200

10

Advanced Model-Based FPGA Accelerator Design

10.1 Introduction

As described in Chapter 8, architectural synthesis of SFG models is a powerful approach
to the design of high-throughput custom circuit accelerators for FPGA. This approach
is one particular case of a wider trend toward design of high-performance embedded
systems via the use of a model of computation (MoC), where a domain-specific mod-
eling language is used to express the behavior or a system such that it is semantically
precise, well suited to the application at hand and which emphasizes characteristics of
its behavior such as timeliness (how the system deals with the concept of time), concur-
rency, liveness, heterogeneity, interfacing and reactivity in a manner that may be readily
exploited for efficient implementation.

A plethora of MoCs have been proposed for modeling of different types of system
(Lee and Sangiovanni-Vincentelli 1998), and determining the appropriate MoC for cer-
tain types of system should be based on the specific characteristics of that system. For
instance, a general characterization of DSP systems could describe systems of repeti-
tive intensive computation on streams of input data. Given this characterization, the
dataflow MoC (Najjar et al. 1999) has been widely adopted and is a key enabling fea-
ture of a range of industry-leading design environments, such as National Instruments’
LabVIEW and Keysight Technologies’ SystemVUE.

This chapter addresses dataflow modeling and synthesis approaches for advanced
accelerator architectures which fall into either of two classes. The first is that of multidi-
mensional accelerators: those which operate on complex multidimensional data objects,
or multiple channels of data. The second focuses on accelerators with an issue largely
ignored by the SFG synthesis techniques of Chapter 8, where it is a heavy demand for
high- capacity memory resource which must be accessed at a high rate.

The dataflow modeling of DSP systems is the subject of Section 10.2. The synthesis of
custom accelerators is covered in Section 10.3, and this is extended to multidimensional
versions in Section 10.4. Memory-intensive accelerators are covered in Section 10.5. A
summary is given in Section 10.6.

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Advanced Model-Based FPGA Accelerator Design

10.2 Dataflow Modeling of DSP Systems

10.2.1 Process Networks

The roots of the most popular current dataflow languages lie in the Kahn process net-
work (KPN) model (Kahn 1974). The KPN model describes a set of parallel processes
(or “computing stations”) communicating via unidirectional FIFO queues — the general
structure of a KPN is shown in Figure 10.1. A computing station maps streams of data
tokens impinging along its input lines, using localized memory, onto streams on its out-
put lines.

In DSP systems, the tokens are usually digitized input data values. Continuous input
to the system generates streams of input data, prompting the computing stations to pro-
duce streams of data on the system outputs. The semantics of mapping between streams
of data in KPN makes this modeling approach a good match with the behavior of DSP
systems. A KPN structure can be described as a graph G = (V, E), where V is a set of
vertices (the computing stations) and E a set of directed edges connecting the vertices.
An edge connecting source and sink computing stations a and b respectively is uniquely
identified using the tuple (a, b).

Lee and Parks (1995) developed this modeling framework further into the dataflow
process network (DPN) domain. DPN models augment KPN computing stations with
semantics which define how and under what conditions mapping between streams
occurs. Specifically, a stream is said to be composed of a series of data tokens by invo-
cation or firing of a dataflow actor; tokens input to an actor are translated to tokens
output. Firing only occurs when one of a series of rules is satisfied. Each rule defines a
pattern, such as the available number of tokens at the head of an edge FIFO, and when
the pre-specified pattern for each input edge is satisfied, the actor may fire. When it
does so, tokens are consumed from incoming edge FIFOs and resulting tokens produced
on outgoing edges. Via repeated firing, each actor maps a succession, or a stream, of
tokens on its input edges to streams on its output edges. Combined, the KPN and DPN
models provide a functional modeling foundation with important properties, such as
determinism (Lee and Parks 1995), a foundation upon which a series of more refined
dataflow dialects have been devised. Three refinements of specific importance in this
section are synchronous dataflow (SDF), cyclo-static dataflow (CSDF) and multidimen-
sional synchronous dataflow (MSDF).

Actor/Computing |
Station nput
FIFO Queue
\ \ Port \
Input Data > 11T} g Output Data
Stream —> [T

Stream

— Output
Port

Figure 10.1 Simple KPN structure

201

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

202 | FPGA-based Implementation of Signal Processing Systems

Figure 10.2 Simple SDF graph

10.2.2 Synchronous Dataflow

An SDF model is a DPN with highly restricted semantics. It specifies, for each actor,
a single firing rule which states as a condition for actor firing a fixed, integer number
of tokens required on its incoming edges (Lee and Parks 1995). Hence SDF is a domain
where “we can specify a priori the number of input samples consumed on each input and
the number of output samples produced on each output each time the block is invoked”
(Lee and Messerschmitt 1987a). This restriction permits compile-time graph analysis
with three powerful capabilities:

1. Consistency: It can be determined whether a graph is consistent, i.e. whether a pro-
gram realizing the graph can be constructed which operates on infinite input streams
of data within bounded memory.

2. Deadlock Detection: It may be determined whether a program realizing the graph
operates without deadlock .

3. Compile-Time Optimization: Not only can a program implementing the graph be
constructed in compile time, the schedule can be analyzed and optimized as regards,
for example, buffer and code memory costs or communications costs (Bhattacharyya
et al. 1999; Sriram and Bhattacharyya 2000).

These capabilities allow compile-time derivation of very low-overhead, efficient pro-
grams realizing the SDF model whose buffer memory cost may be highly tuned to the
target platform. This capability has pioneered a large body of research into dataflow
system modeling, analysis and implementation techniques (Bhattacharyya et al. 1999;
Sriram and Bhattacharyya 2000). However, this advantage is gained at the expense of
expressive power since the SDF forbids data-dependent dataflow behavior.

Each SDF actor exhibits a set of ports, via which it connects to and exchanges tokens
with an edge. The number of tokens consumed or produced at a port for each firing
of the actor is known as that port’s rate, r. This value is quoted adjacent to the port,
as illustrated in Figure10.2.! When all ports in the graph are equi-rate, the graph is
known as a single-rate or homogeneous or single-rate dataflow graph (SR-DFG). Other-
wise, the DFG is known as a multi-rate dataflow graph (MR-DFQG). A simple SDF model
is shown in Figure 10.2. Note the black dot on the edge (b, ¢); this denotes a delay, which
in dataflow terms represents an initial token, i.e. a token resident in the inferred FIFO
before any has been produced by the source actor.

If, for actor j connected to edge i, x}‘ (yI’) is the rate of the connecting port, an SDF

graph can be characterized by a topology matrix I', given by

x/l if task j produces on edge i
Iy = —y]‘: if task j consumes from edge i (10.1)

0 otherwise.

1 By convention, this annotation is omitted in cases where the rate is 1.

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

This topology matrix permits compile-time verification of consistency, specifically by
determining a number of firings of each actor so that a program schedule may be derived
which is balanced, i.e. it may repeat an infinite number of times within bounded memory.
It does so by ensuring that the net gain in the number of tokens on each edge, as a
result of executing an iteration of the schedule, is zero (Lee 1991). This is achieved by
balancing the relative number of firings of each actor according to the rates of the ports
via which they are connected. Specifically, for every actor 4, which fires proportionally
q, times in an iteration of the schedule and produces r, tokens per firing, connected to
actor b, which fires proportionally g, times and consumes 7, tokens per firing, since for
operation in bounded memory an iteration of the schedule must see all FIFO queues
return to their initial state (Lee and Messerschmitt 1987b), the equation

9a¥a = 9b"p (10~2)

holds. Collecting such an equation for each edge in the graph, a system of balance equa-
tions is constructed, which is written compactly as

I'q=0, (10.3)

where the repetitions vector, q, describes the number of firings of each actor in an itera-
tion of the execution schedule of the graph and where g; is the number of firings of actor
i in the schedule.

10.2.3 Cyclo-static Dataflow

The CSDF model (Bilsen et al. 1996) notes the limitation of SDF actors to a single fir-
ing rule pre-specifying the availability of an integer number of tokens on each input
edge. Due to this restriction, SDF actors can only perform one fixed behavior on each
firing. CSDF attempts to broaden this capability to allow an actor to perform a mul-
titude of predefined behaviors whilst maintaining the powerful compile-time analysis
features of SDF. In CSDF, actors have cyclically changing actor behavior, whereby an
actor j defines a firing sequence y = {]?(1),];(2), e];(Pj) }. Given this sequence, it is then
said that the actor operates in one of P; phases with the behavior of y; invoked during
firing i(mod).

In addition, the restriction imposed by SDF that the rate of each port be a scalar integer
is similarly extended in CSDF to permit rates to be sequences of integer scalars. A simple
example in shown in Figure 10.3. In this case, whilst » and c are SDF actors (or, more
generally, CSDF actors with single-phase firing and rate sequences), in this case is
cyclic, operating a three-phase schedule, with the rate of its output port iterating over
the sequence {1,0,0}.

Figure 10.3 Simple CSDF graph e °

203

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

P

nip

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

204 | FPGA-based Implementation of Signal Processing Systems

(m,n) ° Figure 10.4 Simple MSDF graph
. (p,q).

In general, for CSDF actor j connected to edge i, if X]’ (n) is the total number of tokens

produced and in(n) the total number consumed during the first # firings of the actor, a
CSDF topology matrix I is defined by

X}?(Pj) if task j produces on edge i
r;= —in (P;) if task j consumes from edge i (10.4)
0 otherwise.

10.2.4 Multidimensional Synchronous Dataflow

Both SDF and CSDF operate on the assumption that tokens are atomic: a firing of an
actor cannot consume anything other than an integer number of tokens traversing along
an edge. This restriction is alleviated in MSDEF, a domain at its most beneficial for com-
plex multidimensional tokens, first via work which elaborates a single MSDF graph into
equivalent SDF structures based on rectangular lattice-shaped problems, such as matri-
ces (Lee 1993a,b), but later further to arbitrary shaped lattices (Murthy and Lee 2002).
In MSDF, rates are specified as M-tuples of integers and the number of balance equa-
tions per edge increased from 1 to M. An example MSDF graph is shown in Figure 10.4.
Note that the form of a multidimensional token is expressed using braces. The balance
equations for this graph are given by

qa1™m = {qp1P (10.5)
da2" = dqp29-

The generalization to multiple dimensions inherent in the MSDF model has a similar
effect on the mathematical representations of rates and repetitions structures, both of
which are generalized to matrices. MSDF provides an elegant solution to multidimen-
sional scheduling problems in SDF graphs, and exposes additional intra-token paral-
lelism for higher order dimension tokens (Lee 1993a).

10.3 Architectural Synthesis of Custom Circuit
Accelerators from DFGs

Previous chapters have described how the register-rich programmable logic present in
FPGAs makes them ideal for hosting pipelined custom circuit accelerator architectures
for high-throughput DSP functions. Furthermore, the substantial body of research into
automatically deriving and optimizing these structures from SFGs (SR-DFGs where all
ports have a rate of 1) presents a perfect opportunity to enable automatic accelerator
synthesis for DFG-based design approaches. A typical architectural synthesis approach
deriving such accelerators from generalized MR-DFG models is outlined in Figure10.5.

As this shows, the MR-DFG is first converted to a single-rate equivalent, before
undergoing architectural synthesis. This initial conversion is important. SFGs are more

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

Figure 10.5 MR-DFG accelerator architectural synthesis

Multi-rate
DFG

Single-Rate
Conversion

Folding/
Unfolding

Retiming

Pipelined Custom

Circuit

restricted than general MR-DFG models, including SDF, CSDF and MSDEF. There are
three key restrictions of note:

1. The port rates of all ports in the DFG are fixed at unity.
2. The each actor fires only once in an iteration of the schedule.
3. Port tokens are atomic.

Since MR-DFG models are semantically more expressive than SFGs, on conversion
to variations in port rates, actor repetitions or token dimensions are manifest explicitly
in the structure of the SFG and hence any accelerator derived from it. This means that
an SFG accelerator can only realize one configuration of MR-DFG actor and that the
designer does not have explicit control over the structure of their accelerator from the
MR-DEFG structure. In complex FPGA system designs, it is often desired to reuse compo-
nents in multiple designs; but if an accelerator derived via the SFG route can only realize
one MR-DFG actor configuration, how can such reuse be enabled and controlled? Given
traditional SFG architectural synthesis techniques, it cannot.

10.4 Model-Based Development of Multi-Channel
Dataflow Accelerators

Changing the MR-DFG operating context for an SFG accelerator, e.g. altering token
dimensions or port rates, requires re-generation of the accelerator. In many cases, this
is unavoidable, but in many others there may be an opportunity, given an augmented
synthesis approach, to derive components which are reusable in numerous contexts.

205

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

206 | FPGA-based Implementation of Signal Processing Systems

Fixed Beamformer
)
X
v
Y

P

v :
Adaptive Weight
Generation
Engine

Figure 10.6 Beamformer architecture

Consider one such example. Beamformers are versatile array-processing compo-
nents for spatial filtering for radar, sonar, biomedical and communications applica-
tions (Haykin 2013). A beamformer is typically used with an array of sensors which are
positioned at different locations so that they are able to “listen” for a received signal by
taking spatial samples of the received propagating wave fields. A block diagram repre-
sentation of a beamformer structure is shown in Figure 10.6.

As shown, the signals emanating from each antenna element are filtered by a digital
receiver (DRx) and scaled before being summed to produce the output signal. The upper
portion, consisting of the DRx, scaling and sum components is known as a fixed beam-
former (FBF), with the addition of an adaptive weight generation engine producing an
adaptive beamformer system.

Consider the case where a custom circuit accelerator is created to realize the DRx
component in an FBE. FBF systems can be of different scales and have differing through-
put and latency constraints; for example, the number of antenna elements, #, may vary.
In order to make sure these requirements are met with minimum cost, it is desirable to
use m DRx accelerators, with the same DRx required to process multiple channels of
data in the case where m < n. But since the original DRx is created to service only one
channel, there is no guarantee that it can be reused for multiple channels.

A similar situation may arise in, for example, matrix multiplication. To demon-
strate, consider multiplication of two matrices, M; and M, (of dimensions (m,n)
and (n,p), respectively). In this case, assuming that an accelerator has been created
to form the product of 3 X 3 matrices, how may that accelerator be used to mul-
tiply M, and M, when (m,n,p) = (3,3,12)? One possible approach is illustrated in
Figure 10.7.

As this shows, by interpreting M, as a sequence of parallel column vectors, groups of
columns of arbitrary size can be formed and individually multiplied by M, to derive M,

by concurrent multiplication of M; by an array of y matrices {My, M, --- M;_l} where
M‘2 is composed of the p column vectors {i X Pj, L+ x ;i) — 1}. The subdivision of
M, into parallel submatrices for p = 4 is given in Figure 10.7. Note the regular relation-
ship between the number of multipliers and the size of submatrix consumed by each.
This kind of relationship could be exploited to regularly change the structure of the DFG,

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

Figure 10.7 Parallel matrix multiplication

M

M3 M31 Mz M3z

trading off the number of actors and the token dimensions processed at the ports of each;
given an appropriate one-to-one correspondence between actors and FPGA accelera-
tors, this would then permit explicit control of the number of accelerators and the token
dimensions processed by each. It demands, however, accelerators which are sufficiently
flexible to process multiple streams of data, trading resource usage with performance
without accelerator redesign.

This capability is dependent on two enabling features:

1. Expressing a dataflow application in such a way that the number of actors and the
channels processed by each are under designer control without variation affecting
the behavior of the application.

2. Synthesizing accelerators which can support varying multi-channel configurations.

10.4.1 Multidimensional Arrayed Dataflow

The key issue with lack of explicit designer control on the structure of the implemen-
tation is the lack of structural flexibility in the MR-DFG itself. A single actor in stan-
dard dataflow languages like SDF or MSDF can represent any number of tasks in the
implementation, rather than employing a close relationship between the number of DFG
actors and number of accelerators in the solution. To overcome this structural inflexi-
bility, the multidimensional arrayed dataflow (MADF) domain may be used (McAllister
et al. 2006).

To demonstrate the semantics of the domain, consider the same matrix multiplication
problem described at the beginning of this section. The MADF graph of this problem is
given in Figure 10.8. In this formulation, M; and M, are sources for the operand matri-
ces, whilst mm is the matrix multiply actor and Mj is a sink for the product. In MADF,
the notions of DFG actors and edges are extended to arrays. Hence an MADF graph

Figure 10.8 Matrix multiplication MADF

207

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

208

FPGA-based Implementation of Signal Processing Systems

Actual Token

%,
)

;
Xb -

............... Xp= (3,1 b 3Xb

............... — I I

Figure 10.9 Matrix decomposition for fixed token size processing

G = {V,, E,} describes arrays of actors connected by arrays of edges. Actor arrays are
gray, as opposed to single actors (or actor arrays of size 1) which are white. Edge arrays
are solid, as opposed to single edges (or edge arrays of size 1) which are dashed. The size
of an actor array is quoted in brackets above the actor array.

In such a graph, the system designer controls parameters such as y in Figure 10.8.
This is used to define the size of the M;, M,, mm and Mj; actor arrays, as well as the
dimensions of the tokens produced/consumed by M,, mm and M. Under a one-to-one
translation between the number of, for example, mm actors and the number of accel-
erators, this enables direct graph-level control of the number of accelerators and token
dimensions for each. However, as outlined, accelerators derived from SFGs have fixed
port token dimensions and a mechanism must be established to allow processing of
higher-order tokens.

Consider the case of the array of submatrices of M, input to mm in the matrix multi-
plication example of Figure 10.8. How may a single accelerator be made flexible enough
to implement any size of input matrix on this input, given that the pipelined accelerator
produced from an SFG description has fixed token dimensions?

As outlined at the beginning of this section, each of the y submatrices can be inter-
preted as a series of p column vectors, with the ith submatrix composed of the column
vectors {i X ?, s+ 1) % ;i) — 1} of M,. As such, for the case where y = 4, the sub-

matrix can be interpreted in two ways, as illustrated in Figure 10.9. As this shows, the
matrix can be interpreted as an aggregation of base tokens. If the actor to process the
submatrix can only process the base tokens, then the aggregate may be processed by
using multiple firings of the actor, each of which processes a different component base
token. In a sense, then, the actor is treating the aggregate as an array of base tokens over
which it iterates.

To support this concept, MADF support variable-sized arrays of actor ports, each of
which consumes identical base tokens, with the resulting accelerator derived to process
the base token. To enable multiple iterations of the actor to process the multiple base
tokens in the actual token, MADF actors may be cyclic (Section 10.2.3), with individual
firings consuming one or more base tokens through each port in the array in turn.

Using this formulation, Figure 10.10 illustrates the full, fixed token processing version
of the MADF matrix multiplication problem. Note the presence of differentiated arrays

Figure 10.10 Full MADF matrix multiplication

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

Figure 10.11 Block processing matrix multiplication

of ports (gray) and individual ports (white). In the case of an array of ports, note that the
size of the array is annotated on the port using brackets; for instance, the array of ports
on Mj is of size dimension [n].

10.4.2 Block and Interleaved Processing in MADF

Having exposed intra-token parallelism by separating the actual token processed across
multiple streams transporting base tokens, further implementation exploration may
be enabled. In the case where the port array is used to process a single token, inter-
leaved processing of each port in the array is required, i.e. a single base token is con-
sumed through each port in turn to form the full token. In this case, the rate of each
port array element is 1. However, having opened up the token processing into a multi-
stream processing problem, the generalized multi-rate nature of dataflow languages can
be exploited to enable block processing via rates greater than 1 at each element of the
port array.

At a port array, the ith element has a production/consumption vector of length p,.
(the size of the port array) with all entries zero except the ith. These vectors exhibit a
diagonal relationship (i.e. for the port array 4, all entries in the consumption vector of 4,
are zero except the zeroth, all entries in the consumption vector for a, are zero except the
first, and so forth. A generalized version of this pattern, for a port array with # elements
with thresholds z is denoted by [#]z, as illustrated in Figure 10.11 for mm when y = 3.
The value of z, the rate of each port array element, indicates whether interleaved or block
processing is used (z = 1 for interleaved, z > 1 for block processing).

Given a one-to-one correspondence between the number of actors in an MADF graph,
the designer then has the capability to control the number of accelerators in the realiza-
tion. However, the number of accelerators and the characteristics of each are interlinked.
For instance, in the case of the matrix multiplication arrangement in Figure 10.10, if the
MADF model is to form the product of M; and M, when (m, n, p) = (3, 3,12) and mm
has a (3, 3) base token, then depending on the number of mm accelerators, y, the char-
acteristics of each will change; in particular, # will vary as 2. Similarly, the behavior will

change with the rate of each port. As such, the traditional SFG architectural synthesis
approach in Figure 10.5 needs to be augmented to produce accelerators which can pro-
cess a variable number of streams at each port, and operate on the variable number of
streams in either an interleaved or block-processed manner.

10.4.3 MADF Accelerators

When realized on FPGA, an array of MADF actors translates to an equi-sized array
of dataflow accelerators (DFAs). The general structure of a DFA is illustrated in
Figure 10.12.

209

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

210

FPGA-based Implementation of Signal Processing Systems

4 N\
/Control & Communications Wrapper)

i o

1 > v > 1

. FE

] (o)

n > o n
A =

Dataflow
Acceleratorj

Parameters

.

Figure 10.12 Dataflow accelerator architecture

The dataflow accelerator object is composed of three main elements:

1. Functional engine (FE): The FE implements the functionality of the actor and is
the accelerator portion of the unit. It can take any architecture, but here is a high-
throughput pipelined accelerator. It is created to realize a specific MR-DFG actor,
but is capable of performing that functionality on multiple streams of data in either
an interleaved or block-processed manner.

2. Control and communications wrapper (CCW): This implements a cyclic schedule
to realize multi-stream operation and handles the arbitration of multiple data streams
through the FE, in either an interleaved or block processed manner depending on the
MADF actor port configuration. The read unit here also implements the necessary
edge FIFO buffering for the MADF network.

3. Parameter bank (PB): The PB provides local data storage for run-time constants for
the accelerator, e.g. FIR filter tap weights. It is not an active part of the streaming
application (i.e. the data stored here can be created and inserted off-line) and so it is
not discussed further.

The pipelined FE accelerator part is flexible for reuse across multiple applications and
MADF actor configurations, and as such may only require creation and reuse in an
accelerator-based design strategy. Efficient generation of FIFO buffers and controllers
for automatic generation of dedicated dataflow hardware is a well-researched area
(Dalcolmo et al. 1998; Harriss et al. 2002; Jung and Ha 2004; Williamson and Lee, 1996).
The remainder of this section addresses realization of the FE.

10.4.4 Pipelined FE Derivation for MADF Accelerators

The FE part of a dataflow accelerator is a pipelined accelerator, designed as a white box
component (WBC) (Yi and Woods 2006). It is one whose structure is parameterized
such that it may be reused in various forms in various systems. In the case of MADF
accelerators, these parameterized factors are summarized in Table 10.1.

The WBC s derived via architectural synthesis of an SFG representing a specific multi-
rate actor instance. To understand how this structure may be reused for multi-stream
operation, consider an example two-stage FIR filter WBC, as illustrated in Figure 10.13.
The WBC is composed of a computational portion, composed of all of the arithmetic

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

Advanced Model-Based FPGA Accelerator Design

Table 10.1 WBC parameterization

Parameter Significance

Streams Number of streams realized by accelerator is to be shared
Blocking Factor Blocking (factor > 1) or interleaved (factor = 1) modes.

4 N\
WBC State w
D||3D]|]| 3D D D >
A Y A A A)
—ﬁi White Box
WBC Compute Component)

Figure 10.13 Two-stage FIR WBC

operators, and a state space including any delay elements, shift registers or memories.?

A standard SFG synthesis process such as that in Yi and Woods (2006) will create both,
but it is only the state space which restricts the result to a specific MADF actor con-
figuration. The key to designing reusable, configurable accelerators lies in the proper
arbitration of the state space and appropriate design of the circuitry such that the data
relevant to multiple streams may be stored and properly arbitrated onto the computa-
tion portion to enable block or interleaved processing.

To create WBC structures, SFG architectural synthesis is undertaken to create com-
pute and state-space portions for the base configuration, which is then augmented to
give the WBC a flexible internal structure which may be regularly changed without
redesign to achieve regular changes in MADF actor configuration.

The pipelined WBC architecture resulting from SFG architectural synthesis is merely
a retimed version of the original SFG algorithm. The computational resource of the
resource must effectively be time-multiplexed between each of the elements of the input
stream array, with the entire computation resource of the SFG dedicated to a single
stream for a single cycle in the case of interleaved processing, and for multiple cycles in
the case of block processing.

To enable interleaved processing, the first stage in the WBC state space augmentation
process requires k-slowing (Parhi 1999), where the delay length on every edge resulting
from SFQG architectural synthesis is scaled by a factor &, and in the case of interleaved
processing of # input streams, k = #. This type of manipulation is known as vertical.

In the case where block processing is required, base tokens are consumed/produced
from a single-port array element for a sustained number of cycles. Accordingly, the
dataflow accelerator state space should have enough state capacity for all s streams,

2 Henceforth only delay elements are considered.

pAll

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

212

FPGA-based Implementation of Signal Processing Systems

activating the state space associated with a single stream in turn, processing for an arbi-
trary number of tokens, before loading the state space for the next stream. This kind of
load—compute—store behavior is most suited to implementation as a distributed mem-
ory component, with the active memory locations determined by controller schedule.
This is known here as lateral delay scaling, where each SFG delay is scaled into an s-
element disRAM.

Given the two general themes of lateral and vertical delay scalability, an architectural
synthesis process for reusable WBC accelerators to allow multi-stream actor and accel-
erator reuse involves four steps:

1. Perform MADF actor SFG architectural synthesis. For a chosen MADF actor, C
is fixed and defined as the base configuration C,,. This is converted to SFG for archi-
tectural synthesis. The MADF actor C, is the minimum possible set of configura-
tion values for which the resulting pipelined architecture, the base processor P, may
be used, but by regular alteration of the parameterized structure the processor can
implement integer supersets of the configuration. The lower the configuration values
in the base, the greater the range of higher-order configurations that the component
can implement. To more efficiently implement higher-order configurations, C; can
be raised to a higher value. For a two-stage FIR, C;, = {1,1,1}, the WBC of the P, is
shown in Figure 10.13.

2. Vertical delay scalability for interleaved processing. To implement k-slowing for
variable interleaved operation, the length of all delays must be scaled by a constant
factor m. All the lowest-level components (adder/multipliers) are built from pre-
designed accelerators which have fixed pipelined depths (in the case of Figure 10.13
these are all 1) which cannot be altered by the designer. To enable the scaling of these
delays, these are augmented with delays on their outputs to complete the scaling of
the single pipeline stages to that of length . The resulting FIR circuit architecture
for the pipelined FIR of Figure 10.13 is shown in Figure 10.14(a). The notation ()
D refers to an array of delays with dimensions (1, 7). Note that all delay lengths are
now a factor of m, the vertical scaling factor, and note the presence of the added delay
chains on the outputs of the lowest-level components. This type of manipulation is
ideally suited to FPGA where long delays are efficiently implemented as shift registers
(Xilinx 2005).

3. Lateral delay scalability for block processing. For block processing the circuit
delays are scaled by a vertical scaling factor # post lateral scaling to allow combined
interleaved/block processing if required. This results in arrays of delays with dimen-
sions (m, n). The resulting FIR circuit architecture when this is applied to the cir-
cuit of Figure 10.14(a) is shown in Figure 10.14(b). Note the presence of the verti-
cal scaling factor on all delay arrays. This kind of miniature embedded-RAM-based
behavior is ideally suited to FPGA implementation, since these can implement small
disRAM in programmable logic. These disSRAMs have the same timing profile as
a simple delay (Xilinx 2005), and as such do not upset edge weights in the circuit
architecture.

4. Retime structure to minimize lateral delay scalability. When P, is configured to
implement a much higher-order MADF actor configuration than C, very large delay
lengths can result. To minimize these, retiming is applied to the augmented processor
architecture.

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

1B} WO B 1M A

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

ol {5 SHEPEHE -

X
g
(n-1)D
)
D
Y

2n Di=
(a) Vertically scaled two-stage FIR WBC

.................................... o| |2
. > (m,3n) D g 4>
— El g
Lo —
=L > (m,2n) D
1 3 :‘ L b s e e
5|
0; ;

(b) Laterally scaled two-stage FIR WBC

Figure 10.14 Scaled variants of two-stage FIR WBC

10.4.5 WBC Configuration

After creation of the WBC architecture P, it must be configured for use for specific
MADF actor configuration. Consider a base processor created via SFG architectural
synthesis P, realizing a MADF actor with configuration C;, = (r;,X,,s;), wherer;, x;, s,,
respectively represent the rates, token dimensions and number of streams processed by
the actor in question, with pipeline period a, created using SEG architectural synthesis
(Parhi 1999). To realize an MADF actor P, where X is an n-dimensional token of size
x(i) in the ith dimension, the following procedure is used:

1. Determine the vertical scaling factor m, given by

n—1
_ i@
m= |- be(i) . (10.6)

¢ =0

2. k-slow Py, by the factor m.

3. Scale primitive output delays to length (m — 1) X [, where [is the number of pipeline
stages in the primitive.

4. Scale all delays laterally by the scaling factor #, given by

— (10.7)

213

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

214 | FPGA-based Implementation of Signal Processing Systems

8] (8] (8] Figure 10.15 Eight-channel NLF filter bank MADF
c [8lylz » Byl @ graph
O Q O O

10.4.6 Design Example: Normalized Lattice Filter

In order to demonstrate the effectiveness of this kind of architectural synthesis and
exploration approach, it is applied to an eight-channel filter bank design problem, where
each filter takes the form of a normalized lattice filter (NLF) (Parhi 1999). The MADF
graph is shown in Figure 10.15, with accelerators realizing the nlf actors to be created.

As Figure 10.15 shows, in and out arrays generate an array of eight scalar tokens which
are processed by the nlf array. The designer controls the size of the nlf actor array by
manipulating the variable y on the graph canvas. This in turn determines #, the size
of the port array of each element of the nlf actor array. To test the efficiency of this
MADF synthesis and exploration approach the SFG architectural synthesis capability
for P, synthesis is limited to retiming (i.e. advanced architectural explorations such as
folding/unfolding are not performed), placing the emphasis for implementation opti-
mization entirely on the MADF design and exploration capabilities. The base processor
P, operates on scalar tokens with C;, = (1, 1, 1) to maximize flexibility by maximizing the
number of achievable configurations. The target device is the smallest possible member
of the Virtex-II Pro™ family which can support the implementation. This enables two
target-device-specific design rules for efficient synthesis:

FDE if(,Q =(1,1)
Dype =4 LUTRAM ifP > 1 (10.8)
SRL16+FDE otherwise.

The SFG of the base NLF actor is shown in Figure 10.16(a), with the SFG of the NLF
stage shown in Figure 10.17(a). If the lowest-level components (adders and multipli-
ers) from which the structure is to be constructed are implemented using single-stage
pipelined black box components (a common occurrence in modern FPGA), then a par-
ticular feature of the NLF structure is the presence of 36 recursive loops in the structure,
with the critical loop (Parhi 1999) occurring when two pipelined stages are connected.
For single-stage pipelined adders and multipliers, this has a pipeline period, , of 4 clock
cycles. Hence, by equation (10.7), n = 47;—;

The base processor P, is created via hierarchical SFG architectural synthesis (Yi and
Woods 2006), and produces the pipelined architecture of Figure 10.16(b), with the archi-
tecture of each stage as in Figure 10.17(b). After lateral and vertical delay scaling and
retiming, the NLF and stage WBC architectures are as shown in Figure 10.16(c) and
Figure 10.17(c), respectively.

Synthesis of the given architecture for three different values of y has been performed.
?BS-NLF, iBS—NLF and éBS-NLF are the structures generated when yis 1, 2 and 8 respec-
tively, and each dataflow accelerator performs interleaved sharing over the impinging
data streams, whilst results for a single dataflow accelerator processing a 68-element
vector (?SBS—NLF) are also quoted to illustrate the flexibility of the WBC architectures.

A block-processing illustration of 16 streams of four-element vector tokens (}LBS—NLFM)

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

YW B A

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

out

stageg

stageo

stageo

stages

stageg

Advanced Model-Based FPGA Accelerator Design

A A
A
»

T8
L

)

stage;

stages

(b) Pipelined NLF architecture

A 4

stages

A

stage
L gez

!

A
O
X

(1) Dlel m 1) 0 KX)

(c) NLF WBC

Figure 10.16 NLF SFG, pipelined architecture and WBC

A

T

v

w}

I(m,;)D

|(m,1I)D

[mnD]

[mn0]
®
RS | —

Y
[m1D]

[(mnD]

(b) Pipelined NLF stage

(c) NLF stage WBC

Figure 10.17 NLF stage SFG, pipelined architecture and WBC

215

1pUOD PUe SULB | 31385 *[1202/50/52] U0 ARiqIT8ulUO AB|IM ‘TBULEH 01T SaLeIqIT AISIAIUN WBY Sexal Aq OTUR TEZ6L0BTTT8L6/200T OT/10p/wod™Aa|1m Ariqpul|uo//sdny wo.y papeojumod ‘TR TEZ6L06TTT8L6/200T 0T

foym Areaq)|

nip.

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

FPGA-based Implementation of Signal Processing Systems

Table 10.2 NLF post place and route synthesis results on Virtex-Il Pro FPGA

Logic Throughput

LUTs SRL DisRAM mult18 (MSamples/s)
8BS-NLF 1472 - - 312 397.4
*BS-NLF 368 - - 78 377.9
4BS-NLF 186 207 - 39 208.6
8 BS-NLF 186 207 - 39 208.6
1BS-NLFy, 188 7 576 39 135.8

isalso quoted in Table 10.2. These illustrate the effectiveness of this approach for acceler-
ator generation and high-level architecture exploration. Transforming the MADF spec-
ification by trading off number of actors in the family, token size per actor, and number
of functions in the MADF actor cyclic schedule has enabled an effective optimization
approach without redesign.

The initial implementation (y = 8, ! BS-NLF) created an right-element dataflow accel-
erator array. Given the large number of multipliers (mult18 in Xilinx Virtex-II) required
for implementation, the smallest device on which this architecture can be implemented
is an XCV2DA70. However, given the pipeline period inefficiency in the original WBC
architecture, reducing y to 2 produces two four-element vector processors (iBS—NLF)
with almost identical throughput, and enables a significant reduction in required hard-
ware resource with little effect on throughput rate. This amounts to a throughput
increase by a factor of 3.9 for each dataflow accelerator with no extra hardware required
in the WBC. The large reduction in required number of embedded multipliers also
allows implementation on a much smaller XC2DA20 device. Decreasing y still further
to 1 produces a single eight-element vector processor (éBS—NLF). Whilst the throughput
has decreased, a significant hardware saving has been made. The NLF array can now be
implemented on a smaller XC2DA?7 device.

This example shows that the MADF synthesis approach can achieve impressive imple-
mentation results via simple system-level design space exploration. Using a single
pipelined accelerator, this approach has enabled highly efficient architectures (3.9 times
more efficient than one-to-one mappings) to be easily generated, in a much simpler and
more coherent manner than in SFG architectural synthesis. Furthermore, by manipulat-
ing a single DFG-level parameter, this design example can automatically generate imple-
mentations with wildly varying implementation requirements, offering an order-of-
magnitude reduction in device complexity required to implement the design is desired.
This illustrates the power of this approach as a system-level, accelerator-based design
approach with highly efficient implementation results and rapid design space explo-
ration capabilities.

10.4.7 Design Example: Fixed Beamformer System

The structure of the FBF is highly regular and can be represented in a very compact
fashion using MADE, as shown in Figure 10.18. The structure of a beamformer is also
included in Figure 10.19 for comparison.

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

P

nip

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

Advanced Model-Based FPGA Accelerator Design

Fixed Beamformer
>(%)
g
(%)
A >
>(%)
v ;
Adaptive Weight
Generation
Engine

Figure 10.18 Fixed beamformer MADF graph

The MADF graph consists of an array of n inputs, one for each sensor in the array. This
is tightly correlated with the number of members in the DRx and gain actor families, as
well as the size of the port array i on the sum actor (again a port array is denoted in
grey). Hence by altering the value of #, parameterized control of the algorithm structure
is harnessed for a variable number of sensors. By coupling the implementation structure
tightly to the algorithm structure, this gives close control of the number of DRx and gain
accelerators in the implementation.

For the purposes of this design example, n = 128 and the design process targets a
Xilinx Virtex-II Pro™ 100 FPGA (Xilinx 2005). The accelerator library consists only of
complex multiplication, addition and sum accelerators, and hence the entire system is
to be composed from these. The length of the DRx filters is taken as 32 taps. Given that
this structure then requires 16,896 multipliers, and it is desirable to utilize the provided
18-bit multipliers on the target device (of which only 444 are available) this presents a
highly resource-constrained design problem.

To enable the exploration of the number of channels processed by each accelerator in
the implementation, each actor must be able to process multiple channels in the MADF
algorithm. This is enabled using the MADF structure of Figure 10.20. Here, a second
parameter, m, has been introduced to denote the number of actors used to process the n
channels of data. Note that the ports on the DRx and multK actors are now both families

[n] [n]

Figure 10.19 Fixed beamformer overview

[m] [m]

Figure 10.20 Fixed beamformer MADF graph

217

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

218

FPGA-based Implementation of Signal Processing Systems

Table 10.3 FBF post place and route synthesis results on Virtex-Il Pro FPGA

Logic Throughput
m(i) LUTs SRL DisRAM mult18 (MSamples/s)
1(1) 3493 (8%) 16128 (37%) 8448 (8%) 99 (22%) 1.45
2() 4813 (11%) 16128 (37%) 8448 (19%) 198 (45%) 3.18
4(1) 8544 (19%) 16128 (37%) 8448 (19%) 396 (89%) 6.19
1(b) 3490 (8%) 0 (0%) 24576 (56%) 99 (22%) 1.45
2(b) 4812 (11%) 0 (0%) 24576 (56%) 198 (45%) 3.51
4(b) 8554 (19%) 0 (0%) 24576 (56%) 396 (89%) 1.45

of size m to denote the sharing of the actor amongst ﬁ data streams processed in a cyclic
fashion (McAllister et al. 2006). On synthesis, a wide range of synthesis options are avail-
able for the FBF custom circuit system on a chosen device, with an accompanying wide
range of real-time performance capabilities and resource requirements, and these are
summarized in Table 10.3. The breakdown of the proportion of the programmable logic
(LUT/EDE) by dataflow accelerator function (WBC, PB or CCW) is given in Table 10.4.

From an initial implementation consisting of a single accelerator process a 128-
element vector (i.e. interleave shared across the 128 input streams), increasing the value
of m by 2 and 4 has produced corresponding increases in throughput by factors of 2.2
and 4.3 respectively, and it should be noted that the architectures used for accelerator
sharing amongst multiple streams exhibit minimal resource differences. This is a direct
result of the abstraction of the accelerator architectures for target portability. Whilst the
overheads in terms of LUTs (which may be configured as 16-bit SRL or disRAMs) for
the WBC wrapping in the dataflow accelerator are high (up to 35%), the major part of
this is required entirely for storage of on-chip filter tap and multiplier weights in the SFO
parameter banks. This storage penalty is unavoidable without exploiting on-chip embed-
ded BRAMs. In addition, the overhead levels decrease with increasing values of m since
the number of tap weights remains constant independent of 7. The CCW incurs little
LUT overhead, instead exploiting the embedded muxF5/muxF6/muxF7/muxF8 fabric
of the FPGA (Xilinx 2005) to implement the switching. These are not used at all any-
where else in the design and hence are plentiful. Finally, it should be noted that all the
accelerators in the system are 100% utilized depending on input data.

Table 10.4 FBF implementation resource breakdown

LUT FDE
m(i) %WBC %CCW %PB %WBC %CCW %PB

1(3i) 3.7 31.3 6.5 1.3 0 98.7
2(i) 3.6 28.7 69.5 0.9 0 99.1
4(i) 3.2 25.5 71.3 0.3 0 99.7
1(b) 3.7 31.3 6.5 1.3 0 98.7
2(b) 3.6 28.7 69.5 1.0 0 99.0
4(b) 3.2 25.5 71.3 0.3 99.7

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

LIBY W00 B 1 ARe.q

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

Advanced Model-Based FPGA Accelerator Design

Table 10.5 Memory resources available on Virtex-6

Number Off-chip1 Pixel BRAM 215

Capacity 2GB 8K
Access rate (pixels/s) 600 MHz 230 MB/s 600 Mpixel/s
200 MHz 230 MB/s 200 Mpixel/s

10.5 Model-Based Development for
Memory-Intensive Accelerators

The previous section addressed techniques for representing, deriving and optimizing
FPGA accelerators for pipelined streaming operators. It is notable, though, that these
operations are all performed on scalar data elements, which imposes a small overhead
for storage of memory; for the most part memory can be realized using registers, SRLs
or disRAMs. However, in a great many cases the demands for buffer memory are high,
particularly in applications such as image and video processing where large frames of
data are to be handled. In these situations, how are large quantities of buffer memory
realized, handled and optimized?

Consider the memory resources on a Xilinx Virtex-6 FPGA in the context of a typ-
ical memory-intensive operation for video processing: full search motion estimation
(FSME) on CIF 352 x 288 video frames at 30 frames per second. The resources at
the designer’s disposal with which this operation may be realized are summarized in
Table 10.5.> When gauging the anticipated access rate of an on-chip BRAM, it is nec-
essary to take into account the anticipated clock rate of the final synthesize accelerator
and the entire system in which it resides; hence, whilst peak clock rates may reach 600
MHz, operation at around 200 MHz is much more reasonable. The designer’s challenge
is to collect these resources in such a fashion that: data are hosted off-chip where possi-
ble to minimize the on-chip buffering cost, and the final accelerator architecture meets
real-time performance requirements.

10.5.1 Synchronous Dataflow Representation of FSME

A block diagram of the FSME operation is shown in Figure 10.21(a), and an SDF repre-
sentation of the FSME operation is shown in, is shown in Figure 10.21(b).

Consider the behavior of the SDF model in Figure 10.21(b). The actors C and R are
source actors to represent the stream of current and reference frames incident on the
FSME operator. The dimensions of the output tokens indicate the size of the respective
video frames. The current frame Cis decomposed into 396 (16, 16) non-overlapping CBs
via c¢b, with R decomposed into corresponding (48, 48) SWs, each of which is centered
around the same center pixel as the corresponding CB. From each SW are extracted
1089 (16, 16) sub-blocks, with each compared with the ¢b in turn via a minimum abso-
lute difference (MAD) operation, with the lowest of these 1089 metrics selected for

3 Assuming BRAM configuration as 8K x 4-bit BRAM, six of which are used to construct a three-byte “pixel
BRAM”.

219

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

220

FPGA-based Implementation of Signal Processing Systems

Current @ |
Frame CB "
MAD
Reference Select Extract
Frame SW SBs

(a) FSME block diagram

(b) FSME MD-SDF representation

Figure 10.21 Full search motion estimation representations

computation of motion vectors. Accordingly, in order to ensure balanced dataflow, each
CB is replicated 1089 times by up.

Consider now the memory costs of naive implementation of a model such as this on
FPGA, where the FIFO buffering associated with each edge is realized using the available
memory resource. The capacity and access rate requirements for the buffer relating to
each edge are described in Table 10.6.

As Table 10.6 shows, the capacity and access requirements of each of ey, ..., e, are
such that each could be hosted in off-chip RAM, or indeed on-chip BRAM. However,
in the case of e5 and eg there is a major issue: whilst the access rate of these buffers
can be realized using 17-pixel BRAM (102 BRAMs in total), many more BRAMs would
be required to satisfy its capacity requirements than are available on the device. Simi-
larly, the access rate requirements are such that these buffers cannot be realized using
off-chip DRAM. Hence, an architecture such as this could not be realized using the
Virtex-6 FPGA, necessitating refinement to overcome the capacity issues on (up, mad)
and (sb, mad).

Table 10.6 SDF FSME memory requirements

Capacity Rate
Edge pixels BRAM pixels/s BRAM
e, : (C,ch) 101.4 K 13 3.04 M 1
e, : (R, sw) 1229 K 16 396M 1
es : (ch, up) 101.4 K 13 3.04M 1
e, : (sw,sb) 912.4 K 115 27.37M 1
e : (up,mad) 1104M 13,800 33 G 17
eq : (sb, mad) 1104 M 13,800 33 G 17

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

nipL

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

Advanced Model-Based FPGA Accelerator Design

(288,352)

(288,352)

{1,0431243} (16,16)

{01088, 1}

(320,384)

(320,384)

Figure 10.22 FSME modeled using CSDF

Table 10.7 CSDF FSME memory requirements

Capacity Rate
Edge pixels BRAM pixels/s BRAM
e, : (C,ch) 1014 K 13 3.04 M 1
e, : (R,sw) 1229K 16 3.96 M 1

(
(
e; : (cb, cb) 1014 K 13 1.3 T 6500
e, : (sw,sw) 1229K 115 159 T 8000
es : (cb, mad) 256 1 33 G 17
e : (sw, mad) 256 1 33 G 17

10.5.2 Cyclo-static Representation of FSME

Despite being concise, a major issue in the SDF model in Figure 10.21 is duplication of
information; in particular, the excessive capacity requirements of the edges (up, mad)
and (sb, mad) mask the fact that the former houses 1089 copies of the same (16, 16) CB,
whilst the latter contains successive SBs containing substantial amounts of duplicated
pixels. In order to address this issue of duplication of pixels, consider the use of CSDF
for modeling. A CSDF representation of FSME is shown in Figure 10.22.%

Note that cb and sw are now cyclic actors, each of which operates over 431,244 phases.
During the first firing of each, the respective frames are consumed, with the appropriate
sequences of CBs for mad producing over 431,244 firings. In order to satisfy the need to
have access to the entire current and reference frames during each phase for extraction
of the relevant CB and SW, these are “recycled” using the self-loops on each of cb and
sw. Consider the capacities and access rates of the buffers associated with each edge in
Figure 10.22, as detailed in Table 10.7.

As Table 10.7 shows, the capacity and access rates of e; and e, are such that these
can be realized either off-chip or on-chip, whilst the access rate demands of e; and e
demand BRAM storage. In addition, the issue of very large-capacity buffers encountered
in the SDF model has been avoided by exploiting the multi-phase production capabilities
of CSDF - the edges impinging on mad now require sufficient capacity for only a single

4 Note that, henceforth, the notation 11, as seen in Figure 10.22, represents a length-# sequence of elements,
each of which takes the value m.

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

nipL

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

222 | FPGA-based Implementation of Signal Processing Systems

(288,352) (16,16)

(16,16)

{01088, 1}

(320,384) (320,384)

Figure 10.23 Modified FSME CSDF model

CB/SB: very large-capacity savings. Whilst this has come at the cost of an extra buffer
for each of the self-loops on cb and sw, it still represents a very substantial capacity
reduction.

However, it has also come at the cost of very high access rate requirements for the
buffers representing e; and e,. Indeed, these access rates cannot be realized either oft-
chip or on-chip and as such a capacity constraint encountered for the SDF network
has been replaced by an access rate constraint in this CSDF formulation. Consider the
alternative CSDF formulation, shown in Figure 10.23.

In this graph, cb and sw have both been subdivided into a sequence of two actors.
¢cb; is a 396-phase CSDF actor which consumes C during the first phase and recycles
it via a self-loop during the remaining 395 phases allowing it to produce a single CB
per phase. Subsequently, cb, operates over 1089 phases, with a CB consumed during
the first phase and recycled via a self-loop during the remaining 1088, allowing a single
copy to be produced during each phase. The combination of sw; and sw, performs a
single function on R, except that sw, extracts the distinct SBs from each SW rather than
simply duplicating the input, as is the case in cb,. Consider the memory costs for this
CSDF formulation, detailed in Table 10.8.

As described, this approach has had a profound impact on the buffer structure for
FSME. In this case, all buffers can be hosted off-chip, up to and including e4 can be

Table 10.8 CSDF (2) full search motion estimation memory requirements

Capacity Rate
Edge pixels BRAM pixels/s BRAM
e, : (C,chby) 101.4 K 13 3.04 M 1
ey : (R, sw,) 1229K 16 3.96 M 1
es: (chy,ch)) 101.4 K 13 12G 6
e, : (swy,sw;) 1229K 115 15G 8
es : (cby,chy) 256 1 3.04 M 1
eg @ (Swy,sW,) 2304 1 27.37M 1
e, : (chy, ch,) 256 1 33G 17
eg : (swy, cw,) 2304 1 29.8G 149
ey : (cby, mad) 256 1 33G 17
ey : (swy, mad) 256 1 33G 17

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

Advanced Model-Based FPGA Accelerator Design

hosted oft-chip, with the access rates of e, ..., e;, dictating on-chip realization. Whilst
the access rate of eg in particular is quite high and imposes a high BRAM cost, the situ-
ation is now that a realization of this form is at least feasible; this was not previously the
case. In addition, the use of more advanced dataflow modeling approaches exploiting
non-destructive read capabilities can be used to reduce the on-chip cost even further
(Fischaber et al. 2010; Denolf et al. 2007).

10.6 Summary

This section has described techniques to enable system-level design and optimization
of custom circuit accelerators for FPGA using dataflow application models.

The use of MADF as a modeling approach for DSP systems helps encapsulate the
required aspects of system flexibility for DSP systems, in particular the ability to exploit
data-level parallelism, and control how this influences the implementation. This has
been shown to be an effective approach; for an NLF filter design example, impressive
gains in the productivity of the design approach were achieved. In this example, this
included an almost fourfold increase in the efficiency of the implementation via sim-
ple transformations at the DFG level, negating the need for complex SFG architectural
manipulations.

Otherwise, this approach has proven effective at rapid design space exploration, pro-
ducing NLF implementations of varying throughput and drastically different physical
resource requirements (on order-of-magnitude variation in device complexity) simply
by manipulating a single parameter at the graph level. Further, in an FBF design exam-
ple the effectiveness of this approach was demonstrated by enabling rapid design space
exploration, producing a variety of implementations for a specific device via manipula-
tion of a single DFG parameter.

Similarly, the use of CSDF modeling has been shown to make feasible realization of
FPGA accelerators which otherwise could not have been achieved. In particular, for
memory-intensive accelerators which access large amounts of memory at high access
rates, careful design is required to ensure that both the capacity and access rate require-
ments are met, whilst reducing cost if possible. Frequently, this means devising combi-
nations of on-chip BRAM and off-chip DRAM in multi-level memory structures cus-
tomized to the application and performance requirements. The design of an FSME accel-
erator has highlighted both capacity and access rate issues which have been overcome by
intuitive employment of CSDF modeling, allowing an otherwise infeasible accelerator
to be realized on the Virtex-6 FPGA.

Bibliography

Bilsen G, Engels M, Lauwereins R, Peperstraete] 1996 Cyclo-static dataflow. IEEE Trans. on
Signal Processing, 44(2), 397-408.

Bhattacharyya SS, Murthy PK, Lee EA 1999 Synthesis of embedded software from
synchronous dataflow specifications. J. of VLSI Signal Processing, 21(2), 151-166.

Dalcolmo J, Lauwereins R, Ade M 1998 Code generation of data dominated DSP
applications for FPGA targets. In Proc. Int. Workshop on Rapid System Prototyping, pp.
162-167.

223

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

B oW ArRIq)

PUOD-pY

26L801] SUOLUILIOD SAIERIO) 3]0 1{dde 3} AQ POUBACE 316 SIILE YO ‘36N J0'S3|N1 10} ARIGITAUIUO AB]IAA UO

224

FPGA-based Implementation of Signal Processing Systems

Denolf K, Bekooij M, Gerrit J, Cockx], Verkest D, Corporaal H 2007 Exploiting the
expressiveness of cyclo-static dataflow to model multimedia implementations. EURASIP
J. on Advances in Signal Processing, 2007, 084078.

Fischaber S, Woods R, McAllister] 2010 SoC memory hierarchy derivation from dataflow
graphs. /. of VLSI Signal Processing, 60(3), 345-361.

Harriss T, Walke R, Kienhuis B, Deprettere EF 2002 Compilation from Matlab to process
networks realised in FPGA. Design Automation for Embedded Systems, 7(4), 385—403.

Haykin S 2013 Adaptive Filter Theory, 5th edn. Pearson, Upper Saddle River, NJ.

Jung H, Ha S 2004 Hardware synthesis from coarse-grained dataflow specification for fast
HW/SW cosynthesis. In Proc. Int. Conf. on Hardware/Software Codesign and System
Synthesis, pp. 24—29.

Kahn G 1974 The semantics of a simple language for parallel programming. Proc. IFIP
Congress, pp. 471-475.

Lee EA 1991 Consistency in dataflow graphs. IEEE Trans. on Parallel and Distributed
Systems, 2(2), 223-235.

Lee EA 1993a Multidimensional streams rooted in dataflow. IFIP Transactions: Proceedings
of the IFIP WG10.3. Working Conf. on Architectures and Compilation Techniques for Fine
and Medium Grain Parallelism, A-23, pp. 295-306.

Lee EA 1993b Representing and exploiting data parallelism using multidimensional
dataflow diagrams. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
pp. 453-456.

Lee EA, Messerschmitt DG 1987a Synchronous data flow. Proc. of the IEEE, 75(9),
1235-1245.

Lee EA, Messerschmitt DG 1987b Static scheduling of synchronous data flow programs for
digital signal processing. I[EEE Trans. on Computers, 36(1), 24—35.

Lee EA, Parks TM 1995 Dataflow process networks. Proc. of the IEEE, 83(5), 773—-801.

Lee EA, Sangiovanni-Vincentelli A 1998 A framework for comparing models of
computation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
17(12), 1217-1229.

McAllister], Woods R, Walke R,d Reilly D 2006 Multidimensional DSP core synthesis for
FPGA. J. of VLSI Signal Processing Systems for Signal, Image and Video Technology, 43(2),
207-221.

Murthy PK, Lee EA 2002 Multidimensional synchronous dataflow. IEEE Trans. on Signal
Processing, 50(8), 2064—2079.

Najjar WA, Lee EA, Gao GR 1999 Advances in the dataflow computational model. Parallel
Computing, 25(4), 1907-1929.

Parhi, KK 1999 VLSI Digital Signal Processing Systems: Design and Implementation. John
Wiley & Sons, New York.

Sriram S, Bhattacharyya SS 2000 Embedded Multiprocessors: Scheduling and
Synchronization. Marcel-Dekker, New York.

Williamson MC, Lee EA 1996 Synthesis of parallel hardware implementations from
synchronous dataflow graph specifications. In Proc. 30th Asilomar Conf. on Signals,
Systems and Computers, 2, pp. 1340—1343.

Xilinx Inc. 2005 Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
Available from http://www.xilinx.com (accessed June 11, 2015).

Yi Y, Woods R 2006 Hierarchical synthesis of complex DSP functions using IRIS. JEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 25(5), 806—820.

101IPUOD PLE SWL L 83U 385 *[1202/50/52] U0 A1 8UIUO AB|IM “TBULH 9113 SaLRIqIT AISIBAIIN NBY SexaL Ag OTUY TEZ6L06TTT8L6/200T OT/10pAucd Ao 1M Aseiqjpu|uo//sdny woy papeo|umod ‘0TUR TEZ6L0BTTT8L6/200T 0T

e)W00" A3 |1 AR g

11PUOd-P

86UB0| SUOWIWOD BAIER1D) 3|t jdde ay) Aq peuseAob a8 Sapp e YO ‘3N J0 S3|nI o AReiqiT auluo AB|IM Uo

let &hbox {char '046}http://www.xilinx.com
http://www.xilinx.com

