140

7

Synthesis Tools for FPGAs

7.1 Introduction

In the 1980s, the VHSIC program was launched which was a major initiative to identify
the need for high-level tools for the next generation of integrated circuits. From this
the VHDL language and associated synthesis tools were developed; these were seen as a
step function for the design of integrated circuits and, until recently, represented the key
design entry mechanism for FPGAs. To avoid the high license costs which would act to
prevent FPGA users from using their technology, each of the main vendors developed
their own tools.

To a great extent, though, this has strengthened the view of FPGAs as a hardware tech-
nology, something that is viewed as difficult to program. For this reason, we have seen
a major interest in developing high-level synthesis (HLS) tools to make this a more eas-
ily programmable technology for software developers. Xilinx has launched the Vivado
tools which allow users to undertake C-based synthesis using Xilinx FPGA technology.
Altera have developed an approach based on OpenCL, called SDK for Open Computing
Language, which allows users to exploit the parallel version of C, developed for GPUs.

A number of other tools have been developed, including C-based synthesis tools both
in the commercial (Catapult® and Impulse-C) and academic (GAUT, CAL and LegUp)
domain with some focus on FPGA, and higher-level tools such as dataflow-based syn-
thesis tools. The tools that have been chosen and described in this chapter are the ones
specifically linked to FPGAs.

The purpose of the chapter is not to provide a detailed description of the tools as
these are described much better and in much more detail in their literature, but to give
some insight into the tools and their capabilities from a synthesis point of view and
also because they would appear to be closely linked to FPGAs. In particular, there is
an interest in how much of the architectural mapping outlined in Chapter 8 has now
been automated. In particular, the approaches that are of interest are those which allow
the algorithmic parallelism to be exploited and also those that permit pipelining to be
introduced.

Section 7.2 discusses HLS and describes the problems of using C to model hardware.
A C-based approach, specifically Xilinx Vivado HLS tools, is described in Sections 7.3

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Synthesis Tools for FPGAs

and 7.4, followed by an OpenCL alternative, Altera’s SDK for OpenCL, in Section 7.5.
Other HLS approaches are briefly reviewed in Section 7.5, including open source C-
based tools and those based on a dataflow approach.

7.2 High-Level Synthesis

As the number of transistors on a chip increases, the level of abstraction should increase,
as should the design productivity, otherwise design time/effort will increase. The argu-
ment is that HLS tools will play an important role in raising productivity. Their main
role is to transform an algorithmic description of the behavior of an algorithm into a
desired digital hardware solution that implements that behavior. For FPGA designs, the
existence of logic synthesis tools from a register transfer level (RTL) description of the
design meant that this was a suitable output.

Gajski and Kuhn's Y-chart (Gajski et al. 1992; Gajski and Kuhn 1983) describes the
HLS design flow (Figure 7.1) A design can be viewed from three perspectives:

® behavioral, which describes what the design does, expressed at levels such as transis-
tor functions, Boolean expressions, register transfers, flowcharts/algorithms;

o structural, which shows how the design is built using different levels of com-
ponents such as transistors, gates/flip-flops, registers/ALUs/muxes, processors/
memories/buses;

® physical, which outlines how the design is physically implemented using different
units such as transistor layouts, cells, chips, boards/MCMs

In traditional RTL design flow (Figure 7.1(a)), the behavioral system specifications of
the design down to RT level are handled manually by the designer. RTL synthesis and
place and route tools is automatically performed, whereas the verification within the
automated parts is necessary to match the design against the top-level specifications.

Martin and Smith (2009) provide an outline of the various stages of HLS and suggest
that we are now in the third generation after several previous attempts. The first gen-
eration was motivated by the observation over two decades ago that RTL-based design

Behaviour .

Structure Behaviour .- Structure
.~ High-Level Synthesis._

System ,"- B
Specifications

System ,
Specifications|

Automated 3 Automated > 2 e |
Manual Manual
Physical Physical
(a) RTL design flow (b) HLS design flow

Figure 7.1 High-level synthesis in Gajski and Kuhn’s Y-chart

4

IPUOD PUE SWB L 8L 805 [r202/50/52] U0 AX11T8UIIUO ABIIA WBULEH OLZ Sa1e:q1 T AISBAIN B SeXa.L A LU0 TEZ6/06TTTSL6/200T OT/I0P/LIOY a1 AXeIGIBUIIUO/ STl W02} POPeojumOq ‘240 TEZ6L0GTTTSL6/Z00T OT

Rojm

il

25U9017 SUOLLILIOD BAEBI) 3|eo1Idde 31 Aq PoUBAOB 98 SIPILE YO ‘38N J0'SINI 10} ARIGITBUIIUO 31 O (SUONIPL

142

FPGA-based Implementation of Signal Processing Systems

was becoming tedious, complicated, and inefficient as such designs exploded to tens
of thousands of lines. To solve this, “behavioral synthesis” was introduced where the
detailed description of the architecture was to be replaced with abstract code specifying
the design. This required research into sophisticated electronic design automation tools
and resulted in the production of multiple behavioral synthesis tools. However, this first
attempt failed as the tools were limited and only very small designs were synthesizable;
a key example was Synopsys’s “Behavioral Compiler” For the second generation, behav-
ioral synthesis was again pursued by academia to fix its problems, and HLS was pursued

with improvements such as:

synthesizing more complex and diverse architectures not just simple data paths;
synthesizing design I/Os to realize units supporting interface standards and protocols;
dividing the processing elements into multiple pipelines;

changing the source language from VHDL or Verilog to the more popular C and C++
languages used by embedded systems designers;

¢ finding a way to show the trade-offs considered to the designer, namely, speed versus
area versus power consumption, latency versus throughput, and memory versus logic.

Since the design space to be explored was vast, thousands of solutions could be created
by the tool to find the best one, so it took a long time to develop appropriate HLS-based
tools.

While the HLS idea was being developed, another method of raising the abstraction
layer was introduced to the market: schematic design to create complicated systems
through inserting large reusable IPs, such as processor cores and memory structures,
comprising about 80—90% of the design, and 10-20% RTL design including differentiat-
ing features. Despite the wide adoption of IP reuse through schematic design, HLS tools
reached a level of quality to produce high-performance results for complex algorithms,
in particular DSP problems. HLS tools were used to design high-performance IP blocks
at high-level languages rather than create the whole system.

With the inclusion of fast processors on chips in SoCs, some designers started to code
the 10-20% differentiating part of their design, as software on the processors, hence
avoiding any RTL coding in the schematic method. Altera’s OpenCL was designed for
software engineers who needed software code running on large parallel processor archi-
tectures, and also FPGA hardware, as it requires little understanding of hardware.

Given that the previous attempts were viewed to have failed, Martin and Smith (2009)
suggest several reasons why this generation of tools would succeed:

e A focus on applications where the tools are being applied in domains where they are
expected to have a higher probability of success.

¢ Algorithm and system designers with the right input languages, allowing them to use
languages with which they are comfortable (e.g. C variants, MATLAB®), thus avoid-
ing the learning of special languages.

e Use of compiler-based optimizations which has enabled designers to achieve
improved design outputs.

e Performance requirements need significant amounts of signal and multimedia pro-
cessing and thus need hardware acceleration.

e With FPGAs, the measurement criteria are different than for ASIC as the design has
to “fit” into a discrete FPGA size and has to work fast enough, but within the FPGA

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

Rojm

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

Synthesis Tools for FPGAs

speed and size capacity; thus HLS synthesis with FPGA targets is a perfect way of
quickly getting an algorithm into hardware.

Overall, the tools appear to be based on C, C++ or C-like tool entry which, as the authors
have outlined above, is a major advantage.

7.2.1 HLS from C-Based Languages

Thus there has always been a challenge in using C to model hardware. Given the sequen-
tial nature of C, alot of C-based synthesis tools will translate the C description into some
internal data model and then use a series of functionalities to extract the processes, ports
and interconnections. This is central to a lot of the design approaches, and a lot of the
classical synthesis tools tend to lean on their major investment in classical synthesis
tools to achieve the mapping.

Of course, the alternative approach is to adopt C-based languages such as OpenCL,
which allows parallelism to be captured. In addition to the ability to capture algorith-
mic representation, OpenCL defines an application program interface (API) that allows
programs running on the host to launch kernels on the compute platform. The language
has been driven by the major developments in GPUs which initially developed for pro-
cessing graphics, but are now applied to a wide range of applications.

The next two sections describe these two varying approaches, one from Xilinx which
is based upon C-based synthesis called Vivado and the other from Altera called SDK for
OpenCL. While initially Xilinx and Altera created HLS tools which were complemen-
tary and created for different groups of users, they have started to add similar function-
ality to each other’s tools.

7.3 Xilinx Vivado

The Xilinx Vivado HLS tool converts a C specification into an RTL implementation syn-
thesizable into a Xilinx FPGA (Feist 2012). C specifications can be written in C, C++,
SystemC, or as an OpenCL API C kernel. The company argues that it saves develop-
ment time, provides quick functional verification, and offers users controlled synthesis
and portability.

Figure 7.2 shows that the algorithm can be specified C, C++, or SystemC. These func-
tions are synthesized into RTL blocks and the top-level function arguments are syn-
thesized into RTL I/O ports. Each loop iteration is scheduled to be executed in pro-
grammable logic and loops can be unrolled using directives to allow for all iterations to
run in parallel. C code arrays are synthesized into block RAM.

Hardware optimized C libraries are available including arbitrary precision data types
(to allow optimization to FPGA libraries), HLS stream library, math functions, linear
algebra functions, DSP functions, video functions and an IP library. During the synthe-
sis process, a microarchitecture is explored. The tool allows IP system integration and
provides RTL generation in VHDL or Verilog.

Vivado creates the optimal implementation based on the default behavior constraints
and the user-specified directives. It uses the classical stages of scheduling (determin-
ing which operations occur when), binding (allocating the hardware resource for each

143

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

Rojm

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

144

FPGA-based Implementation of Signal Processing Systems

Test C, C++ Constraints/
Bench) " SystemC, Directives
] OpenCL APIC
A 4 A A A 4
C Simulation C Synthesis
A 4 A 4
RTL Vivado HLS VHDL
Adapter Verilog
I ,
RTL Simulation Packaged IP
A 4 A 4 A
Vivado Svstem Xilinx
Design Ge)rllerator Platform
Suite Studio

Figure 7.2 Vivado HLS IP creation and integration into a system

scheduled operation) and control-logic extraction (which allows the creation of an FSM
that sequences the operations).

The user can change the default behavior and allow multiple implementations to be
created targeted at reduced area, high-speed, etc. The important performance metrics
reported by the HLS are area, latency, loop iteration latency (clock cycles to complete
one loop iteration) and loop latency (clock cycles to execute all loop iterations). Gener-
ally, the designer can make decisions on functionality, performance including pipeline
register allocation, interfaces, storage, design exploration and partitioning into modules.

7.4 Control Logic Extraction Phase Example

The following example shows the control logic extraction and I/O port implementation
phase of Vivado. A data computation is placed inside a for loop and two of the function
arguments are arrays. The HLS extracts the control logic from the C code and creates
an FSM to sequence the operations. The control structure of the C code for loop and the
FSM are the same:

Co
C1,C2,C3
C1,C2,C3
C1,C2,C3

Co, ...

1IPUOD PUe SR | 3U) 89S *[7202/50/52] U0 ARIqIT8UIIUO A3|IM TRULEH LT SaLRIqIT AISAIIN WRY SeXxaL A 240 TEZ6206TTT8L6/200T OT/I0PALI0D AB] 1M ALeiq) U |u0//SdNL 01 papeo|umoq ‘LUd"TEZ6.06TTT8L6/Z00T 0T

Rojm

25U9017 SUOLLILIOD BAEBI) 3 |eo1ldde 3U) Aq PoUBAOB 98 SIPILE YO ‘38N J0'SINI 10} ARIGITBUIUO 31 UO

Synthesis Tools for FPGAs

y out_data
\ + + ——»

in_data X

: ||

—» out_addr

—»in_addr —» out_ce

I —»in_ce | —» out_we

Finite State Machine (FSM)

Figure 7.3 Control logic extraction and I/O port implementation example

This is much more easily seen in the timing diagram in Figure 7.3

FSM controls when the registers store data and controls the state of any I/O control
signals. Addition of b and c is moved outside the for loop and into state C0O. The FSM
generates the address for an element in C1 and an adder increments to count how many
times that the design iterates around C1, C2, and C3. In C2, the block RAM returns the
data for in_data and stores as x. By default, arrays are synthesized into block RAMs. In
C3, the calculations are performed and output is generated. Also the address and control
signals are generated to store the value outside the block.

void F (int in [3], char a, char b, char ¢, int out[3]){

intx, y;

for (inti=0;i;3;i++) {
x = int [i];
y=a*x+b+g

out [i] =y;

}

}

7.5 Altera SDK for OpenCL

Altera makes the case that the OpenCL standard inherently offers the ability to describe
parallel algorithms to be implemented on FPGAs at a much higher level of abstraction
than HDLs. The company argues that the OpenCL standard more naturally matches

145

1IpUOD pue WS L au 885 *[202/50/G2] Uo ARiqrauluo A1 ‘PeuLeH L3 SaLeiqI] AISBAIUN Y Sexe L Ag LU0 TEZ6.06TTT8L6/200T 0T/10p/wod /a]1mAsiqijpul|uo// sy WO papeojumoq ‘ZUoTEZ6.06TTT8L6/200T 0T

Rojm

il

25U9017 SUOLLILIOD BAEBI) 3|eo1Idde 31 Aq PoUBAOB 98 SIPILE YO ‘38N J0'SINI 10} ARIGITBUIIUO 31 O (SUONIPL

146

FPGA-based Implementation of Signal Processing Systems

the highly parallel nature of FPGAs than do sequential C programs. OpenCL allows the
programmer to explicitly specify and control the thread-level parallelism, allowing it to
be exploited on FPGAs as the technology offers very high levels of parallelism.

OpenCL is a low-level programming language created by Apple derived from stan-
dard ANSI C. It has a lot of the functionality of C but does not have certain headers,
function pointers, recursion, variable-length arrays or bit fields. However, it has a num-
ber of extensions to extract parallelism and also includes an API which allows the host to
communicate with the FPGA-based hardware accelerators, either from one accelerator
to another or to the host over PCI Express. In addition, an I/O channel API is needed to
stream data into a kernel directly from a streaming I/O interface such as 10Gb Ethernet.

The Altera SDK for OpenCL tools provides the designer with a range of functional-
ity to implement OpenCL on heterogeneous platforms including an emulator to step
through the code on an x86, a detailed optimization report to highlight loop depen-
dencies, a profiler and a compiler capable of performing over 300 optimizations on the
kernel code and producing the entire FPGA image in one step.

In standard OpenCL, the OpenCL host program is a pure software routine written in
standard C/C++. The computationally expensive function which will benefit from accel-
eration on FPGA is referred to as an OpenCL kernel. Whilst these kernels are written in
standard C, they are annotated with constructs to specify parallelism and memory hier-
archy. Take, for example, a vector addition of two arrays, a and b, which produces an
output array. Parallel threads will operate on the each element of the vector. If this can
be accelerated with a dedicated processing block, then an FPGA offers massive amounts
of fine-grained parallelism. The host program has access to standard OpenCL APIs that
allow data to be transferred to the FPGA, invoking of the kernel on the FPGA and return
of the resulting data.

A pipelined circuit to implement this functionality is given in Figure 7.4. For simplicity,
assume the compiler has created three pipeline stages for the kernel. On the first clock
cycle, thread 0 is clocked into the two load units and indicates that the first elements of
data from arrays a and b should be fetched. On the second clock cycle, thread 1 is clocked
in at the same time that thread 0 has completed its read from memory and stored the
results in the registers following the load units. On cycle 3, thread 2 is clocked in, thread
1 captures its returned data, and thread O stores the sum of the two values that it loaded.
Eventually the pipeline will be filled and numerous computations will be carried out in
parallel (Altera 2013).

Figure 7.4 Pipelined processor implementation

E =[]

[[

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

Synthesis Tools for FPGAs

In addition to the kernel pipeline, Altera’s OpenCL compiler creates interfaces to
external and internal memory. This can include the connections to external memory via
a global interconnect structure that arbitrates multiple requests to a group of external
DDR memories and also through a specialized interconnect structure to on-chip RAMs.
These specialized interconnect structures ensure high performance and best organiza-
tion of requests to memory.

Altera SDK for OpenCL is in full production release and supports a variety of host
CPUs, including the embedded ARM® Cortex®-A9 processor cores. It supports scalable
solutions on multiple FPGAs and multiple boards as well as a variety of memory targets,
such as DDR SDRAM, QDR SRAM and internal FPGA memory. Half-precision as well
as single- and double-precision floating-point is also supported.

7.6 Other HLS Tools

Obviously, FPGA vendors have a key role in producing place and route tools as this is
an essential stage in implementing users’ designs in their technologies. More recently,
this has been extended to HLS tools particularly as the user base of their technology
expands to more general applications of computing. Whilst the previous two sections
have highlighted the two major FPGA vendors’ approach to HLS, there have also been
a number of other approaches, both commercial and academic. A sample of such tools
is included in this section in no particular order of importance or relevance.

7.6.1 Catapult

Mentor Graphics offers the Catapult® HLS platform which allows users to enter their
design in C, SystemC or C++ and produce RTL code to allow targeting to FPGA. The
key focus is the tool’s ability to produce correct-by-construction, error-free, power-
optimized RTL (Mentor Graphics 2014). The tool derives an optimal hardware microar-
chitecture and uses this to explore multiple options for optimal power, performance and
area. This allows design iteration and faster reuse.

Whilst the tool was initially aimed at a wide range of applications, it has now been
focused towards power optimization. In addition, the goal of reduction in design and
verification has been achieved by having a fixed architecture and optimizing on it.
Indeed, the presentation material indicates that the approach of mapping to a fixed
architecture has to be undertaken at the design capture stage. This is interesting, given
the recent trend of creating soft processors on FPGA as outlined in Chapter 12.

The PowerPro® product allows fast generation of fully verified, power-optimized RTL
for ASIC, SOC and FPGA designs. The company argues that this allows analysis of both
static and dynamic RTL power usage and allows the user to automatically or manually
create power-optimized RTL. From an FPGA perspective, there is clearly a route for
trading off parallelism and pipelining as outlined in Chapter 8 as this can be used to alter
the power profile as outlined in Chapter 13. Whilst the latter description talks about this
from a generated architecture, this approach uses a fixed architecture.

7.6.2 Impulse-C

Impulse-C is available from from Impulse Accelerated Technologies (see Impulse
Accelerated Technologies 2011) and provides a C-to-gates workflow. Algorithms are

147

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

Rojm

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

148

FPGA-based Implementation of Signal Processing Systems

represented using using a communicating sequential process and a library of specific
functions, and then described in Impulse-C, which is a standard ANSI C language.
The communication between processes is performed mainly by data streams or shared
memories, which translates into physical wires or memory storage. Signals can also be
transferred to other processes as flags for non-continuous communication. The key is
that this allows capture of process parallelization and communication.

The code can be compiled using a standard C compiler and then translated into VHDL
or Verilog. As well as the code for the functional blocks, the tools can generate the
controller functionality from the communication channels and synchronization mech-
anisms. Pragma directives are used to control the hardware generation throughout the
C code, for example, and to allow loop unrolling, pipelining or primitive instantiation.
Also existing IP cores in the form of VHDL code can be incorporated.

Each defined processes is translated to a software thread allowing the algorithm to be
debugged and profiled using using standard tools. The co-design environment includes
tools for co-simulation and co-execution of the algorithms. The approach is targeted at
heterogeneous platforms allowing compilation onto processors and optimization onto a
programmable logic platform. Impulse-C code can be implemented in a growing num-
ber of hardware platforms and, specifically, Altera and Xilinx FPGA technologies.

The tools have been applied to core DSP functions, many of which were described in
Chapter 2, but also more complex systems, specifically, filters and many image process-
ing algorithms including edge enhancement, object recognition, video compression and
decompression and hyperspectral imaging. There have also been some financial appli-
cations, specifically to high-frequency trading.

7.6.3 GAUT

GAUT is an academic HLS tool (http://www.gaut.fr/) that has been targeted at DSP
applications (Coussy et al. 2008). It allows the user to start from a C/C++ description
of the algorithm and supports fixed-point representation to allow more efficient imple-
mentation on FPGAs. The user can set the throughput rate and the clock period as well
as other features such as memory mapping (Corre et al. 2004) and I/O timing diagrams
(Coussy et al. 2006). The tool synthesizes an architecture consisting of a processing unit,
a memory unit and a communication and interface block. The processing unit is com-
posed of logic and arithmetic operators, storage elements, steering logic and an FSM
controller.

The flow for the tool is given in Figure 7.5. It starts with the design of the architecture,
which involves selecting the arithmetic operators, then the memory registers and mem-
ory banks involving memory optimization, followed by the communication paths such
as memory address generators and the communication interfaces. It generates not only
VHDL models but also the testbenches and scripts necessary for the Modelsim simula-
tor. It has been applied to a Viterbi decoder and a number of FIR and LMS filters, giving
a reduction in code of around two orders of magnitude.

7.6.4 CAL

Sequential software programming depends mostly on HLS tools to automatically extract
the parallelism of the code. Other than the automatic detection, to cover the language
concurrency-support limitations, some libraries are also introduced or features such as

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

Rojm

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

http://www.gaut.fr/

Synthesis Tools for FPGAs

C/C++ Specification
——

Function
—>| Compilation

. Bit-width
Characterization |<—— .
analysis
_______ E
Component
library)
Pie RN N /_/" Allocation
4 N7
. /’ - \ Scheduling
, PU synthesis \ —

),I v -\\‘ Binding
~Throughput ;| MEMU synthesis | . | Resizing
- Clock period 1 N
- Memory mapping \ It ™| Optimization
- 1/O timing diagram \\ COMU synthesis /

\ ,/
N /
N
~ - _ 4
VHDL RTL SystemC Simulation
Architecture Model (CABA/TLM-T)

Figure 7.5 GAUT synthesis flow

pragmas are included. These changes in a sequential language to make it executable on
hardware have led to different implementations of that language. Development of lan-
guages based on the computation model which reflects the hardware specifics and par-
allel programming seems a better approach than adapting sequential C-like languages
to support hardware design.

A language designed to support both parallel and sequential coding constructs and
expression of applications as network processes is CAL (Eker and Janneck 2003). The
CAL actor language was developed by Eker and Janneck in 2001 as part of the Ptolemy
project (Eker et al. 2003) at the University of California at Berkeley. CAL is a high-level
programming language of the form of a dataflow graph (DFG), for writing actors which
transform input streams into output streams. CAL is an ideal language for use as a single
behavioral description for software and hardware processing elements.

A subset of the CAL language which has been standardized by the ISO MPEG commit-
tee is reconfigurable video coding or RVC-CAL. The main reason for the introduction
of RVCis to provide reuse of commonalities among various MPEG standards, and their
extension through system-level specifications (Eker et al. 2003). This provides a more
flexible and faster path to introducing new MPEG standards. The RVC framework is
being developed by the MPEG to provide a unified high-level specification of current
and future MPEG video coding technologies using dataflow models. In this framework,
a decoder is generated by configuring video coding modules which are standard MPEG
toolbox libraries or propriety libraries. RVC-CAL is used to write the reference software
of library elements. A decoder configuration is defined in XML language by connecting
a set of RVC-CAL modules.

149

1IpUOD pue WS L au 885 *[202/50/G2] Uo ARiqrauluo A1 ‘PeuLeH L3 SaLeiqI] AISBAIUN Y Sexe L Ag LU0 TEZ6.06TTT8L6/200T 0T/10p/wod /a]1mAsiqijpul|uo// sy WO papeojumoq ‘ZUoTEZ6.06TTT8L6/200T 0T

Rojm

il

25U9017 SUOLLILIOD BAEBI) 3|eo1Idde 31 Aq PoUBAOB 98 SIPILE YO ‘38N J0'SINI 10} ARIGITBUIIUO 31 O (SUONIPL

150

FPGA-based Implementation of Signal Processing Systems

The RVC-CAL language limits the advanced features of the CAL language. There are
some tools available for development of applications based on RVC-CAL language as
summarized in the following.

The Open RVC-CAL Compiler (ORCC) is an open source dataflow development envi-
ronment and compiler framework which uses RVC-CAL, allows the transcompilation
of actors and generates equivalent codes depending on the chosen back-ends (Eker et al.
2003). ORCC is developed within the Eclipse-based IDE as a plug-in with graphical
interfaces to ease the design of dataflow applications.

CAL2HDL (Janneck et al. 2008) was the first implementation of a direct hardware
code generation from CAL dataflow programs. A CAL actor language is first converted
into an XML language independent model from which Verilog code can be generated
using an open source tool. The tool supports a limited subset of CAL actor language such
that complex applications cannot be easily expressed or synthesized using this tool. In
addition, Xronos (Bezati et al. 2013) is an evolution of CAL2HDL and TURNUS (Brunei
et al. 2013) is a framework used for iterative design space exploration of RVC-CAL pro-
grams to find design solutions which satisfy performance constraints or optimize parts
of the system.

7.6.5 LegUp

LegUp is an open source HLS tool that allows a standard C source program to be syn-
thesized onto a hybrid FPGA-based hardware/software system (Canis ez al. 2013). The
authors envisage implementing their designs onto an FPGA-based 32-bit MIPS soft pro-
cessor and synthesized FPGA accelerators. It has been created using modular C++ and
uses the state-of-the-art LLVM compiler framework for high-level language parsing and
its standard compiler optimizations (LLVM 2010). It also uses a set of benchmark C
programs that can be used to a combined hardware/software system and allows specific
functionality to be added (Hara et al. 2009).

7.7 Conclusions

The chapter has briefly covered some of the tools used to perform HLS. The purpose of
the chapter has been to give a brief overview of some relevant tools which may in some
cases cover the types of optimizations covered in Chapter 8. In some cases the tools start
with a high-level description in C or C++ and can produce HDL output in the form of
VHDL or Verilog, allowing vendors’ tools to be used to produce the bit files.

C-based tools are particularly useful as many of the FPGA platforms are SoC platforms
comprising processors, memory and high-speed on-chip communications. The ability
to explore optimization across such platforms is vital and will become increasingly so
as future systems requirements evolve as heterogeneous FPGA platforms become ever
more complex. Such issues are addressed in the tools outlined in Chapter 10.

Bibliography

Altera Corp. 2013 Implementing FPGA Design with the OpenCL Standard. White paper
WP-01173-3.0. Available from www.altera.com (accessed June 11, 2015).

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

let &hbox {char '046}www.altera.com
www.altera.com

Synthesis Tools for FPGAs | 151

Bezati E, Mattavelli M, Janneck JW 2013 High-level synthesis of dataflow programs for
signal processing systems. In Proc. Int. Symp. on Image and Signal Processing and
Analysis, pp. 750-754.

Brunei SC, Mattavelli M, Janneck JW 2013 TURNUS: A design exploration framework for
dataflow system design. In Proc. IEEE Int. Symp. on Circuits and Systems. doi
10.1109/ISCAS.2013.6571927

Canis A, Choi], Aldham M, Zhang V, Kammoona A, Czajkowski T, Brown SD, Anderson
JH. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based
processor/accelerator systems. ACM Trans. Embedded Computing Systems, 13(2), article
24,

Corre G, Senn E, Bomel P, Julien N, Martin E 2004 Memory accesses management during
high level synthesis. In Proc. IEEE Int. Conf. on CODES+ISSS, pp. 42—-47.

Coussy P, Casseau E, Bomel P, Baganne A, Martin E 2006 A formal method for hardware IP
design and integration under I/O and timing constraints. ACM Trans. on Embedded
Computing Systems, 5(1), 29-53.

Coussy P, Chavet C, Bomel P, Heller D, Senn E, Martin E 2008 GAUT: A high-level
synthesis tool for DSP applications. In Coussy P, Morawiec A (eds) High-Level Synthesis:
From Algorithm to Digital Circuit, pp. 147-169. Springer, New York.

Eker J, Janneck] 2003 CAL language report. Technical Report UCB/ERL M 3. University of
California at Berkeley.

Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig], Neuendorffer S, Sachs S, Xiong Y 2003
Taming heterogeneity — the Ptolemy approach. Proc. IEEE, 91(1), 127-144.

Feist T 2012 Vivado design suite. White Paper WP416 (v1.1). Available from
www.xilinx.com (accessed May 11, 2016).

Gajski DD, Dutt ND, Wu AC, Lin SY-L 1992 High-Level Synthesis: Introduction to Chip and
System Design. Kluwer Academic, Norwell, MA.

Gajski DD, Kuhn RH 1983 Guest editors’ introduction: New VLSI tools. Computer, 16(2),
11-14.

Hara Y, Tomiyama H, Honda S, Takada H. 2009 Proposal and quantitative analysis of the
CHStone benchmark program suite for practical C-based high-level synthesis. J. of
Information Processing, 17, 242—254.

Impulse Accelerated Technologies 2011 Impulse codeveloper C-to-FPGA tools. Available
from http:// www.impulse accelerated.com/products_universal. htm (accessed May 11,
2016).

Janneck JW, Miller ID, Parlour DB, Roquier G, Wipliez M, Raulet M 2008 Synthesizing
hardware from dataflow programs: An MPEG-4 simple profile decoder case study. In
Proc. Workshop on Signal Processing Systems, pp. 287—292.

LLVM 2010. The LLVM compiler infrastructure project. Available from
http://www.llvm.org (accessed May 11, 2016).

Martin G, Smith G 2009 High-level synthesis: Past, present, and future. IEEE Design & Test
of Computers, 26(4), 18-25.

Mentor Graphics 2014 High-level synthesis report 2014. Available from
http://s3.mentor.com/ public_documents/whitepaper/resources/mentorpaper_94095.pdf
(accessed May 11, 2016).

NIPUOD PUe S L 8L} 89S *[7202/50/5¢] U0 ARiq1T8ul|uO /8|1 ‘WBULH dUZ SaLkeIq 1 AISBAIIN NBY Sexa L Ag 40" TEZ6.06TTT8L6/200T OT/I0p/L0Y A | IM AReiq 1 pul|uo//SANY WO papeojumMoq ‘2U0 TEZ6.06TTT8L6/200T 0T

Rojm

2519017 SUOLLILIOD BAEBI) 3 |eo1Idde 3U) Aq POURAOB 98 SIPILE YO ‘38N J0'S3INI 10} ARIGITBUNIUO 31 UO (SUONIPUCO-P

let &hbox {char '046}www.xilinx.com
www.xilinx.com
let &hbox {char '046}http://www.llvm.org
http://www.llvm.org
http://www.impulseaccelerated.com/products_universal.htm
http://s3.mentor.com/public_documents/whitepaper/resources/mentorpaper_94095.pdf

