

Complex DSP Core Design for FPGA

. Introduction

It is feasible to incorporate many billions of gates on a single chip, permitting extremely
complex functions to be built as a complete SoC. This offers advantages of lower power,
greater reliability and reduced cost of manufacture and has enabled an expansion of
FPGA capabilities with devices such as Altera’s Stratix® 10 and Xilinx’s UltraScaleTM

FPGA families. With their vast expanse of usable logic comes the problem of imple-
menting increasingly complex systems on these devices.

This problem has been coined the “design productivity gap” (ITRS 1999) and has
increasingly become of major concern within the electronics industry. Whilst Moore’s
law predicts that the number of available transistors will grow at a 58% annual growth
rate, there will only be a 21% annual growth rate in design productivity. This highlights
a divergence that will not be closed by incremental improvements in design productiv-
ity. Instead a complete shift in the methodology of designing and implementing multi-
million-gate chips is needed that will allow designers to concentrate on higher levels of
abstraction within the designs.

As the silicon density increases, the design complexity increases at a far greater rate
since silicon systems are now composed of more facets of the full system design and
may combine components from a range of technological disciplines. Working more
at the system level, designers become more heavily involved with integrating the key
components without the freedom to delve deeply into the design functionality. Existing
design and verification methodologies have not progressed at the same pace, conse-
quently adding to the widening gap between design productivity and silicon fabrication
capacity.

Testing and verification have become a major aspect of electronic design. Verification
of such complex systems has now become the bottleneck in system-level design as the
difficulties scale exponentially with the chip complexity. Design teams may often spend
as much as 90% of their development effort on block or system-level verification (Rowen
2002). Verification engineers now often outnumber design engineers. There are many
design and test strategies being investigated to develop systems to accelerate chip testing
and verification. With the increasing level of components on a single piece of silicon

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Complex DSP Core Design for FPGA

there is an increasing risk involved in the verification of the device. Added to this is the
increased difficulty in testing design components integrated from a third party. So much
more is at stake, with both time and monetary implications. The industry consensus on
the subject is well encapsulated by Rowen (2002): “Analysts widely view earlier and faster
hardware and software validation as a critical risk-reducer for new product development
projects.”

This chapter will cover the evolution of reusable design processes, concentrating on
FPGA-based IP core generation. Section 9.2 discusses design for reuse, and Section 9.3
goes on to to talk about reusable IP cores. Section 9.4 discusses the evolution of IP cores,
and Section 9.5 goes on to talk about parameterizable IP cores. Section 9.6 describes
IP core integration and Section 9.7 covers current FPGA-based IP cores. Section 9.8
presents watermarking. Concluding comments are made in Section 9.9.

. Motivation for Design for Reuse

There is a need to develop design and verification methodologies that will accelerate the
current design process so that the design productivity gap will be narrowed (Bricaud
2002). To enable such an achievement, a great effort is needed to research the mechanics
of the design, testing and verification processes, an area that to date has so often has
been neglected. Design for reuse is heralded to be one of the key drivers in enhancing
productivity, particularly aiding system-level design.

In addition to exponentially increased transistor counts, the systems themselves have
become increasingly complex due to the combination of complete systems on a single
device, with component heterogeneity bringing with it a host of issues regarding logic
design and, in particular, testing and verification. Involving full system design means
that designers need to know how to combine all the different components building up
to a full system-level design. The sheer complexity of the full system design impacts the
design productivity and creates ever more demanding time-to-market deadlines. It is
a multidimensional problem trying to balance productivity with design issues such as
power management and manufacturability.

Design productivity can be enhanced by employing design-for-reuse strategies
throughout the entire span of the project development from initial design through to
functional testing and final verification. By increasing the level of abstraction, the design
team can focus on pulling together the key components of the system-level design, using
a hierarchical design approach.

The 2005 International Technology Roadmap for Semiconductors report covers the
need for design for reuse in great depth (ITRS 2005). To increase overall productiv-
ity and keep pace with each technology generation, the amount of reuse within a system
design must increase at the same rate, and the level of abstraction must rise. A summary
of one of the tables is given in Table 9.1. Productivity gains by employing reuse strate-
gies for high-level functional blocks are estimated to exceed 200% (ITRS 2005). These
reusable components need to be pre-verified with their own independent test harness
that can be incorporated into the higher-level test environment. This can be achieved
by incorporating IP cores from legacy designs or third-party vendors. The need for such
cores has driven the growth of an IP core market, with ever greater percentages of chip
components coming from IP cores.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Table . SoC design productivity trends (normalized to 2005)

Design needed to be reused (%) 58 66 74 82 90
Trend SoC total logic size 5.5 8.5 13.8 20.6 34.2
Required productivity for new designs 4.6 6.7 10.2 14.3 22.1
Required productivity for reused designs 9.2 13.5 20.4 28.6 44.2

In 2006, the ITRS reported that the percentage of logic from reused blocks was at 33%,
and this figure is expected to reach 90% by 2020. It is hard to determine if this ambitious
target will be achieved, but in 2016 the Design & Reuse website (http://www.design-
reuse.com/) boasted 16,000 IP cores from 450 vendors. Thus there seems to be an active
community involved in producing IP cores but, of course, this does not translate into
reuse activity.

The discussion to date regarding design for reuse has focused on ASIC design. How-
ever, some of the key concerns are becoming increasingly relevant with FPGA design.
With the onset of microprocessors and other additional auxiliary components on an
FPGA, the drive is now for system-level design on a single device. With this advance
comes the need to drive design reuse methodologies for FPGA technologies and to close
the design productivity gap.

. Intellectual Property Cores

One of the most favorable solutions for enhancing productivity is the strategy of using
pre-designed functional blocks known as silicon IP cores. The term “IP core” applies
to a range of implementations ranging from hard cores, which are given in the form of
circuit layout, through to soft cores, which can be in the form of efficient code targeted
at programmable DSP or RISC processors, or dedicated cores captured in an HDL.

The flexibility inherent in DSP processor solutions has often been cited as a key rea-
son for their widespread use within industry, despite the obvious reduction in overall
performance criteria such as speed, area and power. At the other end of the spectrum
application-specific hardware designs provide unrivaled performance capabilities at the
cost of design flexibility.

Design-for-reuse methodologies provide the flexibility allowing designs targeted to
one project to be regenerated for another; the key is how to develop the initial design so
that high performance can be obtained meeting the changing needs of the project spec-
ifications. Within the realms of ASIC and FPGA implementations, IP cores are often
partitioned into three categories: hard, firm and soft. Hard IP refers to designs repre-
sented as mask layouts, whereas firm IP refers to synthesized netlists for a particular
technology. Soft IP refers to the HDL version of the core that will have scalability and
parameterization built in. For the latter, the term that has evolved is parameterizable IP.
They can be designed so that they may be synthesized in hardware for a range of spec-
ifications and processes. For DSP applications parameters such as filter tap size, DCT
point size, and wordlength may be made flexible (Ding et al. 1999). Parameters con-
trolling these features would be fed into the code during the synthesis, resulting in the

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}http://www.design-reuse.com/
let &hbox {char '046}http://www.design-reuse.com/
http://www.design-reuse.com/
http://www.design-reuse.com/

Complex DSP Core Design for FPGA

Soft IP cores Hard IP cores

Scalability

Flexibility

Portability

Predictability

Protection

Performance

Firm IP cores

Design confidence

Design flexibility

Figure . Benefits of IP types

desired hardware for the application. There are advantages and disadvantages with each
type of IP core, as shown in Figure 9.1.

Some flexibility can still be included from the outset in firm and hard IP devices. In
these cases, the IP parameters that define the core are termed static IP (Junchao et al.
2001), whereby registers internal to the final design can be set to allow a multiplexing of
internal circuits so as to reconfigure the functionality of the design. Reconfiguration has
been a subject of great interest for FPGAs, particularly with their increasing capabilities
(see Alaraje and DeGroat 2005).

In contrast, the IP parameters within soft IP cores are termed dynamic IP parameters.
They are often local or global parameters such as data widths, memory sizes and timing
delays. Control circuitry may also be parameterized, allowing scalability of the design.
Parameters may be set to allow the same primary code to optimize for different target
technologies from ASIC libraries to different FPGA implementations.

Many companies offer IP products based around DSP solutions, that is, where the IP
code is embedded onto DSP processors. This offers full flexibility, but with the obvious
reduction in performance in terms of area, power and speed. Texas Instruments and
particularly ARMTM are two examples of successful companies supplying chipsets with
supporting libraries of embedded components.

In a similar manner, there are now many companies delivering firm and soft IP cores.
Several FPGA companies not only sell the chips on which the user’s designs can be
implemented, but can also provide many of the fundamental building blocks needed
to create these designs. The availability of such varied libraries of functions and the
blank canvas of the FPGA brings great power to even the smallest design team. They
no longer have to rely on internal experts in certain areas, allowing them to concentrate
on the overall design, with the confidence that the cores provided by the FPGA vendors
have been tested through use by previous companies. The following list of current IP
vendors (Davis 2006) shows the diversity of IP products:

CEVA: The CEVA families of silicon IP cores are fully programmable low-power archi-
tectures for signal processing and communications (http://www.ceva-dsp.com/).

Barco-Silex: IP cores in RTL HDL form or netlist for cryptography functions including
AES, Data Encryption Standard (DES) and hashing, public key and video products
including JPEG 2000, JPEG, MPEG-2 and VC-2 LD (http://www.barco-silex.com).

OpenCores: OpenCores is the world’s largest site for development of hardware IP cores
as open source (www.opencores.org).

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}http://www.ceva-dsp.com/
http://www.ceva-dsp.com/
let &hbox {char '046}http://www.barco-silex.com
http://www.barco-silex.com
let &hbox {char '046}www.opencores.org
www.opencores.org

 FPGA-based Implementation of Signal Processing Systems

Digital Blocks: VHDL and Verilog core for various network functionality includ-
ing UDP, IPv4, IPv6 and Transmission Control Protocol (TCP) (http://www.
digitalblocks.com/).

Within hard IP cores, components can be further defined (Chiang 2001), although
arguably the definitions could be applied across all variations of IP cores, with the pre-
silicon stage relating more to the soft IP core and the production stage relating to a
pre-implemented fixed design hard IP core:

Pre-silicon: Given a one-star rating if design verified through simulation.
Foundry verified: Given a three-star rating if verified on a particular process.
Production: Given a five-star rating if the core is production proven.

When developing IP, vendors often offer low-cost deals so as to attract system design-
ers to use their new product and prove its success. Once silicon proven, the product
offers a market edge over competing products.

. Evolution of IP cores

As technology advances, the complexity of the granularity of the cores blocks increases.
This section gives a summary of the evolution of IP cores.

Within the realms of ASICs, families of libraries evolved bringing a high level of
granularity to synthesis. At the lowest level the libraries define gated functions and
registers. With increased granularity, qualified functional blocks were available within
the libraries for functions such as UARTs, Ethernet and USBs. Meanwhile, within the
domain of DSP processors, companies such as TI were successfully producing software
solutions for implementation on their own devices.

The development of families of arithmetic functions is where the role of IP cores in
design for reuse for ASIC and FPGA designs came to play. It was a natural progression
from the basic building blocks that supported ASIC synthesis. The wealth of dedicated
research into complex and efficient ways of performing some of the most fundamental
arithmetic operations lent itself to the design of highly sophisticated IP cores operating
with appealing performance criteria.

Figure 9.2 illustrates the evolution of IP cores and how they have increased in complex-
ity, with lower-level blocks forming key components for the higher levels of abstraction.
The arithmetic components block shows a number of key mathematical operations, such
as addition, multiplication and division, solved and implemented using the techniques
described in Chapter 3. The list is far from conclusive.

With greater chip complexity on the horizon, arithmetic components became the
building blocks for the next level in the complexity hierarchy, for designs such as fil-
ter banks consisting of a large array of multiply and accumulate blocks. This led to the
development of fundamental DSP functions such as FFT and DCT. These examples are
matrix-based operations consisting of a large number of repetitive calculations that are
performed poorly in software. They may be built up from a number of key building
blocks based on multiply and accumulate operations.

The structured nature of the algorithms lends itself to scalability, allowing a number
of parameters to control the resulting architecture for the design. Obvious examples

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.digitalblocks.com/
http://www.digitalblocks.com/

Complex DSP Core Design for FPGA

Adaptive filters

Video compression

DCT
Wavelets

RLS

LMS

JPEG

H.263

Audio compression

CELP
AAC

MP3

ADPCM

Channel
equalisation

Echo

cancellation

Adaptive
beamforming

MPEG 4

FIR Filter

banks

FFT

IIR
Filter

banks

Increasing
levels of

complexity

Pixel
generation

Motion
compensation

Bit stream
packers

MPEG 2

Arithmetic Components

Carry
Save
adder

High
radix

adders

Carry look-
ahead
adder

Carry

lookahead

multipliers

SRT

division

Booth
encoded

multipliers

High
radix

division

High radix

multipliers

Figure . Evolution of IP cores

of parameters are wordlength and truncation. Other examples would be based on the
dimensions of the matrix operations, relating, for example, to the number of taps on a
filter. The work devoted to a single application could be expanded to meet the needs of
a range of applications.

Other more complicated foundation blocks were developed from the basic arithmetic
functions. More complicated filter-based examples followed such as adaptive filters
implemented by the rudimentary LMS algorithm or the more extravagant QR-RLS algo-
rithm (see Chapter 11). Highly mathematical operations lend themselves well to IP core
design. Other examples, such as FEC chains and encryption, whereby there is a highly
convoluted manipulation of values have also been immensely successful.

IP cores have now matured to the level of full functions that might previously have
been implemented on independent devices. Again there is an increased level of com-
plexity. Within image processing, the DCT is a key algorithm for JPEG and MPEG func-
tions. Each of these will be covered in more detail below.

9.4.1 Arithmetic Libraries

Figure 9.2 lists a number of basic mathematical operations, namely addition, multiplica-
tion, division and square root. The efficient hardware implementation of even the most

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

basic of these, addition, has driven an area of research, breaking down the operations
to their lowest bit level of abstraction and cleverly manipulating these operations to
enhance the overall performance in terms of area, clock speed and output latency (Koren
1993). This subsection gives some detail on the choice of arithmetic components and
how parameters could be included within the code.

Fixed-Point and Floating-Point Arithmetic
The arithmetic operations may be performed using fixed-point or floating-point arith-
metic. With fixed-point arithmetic, the bit width is divided into a fixed-width magnitude
component and a fixed-width fractional component. Due to the fixed bit widths, over-
flow and underflow detection are vital to ensuring that the resulting values are accurate.
Truncation or rounding would be needed to protect against such problems.

With floating-point arithmetic, the numbers are stored in a sign–magnitude format.
The most significant bit represents the sign. The next component represents an expo-
nential value. Biasing is used to enable the exponent to represent very small and very
large number. The remaining data width is the mantissa, which represents the fractional
component of the number and is given the boundaries of greater than or equal to 1 but
less than 2. The greater flexibility of floating-point enables a wider range of achievable
values.

Although number representation within the data width differs for fixed-point and
floating-point design, there is overlap in how the main functionality of the operation
is performed, as illustrated for multiplication in Figure 9.3; there has been research into
automating the conversion from fixed-point to floating-point.

Addition, Multiplication, Division and Square Root
There has been an extensive body of work devoted to high-performance implementa-
tions of arithmetic components as indicated in Chapter 3. At was clear from the descrip-
tion given in Chapter 5, dedicated hardware functionality has been included in many

Operation Mantissa
operation

Exponent
operation

Fixed point Floating point

Similar operation

Figure . Fixed- and floating-point operations

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

FPGA families to support fixed-point addition/subtraction and multiplication and is
supported in high- level synthesis tools. Division and square root are more complex
techniques, and procedures for their implementation were described in Chapter 3. Most
FPGA vendors supply IP libraries to support such functions.

9.4.2 Complex DSP Functions

More complex DSP cores can be created from lower-level arithmetic modules as
illustrated in Figure 9.2, leading to the creation of systems for audio and video. For
example, FFT cores can be used to create OFDMA systems and a power modulation/
demodulation scheme for communications applications such as wireless (802.11a/g)
or broadcasting (DVB-T/H). DCT and wavelet cores are used for a wide range of
image processing cores, and LMS and RLS filtering cores applied to a range of adaptive
beamformers and echo cancelation systems.

9.4.3 Future of IP Cores

As the level of abstraction within the core building blocks in designs increases, the role
of the designer moves toward that of a system integrator, particularly with development
using current FPGA devices enabling full system functionality on a single device. For
the growth in IP core usage to continue, other aspects of the design flow will need to be
addressed. This has driven developments in higher-level languages along with associated
synthesis tools.

. Parameterizable (Soft) IP Cores

This section covers the development of parameterizable IP cores for DSP functions. The
starting point for the hardware design of a mathematical component may be the SFG
representation of the algorithm. Here, a graphical depiction of the algorithm shows the
components required within the design and their interdependence. The representation
could be at different levels, from the bit-level arithmetic operations through to the cell-
level functions.

Figure 9.4 shows the conventional design flow for a DSP-based circuit design, starting
from the SFG representation of the algorithm. If a certain aspect of the specification
were to be changed, such as wordlength, then the traditional full design flow would need
to be repeated. The development of the IP core where the HDL is parameterized allows
this flow to be dramatically altered, as shown in Figure 9.5.

The IP core design process needs to encompass the initial studies on data performance
on the effects of wordlength and truncation, etc. Effort is needed to ensure that opera-
tion scheduling would still be accurate if additional, pipeline stages are included. The aim
is for the parameterization of the core to lead seamlessly to a library of accurate cores
targeted to a range of specifications, without the need to alter the internal workings of
the code.

The system should effectively allow a number of parameters to be fed into the top level
of the code. These would then be passed down through the different levels of abstraction
of the code to the lowest levels. Obviously, considerable effort is needed at the archi-
tecture level to develop this parameterizable circuit architecture. This initial expense in

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Algorithmic study
Software simulations to
determine wordlength

requirements

Architecture
retiming and
optimisation

Architecture synthesis
Processor latency,

truncation, wordlengths and
internal word growth

Realisable
circuit

architecture

Synthesis into
EDIF netlists

Floorplan place and route

Circuit
layout

Simulations of HDL
model to confirm

accuracy of design

Signal
Flow

Graph

HDL
synthesis-

able code

Reiterate to achieve
efficient area/time

Figure . Circuit design flow

terms of time and effort undoubtedly hinders the expanded use of design-for-reuse prin-
ciples. However, with this initial outlay great savings in company resources of time and
money may be obtained. The choice of design components on which to base further
designs and develop as IP is vitally important for this success. The initial expenditure
must, in the long run, result in a saving of resources.

Future design engineers need to be taught how to encompass a full design-for-reuse
methodology from the project outset to its close. The design process needs to consider
issues such as wordlength effects, hardware mapping, latency and other timing issues
before the HDL model of the circuit can be generated. The aspects that need to be con-
sidered create a whole new dimension to the design process, and designers need to keep
in mind reusability of whatever they produce whether for development or test purposes.

If a design is developed in a parameterized fashion then initial analysis stages can be
eliminated from the design flow, as illustrated in Figure 9.5, allowing additional circuits

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

Synthesis into

EDIF netlists

Floorplan place and route

Circuit

layout

Simulations of HDL

model to confirm

accuracy of design

Parameterisable

circuit

architecture

Software simulations to
determine wordlength

requirements

Choice of

parameters
E.g. wordlength, pipelining,

number of inputs

IP core

Figure . Rapid design flow

to be developed and floorplanned extremely quickly, typically in days as opposed to
months. This activity represents a clear market for IP core developers (Howes 1998) as
it can considerably accelerate the design flow for their customers. However, it requires
a different design approach on behalf of the IP core companies to develop designs that
are parameterizable and will deliver a quality solution across a range of applications.

9.5.1 Identifying Design Components Suitable for Development as IP

Within a company structure, it is vital that the roadmap is considered within the devel-
opment of IP libraries as there is a greater initial overhead when introducing design-for-
reuse concepts. Greater success can be achieved by taking an objective look at possible
future applications so that a pipeline of developments can evolve from the initial ground
work. If design for reuse is incorporated from the outset then there can be immense
benefits in the development of a library of functions from the initial design.

It is often possible to develop a family of products from the same seed design by includ-
ing parameterization in terms of wordlength and level of pipelining, and by allowing
scalability of memory resources and inputs.

Larger designs may need to be broken down into manageable sections that will form
the reusable components. This is particularly true for large design such as MPEG video
compression whereby a range of different applications would require slightly differ-
ent implementations and capabilities. By picking out the key components that remain
unchanged throughout the different MPEG profiles and using these as the key hard-
ware accelerators for all of the designs, vast improvements in time to market can be
made. Furthermore, existing blocks from previous implementations have the advantage

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Company roadmap

Repetitive block

Scalability

Library of IP

Hierarchical design

Figure . Components suitable for IP

of having been fully tested, particularly if they have gone to fabrication or deployment
on FPGA. Reusing such blocks adds confidence to the overall design. Existing IP cores
may also form the key building blocks for higher-level IP design, creating a hierarchical
design. These key points are illustrated in Figure 9.6.

9.5.2 Identifying Parameters for IP Cores

Identifying the key parameters when developing an IP core requires a detailed under-
standing of the range of implementations in which the core may be used. It is important
to isolate what variables exist within possible specifications. The aim is to create as much
flexibility in the design as possible, but only to the extent that the additional work will be
of benefit in the long run. Overparameterization of a design affects not only the develop-
ment but also the verification and testing time needed to ensure that all permutations
of the core have been considered. In other words, consider the impact on the design
time and design performance by adding an additional variable and weigh this up with
thoughts on how the added flexibility will broaden the scope of the IP core.

Figure 9.7 lists some of example parameters: modules/architecture, wordlength, mem-
ory, pipelining, control circuitry, and test environment. Aspects such as wordlength or
truncation can be parameterized. Other features can be used to allow full scalability,
such as scaling the number of taps in an FIR filter. The diagram highlights the flexibil-
ity of allowing different modules depending on the application, or enabling the level of
pipelining to be varied. Scalable parameters such as wordlength and level of pipelining
affect the timing and the operations of the IP core and therefore need to be accounted
for within initial development, so that the code can rapidly be re-synthesized for a new
architecture. This a key factor for the success of an IP core.

It is crucial that the resulting core has performance figures (in terms of area, power
and speed) comparable to a handcrafted design. As usual, the process comes down to
a balance between time and money resources and the performance criteria of the core.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

Scalability

Wordlength

A

B

C

D

Modules / architecture

A

B

C

D

Pipelining

Core

FPGA

ASIC

Targeting different processes

Truncation Rounding

Arithmetic:

Radix
Two’s complement
Booth encoding
Carry-save etc.

Figure . IP parameters

With time to market being a critical aspect to a product’s success, the continuing use of
IP components within the electronics industry has major benefits.

With further parameterization, cores can be developed to support a range of different
technologies enabling the same design to be re-targeted from ASIC to FPGA, as high-
lighted in Figure 9.7. Allowing the same code to be altered between the two technologies
has the obvious advantage of code reuse; however, it also allows for a verification frame-
work whereby cores are prototyped on FPGA and then the same code is re-targeted to
ASIC. There is obviously no guarantee that the code conversion from FPGA to ASIC
implementations will not in itself incur errors. However, the ability to verify the code on
a real-time FPGA platform brings great confidence to the design process and enables
even the functional design to be enhanced to better meet the needs of the specification.

Consideration must be given to the level of parameterization as it makes the design
more flexible and widens the market potential for the IP core. Gajski et al. (2000) high-
light the issue of overparameterization, as increasing the number of variables compli-
cates the task of verifying the full functionality of each permutation of the design. There
is also the aspect that designs have been made so generic that they may not match the
performance requirements for a specific application. Gajski et al. argue that increas-
ing the number of parameters decreases the quality and characterizability of the design,
that is to say, how well the design meets the needs of the user. There are also the added
complications with verification and testing. These points are highlighted in Figure 9.8.

An obvious parameter is wordlength, which ultimately represents the trade-off
between SNR and performance criteria such as area and critical path. Figure 9.9 gives
an illustration of such analysis by plotting SNR against a range of wordlengths. It can

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Number of
parameters

Quality
Ease of verification

and testing
Characterisability

Balance
of needsG

en
er

al
ity

R
el

ia
bi

lit
y

Figure . Effect of generalization on design reliability

be seen that increasing the wordlength does not significantly improve the overall per-
formance. For addition an increase of one bit will linearly scale the area of the resulting
design, whereas it has an exponential effect for multiplication and division. As with area,
additional bits will affect critical path, possibly resulting in the need to introduce further
pipeline stages.

Existing designs may have relied on carefully crafted libraries of arithmetic functions
that were scalable in terms of bit width and level of pipelining, providing optimum per-
formance in terms of area and speed. However, the impact of introducing processing
blocks has a granular impact on area and performance when adjusting wordlengths.
Obviously, there will be a need to add parameters to allow the wordlengths to be varied
from the module boundary without having to manually edit the code.

Memory will also need to be scalable to account for the different wordlengths, but also
for variations in the number of inputs or stored values. In addition, flexibility will need
to be included within the code to allow different types of memory blocks to be employed
in accordance with the choice of target technology.

In Verilog, one of two solutions can be used. Either instantiations of BRAMs for the
target device can be scripted with DEFINEs at the top level of the code pointing to the
memory of choice. Alternatively, the code can be written in such a way as to “imply”
the application of a memory, which will be picked up during synthesis and will instanti-
ate the memories accordingly. However, slight improvements may be still be obtained if
the memory instantiations are hand-crafted but this will result in more complex code.

Signal to
noise ratio

(SNR)

Wordlength

Negligible improvement
in SNR

Figure . Wordlength analysis

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

Allowing flexibility in the data rate and associated clock rate performance for an appli-
cation requires the ability to vary the level of pipelining to meet critical path require-
ments. This may tie in to changes in the wordlength and often a variation in the number
if pipeline stages are to be part of the reusable arithmetic cores. Obviously, an increase
or decrease in the number of pipeline cuts in one module will have a knock-on effect
on timing for the associated modules and the higher level of hierarchy as discussed in
Chapters 8 and 10.

Thus, control over the pipeline cuts within the lower-level components must be acces-
sible from the higher level of the module design, so that lower-level code will not need
to be edited manually. Control circuitry is coupled strongly with the level of pipelining
and therefore must include some level of scalability to ensure that the design is totally
parameterizable.

An alternative method of developing parameterizable cores can be used to develop a
software code to automate the scripting of the HDL version of the module. This is par-
ticularly useful with Verilog as it does not have the same flexibility in producing scalable
designs as VHDL does.

Parameterized Design and Test Environment
All associated code accompanying the IP core should be designed with scalability in
mind. Bit-accurate C-models used for functional verification should have the capability
to vary bit widths to match the IP core. For cycle accurate testing, the timing must also
be considered. Testbenches and test data derivation are also required to be parameter-
izable, allowing for a fully automation generation of an IP core and it associated test
hardness. The use of software such as a C-model to generate the test hardness and test
data files may be advantageous in the development of the IP core. This is illustrated in
Figure 9.10.

9.5.3 Development of Parameterizable Features

Many of the IP designs applied for ASIC design can be expanded for FPGA implementa-
tions. Each family of devices has its own memory components and methods for instan-
tiating the built-in modules. The principle would be to design the code so as to allow
the core to be re-targeted at the top level to the family FPGA devices of choice. This
is particularly important as FPGAs are rapidly progressing, thus legacy code needs to
accommodate additions for future devices and packages.

Arithmetic Block Instantiation
One example of the variations between FPGA devices is memory blocks. Each family
has its own architecture for these blocks as outlined in Chapter 5. They can either be
instantiated directly, or the memories can be inferred by synthesis tools. The latter allows
the synthesis tool to pick up the memory blocks directly from the library and map the
register values to this memory or even to ROM blocks. This has obvious benefits in that
the code does not become FPGA family-specific.

There may still be a benefit in manually instantiating the memory blocks as a slight
improvement in usage of the blocks can sometimes be achieved. However, the code is
specified for the target device.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Floating point C-model

Functional operation

Key parameters:
number of inputs, filter dimensions,

performance criteria such as pipelining,
memory dimensions, wordlengths

Fixed point
cycle accurate C-model

Test cycle accurate
C-model against the
functional C-model

Develop HDL

Test HDL
 against the

bit accurate C-model

Generate
HDL test bench

and test data

HDL with test bench
and test data

Figure . Design flow

Arithmetic Block Instantiation
Different target FPGAs may have variants of arithmetic operations available for the user.
Typically the FPGA will contain a number of high-performance DSP blocks for instan-
tiation. If the code is to be employed over a range of FPGA families and even between
FPGA and ASIC, then there needs to be a facility to define the operator choice at the top
level. Within Verilog, this would be done through the use of DEFINEs held in a top-level
file, allowing the user to tailor the design to their current requirements.

9.5.4 Parameterizable Control Circuitry

For complex modules, there may be a need to allow for scalable control circuitry, i.e. a
framework that will allow for the changes in parameters, such as the knock-on effect
from additional pipelining delays. Any increase in the number of inputs or wordlength
may have an effect on the scheduling and timing of the module. It may be possible to
develop the control circuitry to cope with these variations.

9.5.5 Application to Simple FIR Filter

This section concludes with an example of parametric design applied to a simple FIR
filter. The key parameters for the design will be highlighted and suggestions made

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

x(n)

y(n)

× × ×
a1 a2 a3 aN–1

Z–1

×
…

Top level of
hierarchy
Level 1

Arithmetic
level of

hierarchy
Level 3

Repetitive module level of
hierarchy Level 2

Σ Σ Σ

Z–1 Z–1

Figure . FIR filter hierarchy example

concerning how they can be incorporated into the code. Recall the difference equation
for an FIR filter (equation (4.2)).

In this example, the FIR filter has three levels of hierarchy as depicted in Figure 9.11:
� Level 1: This is the top level of the filter structure with input x() and output y(n).
� Level 2: The top level of the FIR filter can be composed of a single DSP processing

block to compute a0x(n) followed by an addition.
� Level 3: This is the arithmetic operation level, consisting of a single multiply, add and

delay modules.

Another dimension of the design may be the folding of the FIR operations onto a
reduced architecture as described in Chapter 8 where the hardware modules (shown
as level 2 in Figure 9.11) are reused for different operations within the filter. Of course,
multiplexers and programmable register blocks need to be added, and in this example
all the MAC operations are performed on one set of multiplier and adder modules. The
multiplexers are used to control the flow of data from the output of the MAC opera-
tions and back into the arithmetic blocks. The choice of level of hardware reduction will
depend on the performance requirements for the application.

. IP Core Integration

One of the key challenges of successful design reuse is with the integration of the IP cores
within a user’s system design. This can often be a stumbling block within a development.
Investigations have been carried out to highlight these issues (Gajski et al. 2000), and
guidelines have been set out to try to standardize this process (Birnbaum 2001; Coussy
et al. 2001).

For the successful integration of an IP core into a current design project, certain design
strategies must be employed to make the process as smooth as possible. This section
highlights some of the pitfalls that might be met and provides some guidance when
dealing with IP core sources externally to the design team, whether within or outside
the company.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

One of the considerations that may need to be addressed is whether to outsource IP
components externally, or even source the IP from within a company or organization
but from different departments. Successful intra-company use of IP requires adequate
libraries and code management structures. Incorporating IP components from other
design teams can often be the main barrier slowing down the employment of design-
for-reuse strategies in system-level design.

9.6.1 Design Issues

Greater success can be obtained by taking an objective look at possible future appli-
cations so that a pipeline of developments can evolve from the initial ground work. If
design for reuse is incorporated from the outset then there can be immense benefits in
the development of a library of functions from the initial design.
� Need to determine the parts of the design that will be useful in future developments.
� What are possible future applications?
� Study the roadmap for the product.
� Is there a possibility of development of a family of products from the same seed

design?
� How can a larger design be partitioned into manageable re-usable sections?
� Find existing level of granularity, i.e. is there any previous IP available that could pro-

vide a starting level for development?

Outsourcing IP
One of the limiting factors of using outsourced IP is the lack of confidence in the IP. The
IP can be thought of as having different grades, with one star relating to a core verified by
simulation, and three stars relating to a core that has been verified through simulation
on the technology (i.e. a gate-level simulation). A five-star IP core provides the most
confidence as it has been verified through implementation (Chiang 2001).

FPGA vendors have collaborated with the IP design houses to provide a library of
functions for implementation on their devices. The backing of the FPGA vendors brings
a level of confidence to the user. The aspect of core reliability is not as crucial for FPGA
as it is for ASIC. However, it is still important. Time wasted on issues of IP integration
into the user’s product may be critical to the success of the project.

Certain questions could be answered to help determine the reliability of an IP vendor:
� Has the core been in previous implementations for other users?
� Do the company supply user guide and data book documentation?
� Does the core come supplied with its own testbench and some test data?
� Will the company supply support with the integration, and will this incur an added

cost?

In-house IP
For a small company within the same location, it would be a much easier task to share
and distribute internal IP. However, this task is logistically difficult for larger companies
spanning a number of locations, some of which may be affected by time zones as well as
physical distance.

It would be wise for the company to introduce a structure for IP core design and give
guidelines on the top-level design format. Stipulating a standard format for the IP cores

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

could be worthwhile and create greater ease of integration. Forming a central repository
for the cores once they have been verified to an acceptable level would be necessary to
enable the company’s full access to the IP. Most companies already employ some method
of code management to protect their products.

Interface Standardization
IP integration is a key issue as it ensures IP reuse and core configurability. IP cores are
becoming more complex and configurable and can have numerous ports and hundreds
of different configurations. Thus the provision of standardized interfaces is vital and the
IP-XACT standard provides a mechanism for standardizing IP interfaces. It is now an
IEEE standard (IEEE 2014) and is a mechanism to express and exchange information
about design IP and its required configuration.

IP-XACT was developed by the Spirit consortium to enable sharing of standard com-
ponent descriptions from multiple component vendors (Murray and Rance 2015). It
defines an XML schema that is very easy to process and has the ability to make IP more
“integration-ready” through interface standardization. It is argued that it can result in a
30% improvement in the time and cost of SoC integration.

It allows the creation of an interface on the component that contains a well- known set
of ports called a bus interface; it can generally have high- level transactional or dataflow
characteristics and behave as master or slave and also have different variants like direc-
tion and size. Once defined, these bus definitions can be used in conjunction with IP-
XACT component descriptions to describe hardware interfaces which define the phys-
ical ports and allow mapping of these ports to the standardized definition.

Once this mapping has been defined, it is a case of checking that all of the required
ports in a bus definition have been mapped, all directions are correct, all port widths are
consistent with the bus definition, and there is no illegal mapping of ports.

. Current FPGA-based IP cores

There are a number of cores available, both open source and commercial offerings. The
open source cores tend to be available from the OpenCores website (opencores.org) and
commercial offerings are available from a range of sites (see www.design-reuse.com/).
The FPGA vendors also have their own IP repositories.
� Xilinx through LogiCore and their partner offer IP cores for DSP and math, embedded

communications, memory interfaces and controllers and video and imaging.
� Altera’s MegaCore® outlines cores for some FIR filters, FFTs, DRAM and SRAM con-

trollers and their third-party providers offer a wide range of cores for communica-
tions, interfaces, DSP and video processing.

� Microsemi CompanionCore’s portfolio offers a comprehensive collection of data
security, image and vision processing, communications and processors, bus interfaces
and memory controller cores.

� Lattice Semiconductor’s IP portfolio comprises cores for DSP, Ethernet, PCI Express
and video processing and display.

The FPGA companies aim to develop IP core technology to ensure a better relation-
ship with their customer base and may look to provide this IP to ensure FPGA sales.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}www.design-reuse.com/
www.design-reuse.com/

 FPGA-based Implementation of Signal Processing Systems

Thus in many cases, the IP requirements tend to be driven by the customer base. Also,
FPGA companies will sometimes provide IP through their university programmes to
stimulate technical interest in this areas.

. Watermarking IP

Protecting FPGA IP has become a key research area both in terms of protecting the
investment that the IP vendors have made but also as a reassurance to their customers
that their investment was indeed worthwhile and has not been tampered with. For these
reasons, an increasing amount of attention has been paid to developing techniques for
ensuring this protection (Teich and Ziener 2011).

One solution is to hide a unique signature in the core, essentially termed watermark-
ing, although there are also techniques for validating the core with no additional sig-
nature (Teich and Ziener 2011). Identification methods are based on the extraction of
unique characteristics of the IP core, e.g. LUT contents for FPGA IP cores allowing the
core author to be identified.

The concept of digital watermarking FPGA was first proposed by Lach et al. (1998).
The owner’s digital signature is embedded into an unused LUT located in a constrained
area of unused slices in the FPGA at the place and route level of the implementation.
This area is then obfuscated in the design using unused interconnect and “don’t care”
inputs of neighboring LUTs. The approach uses additional area and may impact timing
and be vulnerable to attacks that look to remove the signature.

An alternative approach in Jain et al. (2003) embeds the watermark at the place and
route stage by modifying the non-critical path delay between non-synchronous regis-
ters. It does not need additional hardware resources but can impact the path delay, and
thus the performance of the design. The DesignTag is a novel, patented, security tag by
Kean et al. (2008) which is used to verify the authenticity of a semiconductor device.
It comprises a small, digital circuit which communicates through the package with an
external sensor.

. Summary

This chapter began by highlighting the need for design for reuse to address the challenges
of building increasingly complex SoC devices. The increasing levels of silicon technology
have stressed the need to reuse good designs from previous projects.

Design for reuse has been achieved by the creation of IP cores either in the form
of pre-designed functional layout such as the ARM cores which present the user with
a hardware platform on which they can develop software to implement the required
functionality, or parameterized HDL code which can produce highly efficient code for
programmable logic implementation. The aim of the HDL code is to capture the good
design practice and procedures in such a way that HDL code is provided with a series
of parameters which can be set and produce efficient implementation across a range of
performance needs.

The process requires the creation of a base design from which a range of implemen-
tations can be derived where the area and speed will scale with change in parameters,
otherwise it is frustrating for the designer to optimize the parameters for the best design.
This process is demonstrated in detail in Chapter 11 for a QR-based RLS filter.

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Complex DSP Core Design for FPGA

Bibliography

Alaraje N, DeGroat JE 2005 Evolution of reconfigurable architectures to SoFPGA. In Proc.
48th Midwest Symp. on Circuits and Systems, 1, pp. 818–821.

Birnbaum M 2001 VSIA quality metrics for IP and SoC. In Proc. Int. Symp. on Quality
Electronic Design, pp. 279–283.

Bricaud P 2002 Reuse Methodology Manual for System-On-A-Chip Designs. Springer, New
York.

Chiang S 2001 Foundries and the dawn of an open IP era. Computer, 34(4), 43–46.
Coussy P, Casseau E, Bomel P, Baganne A, Martin E. 2006. A formal method for hardware

IP design and integration under I/O and timing constraints. ACM Trans. Embedded
Computing Systems, 5(1), 29–53.

Davis L 2006 Hardware components, semiconductor-digital-programmable logic IP cores.
Available from www.interfacebus.com/IPCoreVendors.html (accessed May 11, 2016).

Ding TJ, McCanny JV, Hu Y 1999 Rapid design of application specific FFT cores. IEEE
Trans. Signal Processing, 47(5), 1371–1381.

Gajski DD, Wu ACH, Chaiyakul V, Mori S, Nukiyama T, Bricaud P 2000 Essential issues for
IP reuse. In Proc. Design Automation Conf., pp. 37–42.

Howes J 1998 IP new year. New Electronics, 31(1), 41–42.
IEEE 2014 IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and

Reusing IP within Tool Flows. Available from http://standards.ieee.org/ (accessed May
11, 2016).

ITRS 1999 International Technology Roadmap for Semiconductors, Semiconductor
Industry Association. http://public.itrs.net (accessed May 11, 2016).

ITRS 2005 International Technology Roadmap for Semiconductors: Design. available from
http://www.itrs.net/Links/2005ITRS/Design2005.pdf (accessed May 11, 2016).

Jain AK, Yuan L, Pari PR, Qu G 2003 Zero overhead watermarking technique for FPGA
designs. In Proc. 13th ACM Great Lakes Symp. on Very Large Scale Integration, pp.
147–152.

Junchao Z, Weiliang C, Shaojun W 2001 Parameterized IP core design. In Proc. 4th Int.
Conf. on Application Specific Integrated Circuits, pp. 744–747.

Kean T, McLaren D, Marsh C 2008 Verifying the authenticity of chip designs with the
DesignTag system. In Proc. IEEE Int. Workshop on Hardware-Oriented Security and
Trust, pp. 59–64.

Koren I 1993 Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs, NJ.
Lach J, Mangione-Smith WH, Potkonjak M 1998 Signature hiding techniques for FPGA

intellectual property protection. In Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, pp. 186–189.

Murray D and Rance S 2015 Leveraging IP-XACT standardized IP interfaces for rapid IP
integration. ARM White paper. Available from https://www.arm.com/ (accessed May 11,
2016).

Rowen C 2002 Reducing SoC simulation and development time. Computer. 35(12), 29–34.
Teich J, Ziener D 2011 Verifying the authorship of embedded IP cores: Watermarking and

core identification techniques. Plenary talk. Int. Conf. on Engineering of Reconfigurable
Systems and Algorithms. Available at http://ersaconf.org/ersa11/program/teich.php

 10.1002/9781119079231.ch9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch9 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}www.interfacebus.com/IPCoreVendors.html
www.interfacebus.com/IPCoreVendors.html
let &hbox {char '046}http://standards.ieee.org/
http://standards.ieee.org/
let &hbox {char '046}http://public.itrs.net
http://public.itrs.net
let &hbox {char '046}http://www.itrs.net/Links/2005ITRS/Design2005.pdf
http://www.itrs.net/Links/2005ITRS/Design2005.pdf
let &hbox {char '046}https://www.arm.com/
https://www.arm.com/
http://ersaconf.org/ersa11/program/teich.php

