simulation effort will not also be tied to a successful
software development.
Despite these newly developed probes and devices, the main

limitation of SECM remains the relatively slow imaging speeds.
In several experimental systems, such as corrosion or live cell
imaging, temporal resolution is crucial to tracking the process
under investigation. Improvement of this temporal resolution
aspect is certainly a direction for future progress in this field. For
example, using a spiral scanning pattern (instead of conventional
line scans) with SECCM, a scanning droplet technique, Unwin
and co-workers recently reported electrochemical imaging at up
to 1000 times faster than typical speeds used in SECM.521 This
significant improvement can allow for previously unattainable
measurements to be completed, such as time-resolved corrosion
progression at different potentials. A significant challenge with
the development of high-speed SECM will be the availability of
models or numerical simulations that include diffusion,
convection, and fluid flow considerations.522,523

Finally, a most promising avenue for the advancement of
SECM (and electrochemical imaging in general) lies within
combinatorial analyses. Several examples were described above,
but new developments are constantly being reported, including
the integration of fluorescence microscopy systems, spectrom-
eters (for example, SECM-ATR382 and SECM-Raman524), and
hyphenated techniques (SICM-SECM,388,389 AFM-SECM,525

SECM-SPR,526 SKP-SECM,387 photoinduced SECM527). These
new integrated instruments and hyphenated techniques move us
forward toward multifunctional analytical platforms suitable to
study molecular processes in complex environments and a more
widespread adoption by the materials science community.
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(249) Jung, C.; Sańchez-Sańchez, C. M.; Lin, C. L.; Rodríguez-Loṕez,
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