




DSP Basics

. Introduction

In the early days of electronics, signals were processed and transmitted in their natural
form, typically an analogue signal created from a source signal such as speech, then
converted to electrical signals before being transmitted across a suitable transmission
medium such as a broadband connection. The appeal of processing signals digitally was
recognized quite some time ago for a number of reasons. Digital hardware is generally
superior and more reliable than its analogue counterpart, which can be prone to aging
and can give uncertain performance in production.

DSP, on the other hand, gives a guaranteed accuracy and essentially perfect repro-
ducibility (Rabiner and Gold 1975). In addition, there is considerable interest in merg-
ing the multiple networks that transmit these signals, such as the telephone transmis-
sion networks, terrestrial TV networks and computer networks, into a single or multiple
digital transmission media. This provides a strong motivation to convert a wide range
of information formats into their digital formats.

Microprocessors, DSP microprocessors and FPGAs are a suitable platform for pro-
cessing such digital signals, but it is vital to understand a number of basic issues with
implementing DSP algorithms on, in this case, FPGA platforms. These issues range from
understanding both the sampling rates and computation rates of different applications
with the aim of understanding how these requirements affect the final FPGA imple-
mentation, right through to the number representation chosen for the specific FPGA
platform and how these decisions impact the performance. The choice of algorithm
and arithmetic requirements can have severe implications for the quality of the final
implementation.

As the main concern of this book is the implementation of such systems in FPGA
hardware, this chapter aims to give the reader an introduction to DSP algorithms to
such a level as to provide grounding for many of the examples that are described later.
A number of more extensive introductory texts that explain the background of DSP
systems can be found in the literature, ranging from the basic principles (Lynn and Fuerst
1994; Williams 1986) to more comprehensive texts (Rabiner and Gold 1975).
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Figure . Basic DSP system

Section 2.2 gives an introduction to basic DSP concepts that affect hardware imple-
mentation. A brief description of common DSP algorithms is then given, starting with a
review of transforms, including the FFT, discrete cosine transform (DCT) and the dis-
crete wavelet transform (DWT) in Section 2.3. The chapter then moves on to review
filtering in Section 2.4, giving a brief description of finite impulse response (FIR) filters,
infinite impulse response (IIR) filters and wave digital filters (WDFs). Section 2.5 is ded-
icated to adaptive filters and covers both the least mean squares (LMS) and recursive
least squares (RLS) algorithms. Concluding comments are given in Section 2.6.

. Definition of DSP Systems

DSP algorithms accept inputs from real-world digitized signals such as voice, audio,
video and sensor data (temperature, humidity), and mathematically process them
according to the required algorithm’s processing needs. A simple diagram of this pro-
cess is given in Figure 2.1. Given that we are living in a digital age, there is a constantly
increasing need to process more data in the fastest way possible.

The digitized signal is obtained as shown in Figure 2.2 where an analogue signal is
converted into a pulse of signals and then quantized to a range of values. The input is
typically x(n), which is a stream of numbers in digital format, and the output is given
as y(n).

Modern DSP applications mainly involve speech, audio, image, video and communi-
cations systems, as well as error detection and correction and encryption algorithms.
This involves real-time processing of a considerable amount of different types of con-
tent at a series of sampling rates ranging from 1 Hz in biomedical applications, right up
to tens of megahertz in image processing applications. In a lot of cases, the aim is to
process the data to enhance part of the signal (e.g. edge detection in image processing),
eliminate interference (e.g. jamming signals in radar applications), or remove erroneous
input (e.g. echo or noise cancelation in telephony); other DSP algorithms are essential
in capturing, storing and transmitting data, audio, images, and video compression tech-
niques have been used successfully in digital broadcasting and telecommunications.
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Figure . Digitization of analogue signals
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Figure . Example applications for DSP

Over the years, much of the need for such processing has been standardized; Figure 2.3
shows some of the algorithms required in a range of applications. In communications,
the need to provide efficient transmission using orthogonal frequency division multi-
plexing (OFDM) has emphasized the need for circuits for performing FFTs. In image
compression, the evolution initially of the Joint Photographic Experts Group (JPEG) and
then the Motion Picture Experts Group (MPEG) led to the development of the JPEG and
MPEG standards respectively involving a number of core DSP algorithms, specifically
DCT and motion estimation and compensation.

The appeal of processing signals digitally was recognized quite some time ago as dig-
ital hardware is generally superior to and more reliable than its analogue counterpart;
analogue hardware can be prone to aging and can give uncertain performance in pro-
duction. DSP, on the other hand, gives a guaranteed accuracy and essentially perfect
reproducibility (Rabiner and Gold 1975).

The proliferation of DSP technology has mainly been driven by the availability of
increasingly cheap hardware, allowing the system to be easily interfaced to computer
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technology, and in many cases, to be implemented on the same computers. The need for
many of the applications mentioned in Figure 2.3 has driven the need for increasingly
complex DSP systems, which in turn has seen the growth of research into developing
efficient implementation of some DSP algorithms. This has also driven the need for DSP
microprocessors covered in Chapter 4.

A number of different DSP functions can be carried out either in the time domain,
such as filtering, or in the frequency domain by performing an FFT (Rabiner and Gold
1975). The DCT forms the central mechanism for JPEG image compression which is also
the foundation for the MPEG standards. This DCT algorithm enables the components
within the image that are invisible to the naked eye to be identified by converting the
spatial image into the frequency domain. They can then be removed using quantization
in the MPEG standard without discernible degradation in the overall image quality. By
increasing the amount of data removed, greater reduction in file size can be achieved.
Wavelet transforms offer both time domain and frequency domain information and have
roles not only in applications for image compression, but also in extraction of key infor-
mation from signals and for noise cancelation. One such example is in extracting key
features from medical signals such as the electroencephalogram (EEG).

2.2.1 Sampling

Sampling is an essential process in DSP that allows real-life continuous-time domain sig-
nals, in other words analogue signals, to be represented in the digital domain. The pro-
cess of representation of analogue signals process begins with sampling and is followed
by the quantization within the analogue-to-digital converters (ADCs). Therefore, the
two most important components in the sampling process are the selection of the sam-
ples in time domain and subsequent quantization of the samples within the ADC, which
results in quantization noise being added to the digitized analogue signal. The choice of
sampling frequency directly affects the size of data processed by the DSP system.

A continuous-time (analogue) signal can be converted into a discrete-time signal by
sampling the continuous-time signal at uniformly distributed discrete-time instants.
Sampling an analogue signal can be represented by the relation

x(n) = xa(nT), −∞ < n < ∞, (2.1)

where xa(nT) represents the uniformly sampled discrete-time signal. The data stream,
x(n), is obtained by sampling the continuous-time signal at the required time interval,
given as the sampling instance, T ; this is called the sampling period or interval, and its
reciprocal is called the sampling rate, Fs.

The question arises as to how precise the digital data need to be to have a meaning-
ful representation of the analogue word. This definition is explained by the Nyquist–
Shannon sampling theorem which states that exact reconstruction of a continuous-time
baseband signal from its samples is possible if the signal is bandlimited and the sampling
frequency is greater than twice the signal bandwidth. The sampling theory was intro-
duced into communication theory by Nyquist (1928) and then into information theory
by Shannon (1949).

2.2.2 Sampling Rate

Many computing vendors quote clock rates, whereas the rate of computation in DSP
systems is given as the sampling rate. It is also important to delineate the throughput
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Figure . Sampling rates for many DSP systems

rate. The sampling rate for many typical DSP systems is given in Figure 2.4 and indicates
the rate at which data are fed into and/or from the system. It should not be used to dictate
technology choice as, for example, we could have a 128-tap FIR filter requirement for an
audio application where the sampling rate may be 44.2 kHz but the throughput rate will
be 11.2 megasamples per second (MSPS), as during each sample we need to compute
128 multiplications and 127 additions (255 operations) at the sampling rate.

In simple terms when digitizing an analogue signal, the rate of sampling must be at
least twice the maximum frequency fm (within the signal being digitized) so as to main-
tain the information and prevent aliasing (Shannon 1949). In other words, the signal
needs to be bandlimited, meaning that there is no spectral energy above the maximum
frequency fm. The Nyquist sampling rate fs is then determined as 2fm, usually by human
factors (e.g. perception).

A simple example is the sampling of speech, which is standardized at 8 kHz. This sam-
pling rate is sufficient to provide an accurate representation of the spectral components
of speech signals, as the spectral energy above 4 kHz, and probably 3 kHz, does not con-
tribute greatly to signal quality. In contrast, digitizing music typically requires a sample
rate of 44.2 kHz to cover the spectral range of 22.1 kHz as it is acknowledged that this
is more than sufficient to cope with the hearing range of the human ear which typically
cannot detect signals above 18 kHz. Moreover, this increase is natural due to the more
complex spectral composition of music when compared with speech.

In other applications, the determination of the sampling rate does not just come down
to human perception, but involves other aspects. Take, for example, the digitizing of
medical signals such as EEGs which are the result of electrical activity within the brain
picked up from electrodes in contact with the surface of the skin. In capturing the infor-
mation, the underlying waveforms can be heavily contaminated by noise. One particular
application is a hearing test whereby a stimulus is applied to the subject’s ear and the
resulting EEG signal is observed at a certain location on the scalp. This test is referred
to as the auditory brainstem response (ABR) as it looks for an evoked response from the
EEG in the brainstem region of the brain, within 10 ms of the stimulus onset.

The ABR waveform of interest has a frequency range of 100–3000 Hz, therefore
bandpass filtering of the EEG signal to this region is performed during the recording
process prior to digitization. However, there is a slow response roll-off at the bound-
aries and unwanted frequencies may still be present. Once digitized the EEG signal
may be filtered again, possibly using wavelet denoising to remove the upper and lower
contaminating frequencies. The duration of the ABR waveform of interest is 20 ms,
10 ms prior to stimulus and 10 ms afterward. The EEG is sampled at 20 kHz, therefore
with a Nyquist frequency of 10 kHz, which exceeds twice the highest frequency com-
ponent (3 kHz) present in the signal. This equates to 200 samples, before and after the
stimulus.
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. DSP Transformations

This section gives a brief overview of some of the key DSP transforms mentioned in
Chapter 13, including a brief description of applications and their use.

2.3.1 Discrete Fourier Transform

The Fourier transform is the transform of a signal from the time domain representation
to the frequency domain representation. In basic terms it breaks a signal up into its
constituent frequency components, representing a signal as the sum of a series of sines
and cosines.

The Fourier series expansion of a periodic function, f (t), is given by

f (t) = 1
2

a0 +
∞∑

n=1
[an cos(𝜔nt) + bn sin(𝜔nt)] (2.2)

where, for any non-negative integer n, 𝜔n is the nth harmonic in radians of f (t) given by

𝜔n = n w𝜋
T

, (2.3)

the an are the even Fourier coefficients of f (t), given by

an = 2
T ∫

t2

t1

cos(𝜔nt)dt, (2.4)

and the bn are the odd Fourier coefficients, given by

bn = 2
T ∫

t2

t1

sin(𝜔nt)dt (2.5)

The discrete Fourier transform (DFT), as the name suggests, is the discrete version
of the continuous Fourier transform, applied to sampled signals. The input sequence is
finite in duration and hence the DFT only evaluates the frequency components present
in this portion of the signal. The inverse DFT will therefore only reconstruct using these
frequencies and may not provide a complete reconstruction of the original signal (unless
this signal is periodic).

The DFT converts a finite number of equally spaced samples of a function, to a finite
list of complex sinusoids, where the transformation is ordered by frequency. This trans-
formation is commonly described as transferring a sampled function from time domain
to frequency domain. Given the N-point of equally spaced sampled function x(n) as an
input, the N-point DFT is defined by

X(k) =
N−1∑
n=0

x(n)e(−j2𝜋nk∕N) k = 0,… , N − 1, (2.6)

where n is the time index and k is the frequency index.
The compact version of the DFT can be written using the twiddle factor notation:

W nk
N = e−2n𝜋k∕N = exp

(
−2jn𝜋k

N

)
= cos

(
2n𝜋k

N

)
− j sin

(
2jn𝜋k

N

)
. (2.7)

 10.1002/9781119079231.ch2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch2 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DSP Basics 

Using the twiddle factor notation, equation (2.7) can be written as follows:

X(k) =
N−1∑
n=0

x(n)W nk
n , k = 0,… , N − 1. (2.8)

The input sequence x(n) can be calculated from X(k) using the inverse discrete Fourier
transform (IDFT) given by

x(n) = 1
N

N−1∑
n=0

X(k)W−nk
N , n = 0,… , N − 1. (2.9)

The number of operations performed for one output can be easily calculated as N
complex multiplications and N − 1 complex additions from equations (2.8) and (2.9).
Therefore, the overall conversion process requires N2 complex multiplications and
N2 − N complex additions. The amount of calculation required for an N-point DFT
equation is approximately 2N2.

2.3.2 Fast Fourier Transform

In order to reduce the amount of mathematical operations, a family of efficient calcu-
lation algorithms called fast Fourier transforms was introduced by Cooley and Tukey
(1965). The basic methodology behind the FFT is the computation of large DFTs in small
pieces, and their combination with the help of reordering and transposition algorithms.
At the end, the combined result gives the same values as with the large sized DFT, but
the order of complexity of the main system reduces from N2 to the order of N log(N).

The transformed samples are separated by the angle 𝜃 and are periodic and mirrored to
the left and right of the imaginary and above and below the real axis. This symmetry and
periodicity in the coefficients of the transform kernel (WN ) gives rise to a family of FFT
algorithms which involves recursively decomposing the algorithm until only two-point
DFTs are required. It is computed using the butterfly unit and perfect shuffle network
as shown in Figure 2.5:

Xk =
N∕2−1∑

n=0
x(n)W nk

N + W Nk∕2
N

N∕2−1∑
n=0

x(n + N∕2)W nk
N . (2.10)

The FFT has immense impact in a range of applications. One particular use is in the
central computation within OFDM. This spread spectrum digital modulation scheme
is used in communication, particularly within wireless technology, and has resulted
in vastly improved data rates within the 802.11 standards, to name just one example.
The algorithm relies on the orthogonal nature of the frequency components extracted
through the FFT, allowing each of these components to act as a sub-carrier. Note that
the receiver uses the inverse fast Fourier transform (IFFT) to detect the sub-carriers and
reconstruct the transmission. The individual sub-carriers are modulated using a typical
low symbol rate modulation scheme such as phase-shift or quadrature amplitude mod-
ulation (QAM), depending on the application.

For the Institute of Electrical and Electronic Engineers (IEEE) 802.11 standard, the
data rate ranges up to 54 Mbps depending on the environmental conditions and noise,
i.e. phase shift modulation is used for the lower data rates when greater noise is present,
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and QAM is used in less noisy environments reaching up to 54 Mbps. Figure 2.6 gives
an example of the main components within a typical communications chain.

The IEEE 802.11a wireless LAN standard using OFDM is employed in the 5 GHz
region of the US ISM band over a channel bandwidth of 125 MHz. From this band-
width 52 frequencies are used, 48 for data and four for synchronization. The latter point
is very important, as the basis on which OFDM works (i.e. orthogonality) relies on the
receiver and transmitter being perfectly synchronized.

2.3.3 Discrete Cosine Transform

The DCT is based on the DFT, but uses only real numbers, i.e. the cosine part of the
transform, as defined in the equation

X(k) =
N−1∑
n=0

cos
[
𝜋

N

(
n + 1

2

)
k
]

, k = 0,… , N − 1. (2.11)

Channel
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Frame
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Forward
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Figure . Wireless communications transmitter
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This two-dimensional (2D) form of the DCT is a vital computational component in
the JPEG image compression and also features in MPEG standards:

Fu,v = 𝛼(u)𝛼(v)
7∑

x=0

7∑
y=0

fx,y cos
[
𝜋

8

(
x + 1

2

)
u
]
cos

[
𝜋

8

(
y + 1

2

)
v
]

(2.12)

where u is the horizontal spatial frequency for 0 ≤ u < 8, v is the vertical spatial fre-
quency for 0 ≤ v < 8, 𝛼(u) and 𝛼(v) are constants, fx,y is the value of the (x, y) pixel and
Fu,v is the value of the (u, v) DCT coefficient.

In JPEG image compression, the DCT is performed on the rows and the columns of
the image block of 8 × 8 pixels. The resulting frequency decomposition places the more
important lower-frequency components at the top left-hand corner of the matrix, and
the frequency of the components increases when moving toward the bottom right-hand
part of the matrix.

Once the image has been transformed into numerical values representing the fre-
quency components, the higher frequency components may be removed through the
process of quantization as they will have less importance in image quality. Naturally, the
greater the amount to be removed the higher the compression ratio; at a certain point,
the image quality will begin to deteriorate. This is referred to as lossy compression. The
numerical values for the image are read in a zigzag fashion.

2.3.4 Wavelet Transform

A wavelet is a fast-decaying waveform containing oscillations. Wavelet decomposition
is a powerful tool for multi-resolution filtering and analysis and is performed by corre-
lating scaled versions of this original wavelet function (i.e. the mother wavelet) against
the input signal. This decomposes the signal into frequency bands that maintain a level
of temporal information (Mallat 1989). This is particularly useful for frequency analysis
of waveforms that are pseudo-stationary where the time-invariant FFT may not provide
the complete information.

There are many families of wavelet equations such as the Daubechies, Coiflet and
Symmlet (Daubechies 1992). Wavelet decomposition may be performed in a number
of ways, namely the continuous wavelet transform (CWT) or DWT which is described
in the next section.

Discrete Wavelet Transform
The DWT is performed using a series of filters. At each stage of the DWT, the input sig-
nal is passed though a high-pass and a low-pass filter, resulting in the detail and approx-
imation coefficients.

The equation for the low-pass filter is

y(n) = (x∗g)(n) =
∞∑
−∞

x(k)g(n − k), (2.13)

where g denotes high-pass. By removing half the frequencies at each stage, the signal
information can be represented using half the number of coefficients, hence the equa-
tions for the low and high filters become

ylow(n) =
∞∑
−∞

x(k)g(2n − k) (2.14)
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and

yhigh(n) =
∞∑
−∞

x(k)h(2n − k), (2.15)

respectively, where h denotes low-pass, and where n has become 2n, representing the
down-sampling process.

Wavelet decomposition is a form of subband filtering and has many uses. By breaking
the signal down into the frequency bands, denoising can be performed by eliminating
the coefficients representing the highest frequency components and then reconstructing
the signal using the remaining coefficients. Naturally, this could also be used for data
compression in a similar way to the DCT and has been applied to image compression.
Wavelet decomposition is also a powerful transform to use in analysis of medical signals.

. Filters

Digital filtering is achieved by performing mathematical operations on the digitized
data; in the analogue domain, filtering is performed with the help of electronic circuits
that are formed from various electronic components. In most cases, a digital filter per-
forms operations on the sampled signals with the use stored filter coefficients. With the
use of additional components and increased complexity, digital filters could be more
expensive than the equivalent analogue filters.

2.4.1 Finite Impulse Response Filter

A simple FIR filter is given by

y(n) =
N−1∑
i=0

aix(n − i), (2.16)

where the ai are the coefficients needed to generate the necessary filtering response such
as low-pass or high-pass and N is the number of filter taps contained in the function. The
function can be represented using the classical signal flow graph (SFG) representation
of Figure 2.7 for N = 3 given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2). (2.17)

In the classic form, the delay boxes of z−1 indicate a digital delay, the branches send the
data to several output paths, labeled branches represent a multiplication by the variable
shown and the black dots indicate summation functions. However, we find the form

x(n)

a0

z–1

y(n)

z–1

a1 a2

Figure . Original FIR filter SFG
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x(n)

a0

z–1

y(n)

z–1

a

+ +

1 a2

Figure . FIR filter SFG

given in Figure 2.8 to be easier to understand and use this format throughput the book,
as the functionality is more obvious than that given in Figure 2.7.

An FIR filter exhibits some important properties including the following.
� Superposition. Superposition holds if a filter produces an output y(n) + v(n) from an

input x(n) + u(n), where y(n) is the output produced from input x(n) and v(n) is the
output produced from input u(n).

� Homogeneity. If a filter produces an output ay(n) from input ax(n) then the filter is
said to be homogeneous if the filter produces an output ay(n) from input ax(n).

� Shift invariance. A filter is shift invariant if and only if the input of x(n + k) generates
an output y(n + k), where y(n) is the output produced by x(n).

If a filter is said to exhibit all these properties then it is said to be a linear time-invariant
(LTI) filter. This property allows these filters to be cascaded as shown in Figure 2.9(a) or
in a parallel configuration as shown in Figure 2.9(b).

FIR filters have a number of additional advantages, including linear phase, meaning
that they delay the input signal but do not distort its phase; they are inherently stable;

x(n)   x(1n) Filter 
#1 

y(1n)        x(2n) Filter 
#2

(a) Cascade FIR filter

(b) Parallel FIR filter

y(2n)    y(n)

          x(1n) Filter 
#1

y(1n)   

x(n)     

Filter 
#2

y(2n)    

+
y(n)  

x(2n)   

Figure . FIR filter configurations
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 FPGA-based Implementation of Signal Processing Systems

they are implementable using finite arithmetic; and they have low sensitivity to quanti-
zation errors.

Low-Pass FIR Filter
FIR filter implementations are relatively simple to understand as there is a straightfor-
ward relationship between the time and frequency domain. A brief summary is now
given of digital filter design, but the reader is also referred to some good basic texts
(Bourke 1999; Lynn and Fuerst 1994; Williams 1986) which give a much more com-
prehensive description of filter design. One basic way of developing a digital filter is
to start with the desired frequency response, use an inverse filter to get the impulse
response, truncate the impulse response and then window the function to remove arti-
facts (Bourke 1999; Williams 1986). The desired response is shown in Figure 2.10, includ-
ing the key features that the designer wants to minimize.

Realistically we have to approximate this infinitely long filter with a finite number of
coefficients and, given that it needs data from the future, time-shift it so that it does not
have negative values. If we can then successfully design the filter and transform it back
to the frequency domain we get a ringing in the passband/stopband frequency ranges
known as rippling, a gradual transition between passband and stopband regions, termed
the transition region. The ripple is often called the Gibbs phenomenon after Willard
Gibbs who identified this effect in 1899, and it is outlined in the FIR filter response in
Figure 2.10.

It could be viewed that this is the equivalent of windowing the original frequency
plot with a rectangular window; there are other window types, most notably von Hann,
Hamming and Kaiser windows (Lynn and Fuerst 1994; Williams 1986) that can be used

1

GAIN

0

Passband Ending
Frequency

Ripple Ratio =

FREQUENCY

fp

fc

δ2

δ1

δ1 = Passband Ripple

δ2 = Stopband Ripple
(Attenuation)

Stopband Beginning
Frequency

Figure . Filter specification features
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Figure . Low-pass filter response

to minimize these issues in different ways and to different levels. The result of the design
process is the determination of the filter length and coefficient values which best meet
the requirements of the filter response.

The number of coefficients has an impact on both the ripple and transition region and
is shown for a low-pass filter design, created using the Hamming and Dolph–Chebyshev
schemes in MATLAB®. The resulting frequency responses are shown in Figures 2.11 and
2.12 for 100 and 400, taps respectively. The impact of increasing the number of taps in
the roll-off between the two bands and the reduction in ripple is clear.
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aM-2 

z–1
z–1

bN-1 bN-2 

a0a1

   b 1

y(n)

aM-1 

x(n)

+ + + +

Figure . Direct form IIR filter

Increasing the number of coefficients clearly allows a better approximation of the filter
but at the cost of the increased computation needed to compute the additional taps, and
impacts the choice of windowing function.

2.4.2 Infinite Impulse Response filter

The main disadvantage of FIR filters is the large number of taps needed to realize some
aspects of the frequency response, namely sharp cut-off resulting in a high computation
cost to achieve this performance. This can be overcome by using IIR filters which use
previous values of the output as indicated in the equation

y(n) =
N−1∑
i=0

aix(n − i) +
M−1∑
j=1

biy(n − j). (2.18)

This is best expressed in the transfer function expression

H(z) =
∑N−1

i=0 aix(n − i)

1 −
∑M−1

i=1 biy(n − j)
, (2.19)

and is shown in Figure 2.12.
The design process is different from FIR filters and is usually achieved by exploiting

the huge body of analogue filter designs by transforming the s-plane representation of
the analogue filter into the z domain. A number of design techniques can be used such as
the impulse invariant method, the match z-transform and the bilinear transform. Given
an analogue filter with a transfer function, HA(s), a discrete realization, HD(z), can be
readily deduced by applying a bilinear transform given by

HD(z) = HA(s)||s= 2
T

(
z−1
z+1

) (2.20)

This gives a stable digital filter. However, in higher frequencies, distortion or warping is
introduced as shown in Figure 2.13. This warping changes the band edges of the digital
filter as illustrated in Figure 2.14 and gives a transfer function expression comprising
poles and zeros:

H(z) = G
(z − 𝜉1)(z − 𝜉2)… (z − 𝜉M)
(z − 𝜌1)(z − 𝜌2)… (z − 𝜌N )

. (2.21)
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Figure . IIR filter distortion

The main concern is to maintain stability by ensuring that the poles are located within
the unit circle. There is a direct relationship between the location of these zeros and
poles and the filter properties. For example, a pole on the unit circle with no zero to
annihilate it will produce an infinite gain at a certain frequency (Meyer-Baese 2001).

Due to the feedback loops as shown in Figure 2.12, the structures are very sensitive to
quantization errors, a feature which increases as the filter order grows. For this reason,
filters are built from second-order IIR filters defined by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2), (2.22)

leading to the structure of Figure 2.15.

2.4.3 Wave Digital Filters

In addition to non-recursive (FIR) and recursive (IIR) filters, a class of filter structures
called WDFs is also of considerable interest as they possess a low sensitivity to coefficient
variations. This is important in IIR filters as it determines the level of accuracy to which
the filter coefficients have to be realized and has a direct correspondence to the dynamic
range needed in the filter structure; this affects the internal wordlength sizes and filter
performance which will invariably affect throughput rate.
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Figure . Frequency impact of warping

WDFs possess a low sensitivity to attenuation due to their inherent structure, thereby
reducing the loss response due to changes in coefficient representation. This is impor-
tant for many DSP applications for a number of reasons: it allows short coefficient repre-
sentations to be used which meet the filter specification and which involve only a small
hardware cost; structures with low coefficient sensitivities also generate small round-
off errors, i.e. errors that result as an effect of limited arithmetic precision within the
structure. (Truncation and wordlength errors are discussed in Chapter 3.) As with IIR
filters, the starting principle is to generate low-sensitivity digital filters by capturing the
low-sensitivity properties of the analogue filter structures.

WDFs represent a class of filters that are modeled on classical analogue filter net-
works (Fettweis et al. 1986; Fettweis and Nossek 1982; Wanhammar 1999) which are
typically networks configured in the lattice or ladder structure. For circuits that operate
on low frequencies where the circuit dimensions are small relative to the wavelength,
the designer can treat the circuit as an interconnection of lumped passive or active
components with unique voltages and currents defined at any point in the circuit, on
the basis that the phase change between aspects of the circuit will be negligible.

x(n)
H1(z) H2(z) HN/2(z)

         y(n)

Figure . Cascade of second-order IIR filter blocks
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This allows a number of circuit-level design optimization techniques such as Kirch-
hoff’s law to be applied. However, for higher-frequency circuits, these assumptions no
longer apply and the user is faced with solving Maxwell’s equations. To avoid this, the
designer can exploit the fact that she is solving the problems only in certain places such
as the voltage and current levels at the terminals (Pozar 2005). By exploiting specific
types of circuits such as transmission lines which have common electrical propagation
times, circuits can then be treated as transmission lines and modeled as distributed
components characterized by their length, propagation constant and characteristic
impedance.

The process of producing a WDF has been covered by Fettweis et al. (1986). The main
design technique is to generate filters using transmission line filters and relate these to
classical filter structures with lumped circuit elements; this allows the designer to exploit
the well-known properties of these structures, termed a reference filter. The correspon-
dence between the WDF and its reference filter is achieved by mapping the reference
structure using a complex frequency variable, 𝜓 , termed Richard’s variable, allowing
the reference structure to be mapped effectively into the 𝜓 domain.

The use of reference structures allows all the inherent passivity and lossless features to
be transferred into the digital domain, achieving good filter performance and reducing
the coefficient sensitivity, thereby allowing lower wordlengths to be achieved. Fettweis
et al. (1986) give the simplest and most appropriate choice of𝜓 as the bilinear transform
of the z-variable, given by

𝜓 = z − 1
z + 1

= tanh(𝜌T∕2) (2.23)

where 𝜌 is the actual complex frequency. This variable has the property that the real
frequencies 𝜔 correspond to real frequencies 𝜙,

𝜙 = tan(𝜔T∕2), 𝜌 = j𝛼, 𝜓 = j𝜙, (2.24)

implying that the real frequencies in the reference domain correspond to real frequen-
cies in the digital domain. Other properties described in Fettweis et al. (1986) ensure
that the filter is causal. The basic principle used for WDF filter design is illustrated in
Figure 2.16, taken from Wanhammar (1999). The lumped element filter is shown in Fig-
ure 2.16(a) where the various passive components, L2s, 1

C3s and L4s, map to R2𝜓 , R3
𝜓

and R4𝜓 respectively in the analogous filter given in Figure 2.16(b). Equation (2.23) is
then used to map the equivalent transmission line circuit to give the 𝜙 domain filter in
Figure 2.16(c).

WDF Building Blocks
As indicated in Figure 2.16(c), the basic WDF configuration is based upon the various
one-, two- and multi-port elements. Figure 2.17 gives a basic description of the two-port
element. The network can be described by incident, A, and reflected, B, waves which are
related to the port currents, I1 and I2, port voltages, V1 and V2, and port resistances, R1
and R2, by (Fettweis et al. 1986)

A1 ≅ V1 + R1I1, (2.25)

B2 ≅ V2 + R2I2. (2.26)
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(c) Resulting two-port filter

R1

RL

L2

C3s

L4

1

(a) Reference lumped element filter

Figure . WDF configuration

The transfer function, S21, is given by

S21 = KB2∕A1, (2.27)

where

K =
√

R1∕R2. (2.28)

In a seminal paper, Fettweis et al. (1986) show that the loss, 𝛼, can be related to the
circuit parameters, namely the inductance or capacitance and frequency, 𝜔, such that

V1

I1

B1

I2

B1

A1 A2 V2

Figure . WDF building blocks
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Adaptive
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∑w(n) yest(n)
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x(n)

y(n)

–
+

x(n)Figure . Adaptive filter system

the loss is 𝜔 = 𝜔0, indicating that for a well-designed filter, the sensitivity of the atten-
uation is small through its passband, thus giving the earlier stated advantages of lower
coefficient wordlengths.

As indicated in Figure 2.17, the basic building blocks for the reference filters are a
number of these common two-port and three-port elements or adapters. Some of these
are given in Figure 2.18, showing how they are created using multipliers and adders.

. Adaptive Filtering

The basic function of a filter is to remove unwanted signals from those of interest.
Obtaining the best design usually requires a priori knowledge of certain statistical
parameters (such as the mean and correlation functions) within the useful signal. With
this information, an optimal filter can be designed which minimizes the unwanted sig-
nals according to some statistical criterion.

One popular measure involves the minimization of the mean square of the error signal,
where the error is the difference between the desired response and the actual response
of the filter. This minimization leads to a cost function with a uniquely defined optimum
design for stationary inputs known as a Wiener filter (Widrow and Hoff 1960). However,
it is only optimum when the statistical characteristics of the input data match the a
priori information from which the filter is designed, and is therefore inadequate when
the statistics of the incoming signals are unknown or changing (i.e. in a non-stationary
environment).

For this situation, a time-varying filter is needed which will allow for these changes.
An appropriate solution is an adaptive filter, which is inherently self-designing through
the use of a recursive algorithm to calculate updates for the filter parameters. These then
form the taps of the new filter, the output of which is used with new input data to form
the updates for the next set of parameters. When the input signals are stationary (Haykin
2002), the algorithm will converge to the optimum solution after a number of iterations,
according to the set criterion. If the signals are non-stationary then the algorithm will
attempt to track the statistical changes in the input signals, the success of which depends
on its inherent convergence rate versus the speed at which statistics of the input signals
are changing.

In adaptive filtering, two conflicting algorithms dominate the area, the RLS and the
LMS algorithm. The RLS algorithm is a powerful technique derived from the method of
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 FPGA-based Implementation of Signal Processing Systems

least squares (LS). It offers greater convergence rates than its rival LMS algorithm, but
this gain is at the cost of increased computational complexity, a factor that has hindered
its use in real-time applications.

A considerable body of work has been devoted to algorithms and VLSI archi-
tectures for RLS filtering with the aim of reducing this computational complex-
ity (Cioffi 1990; Cioffi and Kailath 1984; Döhler 1991; Frantzeskakis and Liu 1994;
Gentleman 1973; Gentleman and Kung 1982; Givens 1958; Götze and Schwiegelshohn
1991; Hsieh et al. 1993; McWhirter 1983; McWhirter et al. 1995; Walke 1997). Much of
this work has concentrated on calculating the inverse of the correlation matrix, required
to solve for the weights, in a more stable and less computationally intensive manner than
straightforward matrix inversion.

The standard RLS algorithm achieves this by recursively calculating updates for the
weights using the matrix inversion lemma (Haykin 2002). An alternative and very popu-
lar solution performs a set of orthogonal rotations, (e.g. Givens rotations (Givens 1958))
on the incoming data matrix, transforming it into an equivalent upper triangular matrix.
The filter parameters can then be calculated by back substitution. This method, known
as QR decomposition, is an extension of QR factorization that enables the matrix to be
re-triangularized, when new inputs are present, without the need to perform the trian-
gularization from scratch. From this beginning, a family of numerically stable and robust
RLS algorithms has evolved from a range of QR decomposition methods such as Givens
rotations (Givens 1958) and Householder transformations (Cioffi 1990).

2.5.1 Applications of Adaptive Filters

Because of their ability to operate satisfactorily in non-stationary environments, adap-
tive filters have become an important part of DSP in applications where the statistics of
the incoming signals are unknown or changing. One such application is channel equal-
ization (Drewes et al. 1998) where the intersymbol interference and noise within a trans-
mission channel are removed by modeling the inverse characteristics of the contamina-
tion within the channel. Another is adaptive noise cancelation where background noise
is eliminated from speech using spatial filtering. In echo cancelation, echoes caused by
impedance mismatch are removed from a telephone cable by synthesizing the resound-
ing signal and then subtracting it from the original received signal.

The key application for this research is adaptive beamforming (Litva and Lo 1996;
Moonen and Proudler 1998; Ward et al. 1986). The function of a typical adaptive beam-
former is to suppress signals from every direction other than the desired “look direction”
by introducing deep nulls in the beam pattern in the direction of the interference. The
beamformer output is a weighted combination of signals received by a set of spatially
separated antennae, one primary antenna and a number of auxiliary antennae. The pri-
mary signal constitutes the input from the main antenna, which has high directivity. The
auxiliary signals contain samples of interference threatening to swamp the desired sig-
nal. The filter eliminates this interference by removing any signals in common with the
primary input signal.

2.5.2 Adaptive Algorithms

There is no distinct technique for determining the optimum adaptive algorithm for
a specific application. The choice comes down to a balance between the range of
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characteristics defining the algorithms, such as rate of convergence (i.e. the rate at which
the adaptive algorithm reaches within a tolerance of optimum solution); steady-state
error (i.e. the proximity to an optimum solution); ability to track statistical variations in
the input data; computational complexity; ability to operate with ill-conditioned input
data; and sensitivity to variations in the wordlengths used in the implementation.

Two methods for deriving recursive algorithms for adaptive filters use Wiener filter
theory and the LS method, resulting in the LMS and RLS algorithms, respectively. The
LMS algorithm offers a very simple yet powerful approach, giving good performance
under the right conditions (Haykin 2002). However, its limitations lie with its sensitivity
to the condition number of the input data matrix as well as slow convergence rates. In
contrast, the RLS algorithm is more elaborate, offering superior convergence rates and
reduced sensitivity to ill-conditioned data. On the negative side, the RLS algorithm is
substantially more computationally intensive than the LMS equivalent.

Filter coefficients may be in the form of tap weights, reflection coefficients or rotation
parameters depending on the filter structure, i.e. transversal, lattice or systolic array,
respectively (Haykin 2002). However, in this research both the LMS and RLS algorithms
are applied to the basic structure of a transversal filter (Figure 2.18), consisting of a linear
combiner which forms a weighted sum of the system inputs, x(n), and then subtracts
them from the desired signal, y(n), to produce an error signal, e(n):

e(n) = y(n) −
N−1∑
i=0

wix(n). (2.29)

In Figure 2.18, w(n) and w(n + 1) are the adaptive and updated adaptive weight vectors
respectively, and yest(n) is the estimation of the desired response.

2.5.3 LMS Algorithm

The LMS algorithm is a stochastic gradient algorithm, which uses a fixed step-size
parameter to control the updates to the tap weights of a transversal filter as in Fig-
ure 2.18 (Widrow and Hoff 1960). The algorithm aims to minimize the mean square
error, the error being the difference between y(n) and yest(n). The dependence of the
mean square error on the unknown tap weights may be viewed as a multidimensional
paraboloid referred to as the error surface, as depicted in Figure 2.19 for a two-tap exam-
ple (Haykin 2002).

The surface has a uniquely defined minimum point defining the tap weights for the
optimum Wiener solution (defined by the Wiener–Hopf equations detailed in the next
subsection). However, in the non-stationary environment, this error surface is contin-
uously changing, thus the LMS algorithm needs to be able to track the bottom of the
surface.

The LMS algorithm aims to minimize a cost function, V (w(n)), at each time step n,
by a suitable choice of the weight vector w(n). The strategy is to update the parameter
estimate proportional to the instantaneous gradient value, dV (w(n))

dw(n) , so that

w(n + 1) = w(n) − 𝜇dV (w(n))
dw(n)

, (2.30)
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w2

w1

Cost
function,
V(w(n))

Unique minimum

Figure . Error surface of a two-tap
transversal filter

where 𝜇 is a small positive step size and the minus sign ensures that the parameter esti-
mates descend the error surface. V (w(n)) minimizes the mean square error, resulting in
the following recursive parameter update equation:

w(n + 1) = w(n) − 𝜇x(n)(y(n) − yest(n)). (2.31)

The recursive relation for updating the tap weight vector (i.e. equation (2.30)) may be
rewritten as

w(n + 1) = w(n) − 𝜇x(n)(y(n) − xT (n)w(n)), (2.32)

and represented as filter output

yest(n) = wT (n)x(n), (2.33)

estimation error

e(n) = y(n) − yest(n), (2.34)

and tap weight adaptation

w(n + 1) = w(n) + 𝜇x(n)e(n). (2.35)

The LMS algorithm requires only 2N + 1 multiplications and 2N additions per iter-
ation for an N-tap weight vector. Therefore it has a relatively simple structure and the
hardware is directly proportional to the number of weights.

2.5.4 RLS Algorithm

In contrast, RLS is a computationally complex algorithm derived from the method of
least squares in which the cost function, J(n), aims to minimize the sum of squared
errors, as shown in equation (2.29):

J(n) =
N−1∑
i=0

|e(n − i)|2. (2.36)

 10.1002/9781119079231.ch2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch2 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DSP Basics 

Substituting equation (2.29) into equation (2.36) gives

J(n) =
N−1∑
i=0

||||||y(n) −
N−1∑
i=0

wkx(n − i)
||||||
2

(2.37)

Converting from the discrete time domain to a matrix–vector form simplifies the rep-
resentation of the equations. This is achieved by considering the data values from N
samples, so that equation (2.29) becomes

e(n) =

⎡⎢⎢⎢⎢⎣
e1
e2
⋮

eN

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
y1
y2
⋮

yN

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣
xT

1
xT

2
⋮

xT
N

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

W1
W2
⋮

WN

⎤⎥⎥⎥⎥⎦
, (2.38)

which may be expressed as:

e(n) = y(n) − X(n)w(n). (2.39)

The cost function J(n) may then be represented in matrix form as

J(n) = e(n)T e(n) = (y(n) − X(n)w(n))T (y(n) − X(n)w(n)). (2.40)

This is then multiplied out and simplified to give

J(n) = yT(n) − 2yT (n)X(n)w(n) + wT (n)XT (n)X(n)w(n), (2.41)

where XT (n) is the transpose of X(n). To find the optimal weight vector, this expression
is differentiated with respect to w(n) and solved to find the weight vector that will drive
the derivative to zero. This results in a LS weight vector estimation, wLS, which is derived
from the above expression and can be expressed in matrix form as

wLS(n) = (XT (n)X(n))−1XT y(n) (2.42)

These are referred to as the Wiener–Hopf normal equations

wLS(n) = 𝜙(n)−1𝜃(n), (2.43)

𝜙(n) = (XT (n)X(n)), (2.44)

𝜃(n) = XT (n)y(n), (2.45)

where, 𝜙(n) is the correlation matrix of the input data, X(n), and 𝜃(n) is the cross-
correlation vector of the input data, X(n), with the desired signal vector, y(n). By assum-
ing that the number of observations is larger that the number of weights, a solution can
be found since there are more equations than unknowns.

The LS solution given so far is performed on blocks of sampled data inputs. This solu-
tion can be implemented recursively, using the RLS algorithm, where the LS weights
are updated with each new set of sample inputs. Continuing this adaptation through
time would effectively perform the LS algorithm on an infinitely large window of data
and would therefore only be suitable for a stationary system. A weighting factor may be
included in the LS solution for application in non-stationary environments. This factor
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 FPGA-based Implementation of Signal Processing Systems

assigns greater importance to the more recent input data, effectively creating a mov-
ing window of data on which the LS solution is calculated. The forgetting factor, 𝛽, is
included in the LS cost function (from equation (2.39)) as

J(n) =
N−1∑
i=0

𝛽(n − i)e2(i), (2.46)

where 𝛽(n − i) has the property 0 < 𝛽(n − i) ≤ 1, i = 1, 2,… , N . One form of the forget-
ting factor is the exponential forgetting factor:

𝛽(n − i) = 𝜆n−i, i = 1, 2,… , N , (2.47)

where 𝜆 is a positive constant with a value close to but less than one. Its value is of
particular importance as it determines the length of the data window that is used and
will affect the performance of the adaptive filter. The inverse of 1 − 𝜆 gives a mea-
sure of the “memory” of the algorithm. The general rule is that the longer the mem-
ory of the system, the faster the convergence and the smaller the steady-state error.
However, the window length is limited by the rate of change in the statistics of the sys-
tem. Applying the forgetting factor to the Wiener–Hopf normal equations (2.43)–(2.45),
the correlation matrix and the cross-correlation matrix become

𝜙(n) =
n∑

i=0
𝜆n−1x(i)xT (i), (2.48)

𝜃(n) =
n∑

i=0
𝜆n−1x(i)y(i). (2.49)

The recursive representations are then expressed as

𝜙(n) =

[n−1∑
i=1

𝜆n−i−1x(i)xT (i)

]
+ x(n)xT (n), (2.50)

or more concisely as

𝜙(n) = 𝜆𝜙(n − 1) + x(n)xT (n). (2.51)

Likewise, 𝜃(n) can be expressed as

𝜃(n) = 𝜆𝜃(n − 1) + x(n)y(n). (2.52)

Solving the Wiener–Hopf normal equations to find the LS weight vector requires the
evaluation of the inverse of the correlation matrix, as highlighted by the following exam-
ple matrix–vector expression below:

⎡⎢⎢⎢⎣
w1
w2
w3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

X11X12X13
X21X22X23
X31X32X33

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

X11X12X13
X21X22X23
X31X32X33

⎤⎥⎥⎥⎦
−1⎤⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
correlation matrix

⋅

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

X11X12X13
X21X22X23
X31X32X33

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

y11
y12
y13

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cross-correlation matrix

(2.53)

The presence of this matrix inversion creates an implementation hindrance in terms of
both numerical stability and computational complexity. Firstly, the algorithm would be
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DSP Basics 

subject to numerical problems if the correlation matrix became singular. Also, calculat-
ing the inverse for each iteration involves an order of complexity N3, compared with a
complexity of order N for the LMS algorithm, where N is the number of filter taps.

There are two particular methods to solve the LS solution recursively without the
direct matrix inversion which reduce this complexity to order N2. The first technique,
referred to as the standard RLS algorithm, recursively updates the weights using the
matrix inversion lemma. The alternative and very popular solution performs a set of
orthogonal rotations, e.g. Givens rotations (Givens 1958), on the incoming data trans-
forming the square data matrix into an equivalent upper triangular matrix (Gentleman
and Kung 1982). The weights can then be calculated by back substitution.

This method, known as QR decomposition (performed using one of a range of orthog-
onal rotation methods such as Householder transformations or Givens rotations), has
been the basis for a family of numerically stable and robust RLS algorithms (Cioffi 1990;
Cioffi and Kailath 1984; Döhler 1991; Hsieh et al. 1993; Liu et al. 1990, 1992; McWhirter
1983; McWhirter et al. 1995; Rader et al. 1986; Walke 1997). There are versions known
as fast RLS algorithms, which manipulate the redundancy within the system to reduce
the complexity to the order of N , as mentioned in Section 2.5.5.

Systolic Givens Rotations
The conventional Givens rotation QR algorithm can be mapped onto a highly parallel
triangular array (referred to as the QR array (Gentleman and Kung 1982; McWhirter
1983)) built up from two types of cells, a boundary cell (BC) and an internal cell (IC).
The systolic array for the conventional Givens RLS algorithm is shown in Figure 2.20.
Note that the original version (Gentleman and Kung 1982) did not include the product
of cosines formed down the diagonal line of BCs. This modification (McWhirter 1983)
is significant as it allows the QR array to both perform the functions for calculating the
weights and operate as the filter itself. That is, the error residual (a posteriori error) may
be found without the need for weight vector extraction. This offers an attractive solution

e4,4

u34R33

u24R23R22

u14R13R12R11

γ0(n)

γin(n)

x1(n) x2(n) x3(n) y(n)

e(n)

xin

xout

xBC

c, s

c and s are rotation parameters

γ (n) is the product of cosines generated in the
course of eliminating xT(n)

α(n)

c, s c, s

u14(n-1)
u24(n-1)   = u(n-1)
u34(n-1)

γout(n)

Where:

x1(n) x2(n) x3(n)   = x T(n)

R11(n-1) R12(n-1) R13(n-1)
R22(n-1) R23(n-1)   = R(n-1)

R33(n-1)

Figure . Systolic QR array for the RLS algorithm
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Figure . BC for QR-RLS algorithm

in applications, such as adaptive beamforming, where the output of interest is the error
residual.

All the cells are locally interconnected, which is beneficial, as it is interconnection
lengths that have the most influence over the critical paths and power consumption of a
circuit. This highly regular structure is referred to as a systolic array. Its processing power
comes from the concurrent use of many simple cells rather than the sequential use of a
few very powerful cells and is described in detail in the next chapter. The definitions for
the BCs and ICs are depicted in Figures 2.21 and 2.22 respectively.

The data vector xT (n) is input from the top of the array and is progressively eliminated
by rotating it within each row of the stored triangular matrix R(n − 1) in turn. The rota-
tion parameters c and s are calculated within a BC such that they eliminate the input,
xi,i(n). These parameters are then passed unchanged along the row of ICs continuing
the rotation. The output values of the ICs, xi+1,j(n), become the input values for the next
row. Meanwhile, new inputs are fed into the top of the array, and so the process repeats.
In the process, the R(n) and u(n) values are updated to account for the rotation and then
stored within the array to be used on the next cycle.

For the RLS algorithm, the implementation of the forgetting factor, 𝜆, and the prod-
uct of cosines, 𝛾 , need to be included within the equations. Therefore the operations of
the BCs and ICs have been modified accordingly. A notation has been assigned to the
variables within the array. Each R and u term has a subscript, denoted by (i, j), which rep-
resents the location of the elements within the R matrix and u vector. A similar notation
is assigned to the X input and output variables. The cell descriptions for the updated BCs
and ICs are shown in Figures 2.21 and 2.22, respectively. The subscripts are coordinates
relating to the position of the cell within the QR array.

2.5.5 Squared Givens Rotations

There are division and square root operations within the cell computation for the stan-
dard Givens rotations (Figures 2.21 and 2.22). There has an extensive body of research

ci(n)
si(n)

Xi,j(n)

Ri,j(n)
ci(n)
si(n)

Xi+1,j (n)

(n)(n)x1)(n.R(n)(n)

1)(n.R(n)(n)(n)x(n)1,j

scR

scx

i,jii,jii,j

i,jii,jii

+−=

−−=+

β
β

Figure . IC for QR-RLS algorithm
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into deriving Givens rotation QR algorithms which avoid these complex operations,
while reducing the overall number of computations (Cioffi and Kailath 1984; Döhler
1991; Hsieh et al. 1993; Walke 1997). One possible QR algorithm is the squared Givens
rotation (SGR) (Döhler 1991). Here the Givens algorithm has been manipulated to
remove the need for the square root operation within the BC and half the number of
multipliers in the ICs.

Studies by Walke (1997) showed that this algorithm provided excellent perfor-
mance within adaptive beamforming at reasonable wordlengths (even with mantissa
wordlengths as short as 12 bits with an increase of 4 bits within the recursive loops). This
algorithm turns out to be a suitable choice for the adaptive beamforming design. Fig-
ure 2.23 depicts the SFG for the SGR algorithm, and includes the BC and IC descriptions.

1 y(n)x1(n) x2(n) x3(n) x4(n) x5(n) x6(n)

e(n)

α(n)

D1,1

D2,2

D3,3

D4,4

D5,5

D6,6

R1,2 R1,3 R1,4 R1,5 R1,6 U1,7

R2,3 R2,4 R2,5 R2,6 U2,7

R3,5 R3,6 U3,7R3,4

R4,5 R4,6 U4,7

R5,6 U5,7

U6,7

xOUT(n)

a, ba, b

xIC(n)

Internal Cell

Ri,j

xBC(n)

δout(n)

δin(n)

Boundary Cell

Di,j a, b

Primary

inputs

Auxiliary

inputs

(Note:  in the SGR algorithm D = R2)

Output Cell

Figure . Squared Givens Rotations QR-RLS algorithm

 10.1002/9781119079231.ch2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch2 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 FPGA-based Implementation of Signal Processing Systems

This algorithm still requires the dynamic range of floating-point arithmetic but offers
reduced size over fixed-point algorithms, due to the reduced wordlength and operations
requirement. It has the added advantage of allowing the use of a multiply-accumulate
operation to update R. At little cost in hardware, the wordlength of the accumulator
can be increased to improve the accuracy to which R is accumulated, while allowing
the overall wordlength to be reduced. This has been referred to as the Enhanced SGR
algorithm (E-SGR) (Walke 1997).

However, even with the level of computation reduction achievable by the SGR algo-
rithm, the complexity of the QR cells is still large. In addition, the number of processors
within the QR array increases quadratically with the number of inputs, such that for an
N-input system, (N2 + N)∕2 QR processors are required; furthermore, implementing
a processor for each cell could offer data rates far greater than those required by most
applications. The following section details the process of deriving an efficient architec-
ture with generic properties for implementing the SGR QR-RLS algorithm.

. Final Comments

The chapter has given a brief review of DSP algorithms with the aim of providing a foun-
dation for the work presented in this book. Some of the examples have been the focus
of direct implementation using FPGA technology with the aim of giving enhanced per-
formance in terms of the samples produced per second or a reduction in power con-
sumption. The main focus has been to provide enough background to understand the
examples, rather than an exhaustive primer for DSP.

In particular, the material has concentrated on the design of FIR and IIR filtering as this
is a topic for speed optimization, particularly the material in Chapter 8, and the design
of RLS filters, which is the main topic of Chapter 11 and considers the development of
an IP core for an RLS filter solved by QR decomposition. These chapters represent a core
aspect of the material in this book.
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