




Architecture Derivation for FPGA-based DSP Systems

. Introduction

The technology review in Chapter 4 and the detailed circuit implementation material in
Chapter 5 clearly demonstrated the need to develop a circuit architecture when imple-
menting DSP algorithms in FPGA technology. The circuit architecture allows the perfor-
mance needs of the application to be captured effectively. One optimization is to imple-
ment the high levels of parallelism available in FIR filters directly in hardware, thereby
allowing a performance increase to be achieved by replicating the functionality in FPGA
hardware. In addition, it is possible to pipeline the SFG or DFG heavily to exploit the
plethora of available registers in FPGA; this assumes that the increased latency in terms
of clock cycles, incurred as a result of the pipelining (admittedly at a smaller clock
period), can be tolerated. It is clear that optimizations made at the hardware level can
have direct cost implications for the resulting design. Both of these aspects can be cap-
tured in the circuit architecture.

In Chapter 5 it was shown how this trade-off is much easier to explore in “fixed archi-
tectural” platforms such as microprocessors, DSP processors or even reconfigurable
processors, as appropriate tools can be or have been developed to map the algorith-
mic requirements efficiently onto the available hardware. As already discussed, the main
attraction of using FPGAs is that the available hardware can be developed to meet the
specific needs of the algorithm. However, this negates the use of efficient compiler tools
as, in effect, the architectural “goalposts” have moved as the architecture is created on
demand! This fact was highlighted in Chapter 7 which covered some of the high-level
tools that are being developed either commercially or in universities and research labs.
Thus, it is typical that a range of architecture solutions are explored with cost factors
that are computed at a high level of abstraction.

In this chapter, we will explore the direct mapping of simple DSP systems or, more
precisely, DSP components such as FIR or IIR filters, adaptive filters, etc. as these will
now form part of more complex systems such as beamformers and echo cancelers.
The key aim is to investigate how changes applied to SFG representations can impact
the FPGA realizations of such functions, allowing the reader to quickly work in the
SFG domain rather than in the circuit architecture domain. This trend will become

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Architecture Derivation for FPGA-based DSP Systems 

increasingly prevalent throughout the book as we attempt to move to a higher-level
representation. The later chapters demonstrate how higher levels of abstraction can be
employed to allow additional performance improvements by considering system-level
implications.

Section 8.2 looks at the DSP characteristics and gives some indication of how these
map to FPGA. The various representations of DSP systems are outlined in Section 8.3.
Given that a key aspect of FPGA architecture is distributed memory, efficient pipelining
is a key optimization and so is explored in detail in Section 8.4. The chapter then goes on
to explore how the levels of parallelism can be adjusted in the implementation in order to
achieve the necessary speed at both lower or higher area costs; duplicating the hardware
is formally known as “unfolding” and sharing the available hardware is called “folding,”
and both of these techniques are explored in Section 8.5. Throughout the chapter, the
techniques are applied to FIR, IIR and lattice filters and explored using the Xilinx Virtex-
5 FPGA family. This material relies heavily on the excellent text by Parhi (1999).

. DSP Algorithm Characteristics

By their very nature, DSP algorithms tend to be used in applications where there is a
demand to process high volumes of information. As highlighted in Chapter 2, the sam-
pling rates can range from kilohertz, as in speech environments, right through to mega-
hertz, as in the case of image processing applications. It is vital to clearly define a number
of parameters with regard to system implementation of DSP systems:

� Sampling rate can be defined as the rate at which we need to process the DSP signal
samples for the system or algorithm under consideration. For example, in a speech
application, the maximum bandwidth of speech is typically judged to be 4 kHz, and
the Nyquist rate indicates a sampling rate of 8 kHz.

� Throughout rate (TR) defines the rate at which data samples are processed. In some
cases, the aim of DSP system implementation is to match the throughput and sam-
pling rates, but in systems with lower sampling rates (speech and audio), this would
result in underutilization of the processing hardware. For example, speech sampling
rates are 8 kHz, but the speeds of many DSP processors are of the order of hundreds of
megahertz. In these cases there is usually a need to perform a large number of compu-
tations per second, which means that the throughput rate can be several times (say,
p) the sampling rate. In cases where the throughput is high and the computational
needs are moderate, there is the possibility of reusing the hardware, say p times. This
is a mapping that would need to be applied in FPGA implementation.

� Clock rate defines the operating speed of the system implementation. It used to be
a performance figure quoted by computing companies, although it is acknowledged
that memory size, organization and usage can be more critical in determining per-
formance. In DSP systems, a simple perusal of DSP and FPGA data sheets indicates
that clock rates of FPGA families are 550–600 MHz, whereas TI’s TMS320C6678 DSP
family can run up to 1.25 GHz. It would appear that the DSP processor is faster than
the FPGA, but it is the amount of computation that can be performed in a single cycle
that it is important (Altera 2014). This is a major factor in determining the through-
put rate, which is a much more accurate estimate of performance, but is of course
application-dependent.

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

t

Input a

Input x

Output y

TLatency
 1

Throughput

Figure . Latency and throughput rate relationship for system y(n) = ax(n)

Thus, it is clear that we need to design systems ultimately for throughput and therefore
sampling rate, as a first measure of performance. This relies heavily on how efficiently we
can develop the circuit architecture. As Chapter 5 clearly indicated, this comes from har-
nessing effectively the underlying hardware resources to meet the performance require-
ments. In ASIC applications the user can define the processing resources to achieve this,
but in FPGAs the processing resources are restrictive in terms of their number and type
(e.g. dedicated DSP blocks, scalable adder structures, LUT resources, memory resource
(distributed RAM, LUT RAM, registers)) and interconnection (e.g. high-speed Rocket
IO, various forms of programmable interconnect). The aim is to match these resources
to the computational needs, which we will do here based initially on performance and
then trading off area, if throughput is exceeded.

In DSP processors, the fixed nature of the architecture is such that efficient DSP com-
pilers have evolved to allow high-level or C language algorithmic descriptions to be com-
piled, assembled and implemented onto the platform. Thus, the implementation target
is to investigate if the processing resources will allow one iteration of the algorithm to
be computed at the required sampling rate. This is done by allocating the processing
to the available resources and scheduling the computation in such a way as to achieve
the required sampling rate. In effect, this involves reusing the available hardware, but
we intend not to think about the process in these terms. In a FPGA implementation, an
immediate design consideration is to consider how many times we can reuse the hard-
ware and whether this allows us to achieve the sampling rate. This change of emphasis
in creating the hardware resource to match the performance requirements is the reason
for a key focus of the chapter.

8.2.1 Further Characterization

Latency is the time required to produce the output, y(n) for the corresponding x(n)
input. At first glance, this would appear to equate to the throughput rate, but as the com-
putation of y(n) = ax(n) shown in Figure 8.2 clearly demonstrates, this is not the case,
particularly if pipelining is applied. In Figure 8.2, the circuit could have three pipeline
stages and thus will produce a first output after three clock cycles, hence known as the

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

Input a

Output y

TLatency

1
Throughput

Figure . Latency and throughput rate relationship for system y(n) = ay(n − 1)

latency; thereafter, it will produce an output once every cycle which is the throughput
rate.

The situation is complicated further in systems with feedback loops. For example,
consider the simple recursion y(n) = ay(n − 1) shown in Figure 8.2. The present out-
put y(n) is dependent on the previous output y(n − 1), and thus the latency determines
the throughput rate. This means now that if it takes three clock cycles to produce the
first output, then we have to wait three clock cycles for the circuit to produce each out-
put and, for that matter, enter every input. Thus it is clear that any technique such as
pipelining that alters both the throughput and the latency must be considered carefully,
when deriving the circuit architectures for different algorithms.

There are a number of optimizations that can be carried out in FPGA implementa-
tions to perform the required computation, as listed below. Whilst it could be argued
that parallelism is naturally available in the algorithmic description and not an optimiza-
tion, the main definitions here focus on exploitation within FPGA realization; a serial
processor implementation does not necessarily exploit this level of parallelism.

Parallelism can either naturally exist in the algorithm description or can be introduced
by organizing the computation to allow a parallel implementation. In Figure 8.3, we can

P1

P2

P3

P1

P2

P3

P1

(a) Single source

(c) Sequential algorithm

(b) Multiple sources

P2 P3

Figure . Algorithms realizations using three processes P1, P2 and P3

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

P1 P3P2

P1 P3P2

P1 P3P2

x(n-2) y(n-2)

x(n-1) y(n-1)

x(n) y(n)

PE0

PE2

PE1

PE2

PE1

x(n) y(n)

PE2

TR/3

TR TR

(a) Demonstration of interleaving

(b) Interleaving realization

Figure . Interleaving example

realize processes P1, P2 and P3 as three separate processors, PE1, PE2 and PE3, in all three
cases. In Figure 8.3(a) the processes are driven from a single source, in Figure 8.3(b)
they are from separate sources and in Figure 8.3(c) they are organized sequentially. In
the latter case, the processing is inefficient as only one processor will be used at any one
time, but it is shown here for completeness.

Interleaving can be employed to speed up computation, by sharing a number of pro-
cessors to compute iterations of the algorithm in parallel, as illustrated in Figure 8.4 for
the sequential algorithm of Figure 8.3(c). In this case, the three processors PE1, PE2 and
PE3 perform three iterations of the algorithm in parallel and each row of the outlined
computation is mapped to an individual processor, PE1, PE2 and PE3.

Pipelining is effectively another form of concurrency where processes are carried out
on separate pieces of data, but at the same time, as illustrated in Figure 8.5. In this case,
the three processes PE1, PE2 and PE3 are performed at the same time, but on different

Figure . Example of pipelining

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

a

(b) Pipelined version (clock rate, 4 fc, and throughput rate, f)

(a) Original recursive computation (clock rate, fc, and throughput rate, f)

y

a y

z–1

Figure . Pipelining of recursive computations y(n) = ay(n − 1)

iterations of the algorithm. Thus the throughput is now given as tPE1
or tPE2

or tPE3
rather

than tPE1
+ tPE2

+ tPE3
as for Figure 8.3(c). However, the application of pipelining is lim-

ited for some recursive functions such as the computation y(n) = ay(n − 1) given in Fig-
ure 8.6. As demonstrated in Figure 8.6(a), the original processor realization would have
resulted in an implementation with a clock rate fc and throughput rate f . Application
of four levels of pipelining, as illustrated in Figure 8.6(b), results in an implementation
that can be clocked four times faster, but since the next iteration depends on the present
output, it will have to wait four clock cycles. This gives a throughput rate of once every
four cycles, indicating a nil gain in performance. Indeed, the flip-flop setup and hold
times now form a much larger fraction of the critical path and the performance would
actually have been degraded in real terms.

It is clear then that these optimizations are not a straightforward application of one
technique. For example, it may be possible to employ parallel processing in the final
FPGA realization and then employ pipelining within each of the processors. In Figure
8.6(b), pipelining did not give a speed increase, but now four iterations of the algo-
rithm can be interleaved, thereby achieving a fourfold improvement. It is clear that there
are a number of choices available to the designer to achieve the required throughput
requirements with minimal area requirements such as sequential versus parallel, trade-
off between parallelism/pipelining and efficient use of hardware sharing. The focus of
this chapter is on demonstrating how the designer can start to explore these trade-offs
in an algorithmic representation, by starting with an SFG or DFG description and then
carrying out manipulations with the aim of achieving improved performance.

. DSP Algorithm Representations

There are a number of ways of representing DSP algorithms, ranging from mathematical
descriptions, to block diagrams, right through to HDL descriptions of implementations.

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

(a) SFG (b) Block Diagram (c) DFG

+ X

yn
xn a

D

A B

(4)(2)

Dx(n)

a z–1

y(n)

Figure . Various representations of simple DSP recursion y(n) = ay(n − 1) + x(n)

In this chapter, we concentrate on an SFG and DFG representation as a starting point for
exploring some of the optimizations briefly outlined above. For this reason, it is impor-
tant to provide more detail on SFG and DFG representations.

8.3.1 SFG Descriptions

The classical description of a DSP system is typically achieved using an SFG represen-
tation which is a collection of nodes and directed edges, where a directed edge (j, k)
denotes a linear transform from the signal at node j to the signal at node k. Edges are
usually restricted to multiplier, adder or delay elements. The classical SFG of the expres-
sion y(n) = ay(n − 1) + x(n) is given in Figure 8.7(a), while the block diagram is given in
Figure 8.7(b). The DFG representation shown in Figure 8.7(c) is often a more useful rep-
resentation for the retiming optimizations applied later in the chapter.

8.3.2 DFG Descriptions

In DFGs, nodes represent computations or functions and directed edges represent data
paths with non-negative numbers associated with them. Dataflow captures the data-
driven property of DSP algorithms where the node can fire (perform its computation)
when all the input data are available; this creates precedence constraints (Parhi 1999).
There is an intra-iteration constraint if an edge has no delay; in other words, the order
of firing is dictated by DFG arrow direction. The inter-iteration constraint applies if the
edge has one or more delays and will be translated into a digital delay or register when
implemented.

A more practical implementation can be considered for a three-tap FIR filter con-
figuration. The SFG representation is given in Figure 8.8. One of the transformations
that can be applied to SFG representation is that of transposition. This is carried out by
reversing the directions in all edges, exchanging input and output nodes whilst keeping
edge gains or edge delays unchanged as shown in Figure 8.8(b). The reorganized ver-
sion is shown in Figure 8.8(c). The main difference is that the dataflow of the x(n) input
has been reversed without causing any functional change to the resulting SFG. It will be
seen later that the SFG of Figure 8.8(c) is a more appropriate structure to which to apply
pipelining.

The dataflow representation of the SFG of Figure 8.8(b) is shown in Figure 8.9. In
Figure 8.9 the multipliers labeled as a0, a1 and a2 represent pipelined multipliers with
two levels of pipeline stages. The adders labeled as A0 and A1 represent pipelined adders

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

x(n)

(a) SFG representation of three-tap FIR filter

(b) Transposed SFG representation

(c) Reorganized transposed SFG representation

z–1 z–1

a0 a2a1

y(n)(1) (2) (3)

y(n) z–1 z–1

a0 a1 a2

x(n)

x(n)

a2 a0a1

z–1z–1 y(n)

Figure . SFG representation of three-tap FIR filter

with a pipeline stage of 1. The D labels represent single registers with size equal to the
wordlength (not indicated on the DFG representation). In this way, the dataflow descrip-
tion gives a good indication of the hardware realization; it is clear that it is largely an
issue of developing the appropriate DFG representation for the performance require-
ments needed. In the case of pipelined architecture, this is largely a case of applying
suitable retiming methodologies to develop the correct level of pipelining, to achieve
the performance required. The next section is devoted to retiming because, as will be
shown, recursive structures, i.e. those involving feedback loops, can present particular
problems.

y(n)

a0 a1 a2(2) (2) (2)

A0 A1

(1) (1)

D Dx(n)

Figure . Simple DFG

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Table . FIR filter timing

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0) a0x(0) a0x(0) y(0)
1 x(1) a0x(1) a0x(1) + a1x(0) a0x(1) + a1x(0) y(1)
2 x(2) a0x(2) a0x(2) + a1x(1) a0x(2) + a1x(1) + a2x(0) y(2)
3 x(3) a0x(3) a0x(3) + a1x(2) a0x(3) + a1x(2) + a2x(1) y(3)
4 x(4) a0x(4) a0x(4) + a1x(3) a0x(4) + a1x(3) + a2x(2) y(4)

. Pipelining DSP Systems

One of the main goals in attaining an FPGA realization is to determine the levels of
pipelining needed. The timing of the data through the three-tap FIR filter of Figure 8.8(a)
for the nodes labeled (1), (2) and (3) is given in Table 8.1. We can add a delay to each
multiplier output as shown in Figure 8.8(a), giving the change in data scheduling shown
in Table 8.2. Note that the latency has now increased, as the result is not available for
one cycle. However, adding another delay onto the outputs of the adders causes fail-
ure, as indicated by Table 8.3. This is because the process by which we are adding these
delays has to be carried out in a systematic fashion by the application of a technique
known as retiming. Obviously, retiming was applied correctly in the first instance as it
did not change the circuit functionality but incorrectly in the second case. Retiming can
be applied via the cut theorem as described in Kung (1988).

8.4.1 Retiming

Retiming is a transformation technique used to move delays in a circuit without affecting
the input/output characteristics (Leiserson and Saxe 1983). Retiming has been applied
in synchronous designs for clock period reduction (Leiserson and Saxe 1983), power
consumption reduction (Monteiro et al. 1993), and logical synthesis. The basic process
of retiming is given in Figure 8.10 (Parhi 1999). For a circuit with two edges U and V
and 𝜔 delays between them, as shown in Figure 8.10(a), a retimed circuit can be derived
with 𝜔r delays as shown in Figure 8.10(b), by computing the 𝜔r value as

𝜔r(e) = 𝜔(e) + r(U) − r(V), (8.1)

where r(U) and r(V) are the retimed values for nodes U and V , respectively.

Table . Revised FIR filter timing

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0)
1 x(1) a0x(1) a1x(0) a0x(0) y(0)
2 x(2) a0x(2) a1x(1) + a1x(0) a0x(1) + a1x(0) y(1)
3 x(3) a0x(3) a1x(2) + a2x(1) a0x(2) + a1x(1) + a2x(0) y(2)
4 x(4) a0x(4) a1x(3) + a2x(2) a0x(3) + a1x(2) + a2x(1) y(3)

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

Table . Faulty application of retiming

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0)
1 x(1) a0x(1) a0x(0)
2 x(2) a0x(2) a0x(1) + a1x(0) a0x(0) y(0)
3 x(3) a0x(3) a0x(2) + a1x(1) a0x(1) + a1x(0) + a2x(0)
4 x(4) a0x(4) a0x(3) + a1x(2) a0x(2) + a1x(1) + a2x(1)

Retiming has a number of properties which can be summarized as follows:

1. The weight of any retimed path is given by Equation (8.1).
2. Retiming does not change the number of delays in a cycle.
3. Retiming does not alter the iteration bound (see later) in a DFG as the number of

delays in a cycle does not change.
4. Adding the constant value j to the retiming value of each node does not alter the

number of delays in the edges of the retimed graph.

Figure 8.11 gives a number of examples of how retiming can be applied to the FIR filter
DFG of Figure 8.11(a). For simplicity, we have replaced the labels a0, a1, a2, A0 and A1
of Figure 8.9 by 2, 3, 4, 5 and 6, respectively. We have also shown separate connections
between the x(n) data source and nodes 2, 3 and 4; the reasons for this will be shown
shortly. By applying equation (8.1) to each of the edges, we get the following relationships
for each edge:

𝜔r(1 → 2) = 𝜔(1 → 2) + r(2) − r(1),
𝜔r(1 → 3) = 𝜔(1 → 3) + r(3) − r(1),
𝜔r(1 → 4) = 𝜔(1 → 4) + r(4) − r(1),
𝜔r(2 → 5) = 𝜔(2 → 5) + r(5) − r(2),
𝜔r(3 → 5) = 𝜔(3 → 5) + r(5) − r(3),
𝜔r(4 → 6) = 𝜔(4 → 6) + r(6) − r(4),
𝜔r(5 → 6) = 𝜔(5 → 6) + r(6) − r(5).

U V
ωR

U V

 r(U) r(V)

(a) Original SFG

(b) Retimed SFG

ω
Figure . Retiming example

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

1

3

2DD

2

5

4

6

1

3

3D

2D

2

5

4

6

2D2D

D

1

3

3D

D

2

5

4

6

DD

D

D

(a) DFG of original 3-tap FIR filter (b) FIR filter DFG retimed with
r(l) = –2, r(2) = –2, r(3) = –2, r(4) = –2, r(5) = 0, r(6) = 0

(c) FIR filter DFG retimed with
r(l) = –2, r(2) = –2, r(3) = –2, r(4) = –1, r(5) = –1, r(6) = 0

Figure . Retimed FIR filter

Using a retiming vector r(1) = −1, r(2) = −1, r(3) = −1, r(4) = −1, r(5) = 0, r(6) = 0
above, we get the following values:

𝜔r(1 → 2) = 0 + (−1) − (−1) = 0,
𝜔r(1 → 3) = 1 + (−1) − (−1) = 1,
𝜔r(1 → 4) = 2 + (−1) − (−1) = 2,
𝜔r(2 → 5) = 0 + (0) − (−1) = 1,
𝜔r(3 → 5) = 0 + (0) − (−1) = 1,
𝜔r(4 → 6) = 0 + (0) − (−1) = 1,
𝜔r(5 → 6) = 0 + (0) − (0) = 0.

This gives the revised diagram shown in Figure 8.11 which gives a circuit where each
multiplier has two pipeline delays at the output edge. A retiming vector could have been

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

applied which provides one delay at the multiplier output, but the reason for this retim-
ing will be seen later. Application of an alternative retiming vector,

𝜔r(1 → 2) = 0 + (−2) − (−2) = 0,
𝜔r(1 → 3) = 1 + (−2) − (−2) = 1,
𝜔r(1 → 4) = 2 + (−1) − (−2) = 3,
𝜔r(2 → 5) = 0 + (−1) − (−2) = 1,
𝜔r(3 → 5) = 0 + (−1) − (−2) = 1,
𝜔r(4 → 6) = 0 + (0) − (−1) = 1,
𝜔r(5 → 6) = 0 + (0) − (−1) = 1,

namely r(1) = −1, r(2) = −1, r(3) = −1, r(4) = −1, r(5) = −1, r(6) = 0, gives the circuit
of Figure 8.11(c) which gives a fully pipelined implementation. It can be seen from this
figure that the application of pipelining to the adder stage required an additional delay,
D, to be applied to the connection between 1 and 4. It is clear from these two examples
that a number of retiming operations can be applied to the FIR filter. A retiming solution
is feasible if w ≥ 0 holds for all edges.

It is clear from the two examples outlined that retiming can be used to introduce inter-
iteration constraints to the DFG, manifested as a pipeline delay in the final FPGA imple-
mentation (Parhi 1999). However, the major issue would appear to be the determination
of the retiming vector which must be such that it moves the delays to the edges needed
in the DFG whilst at the same time preserving the viable solution, i.e. w ≥ 0 holds for
all edges. One way of determining the retiming vector is to apply a graphical methodol-
ogy to the DFG which symbolizes applying retiming. This is known as the cut-set or cut
theorem (Kung 1988).

8.4.2 Cut-Set Theorem

A cut-set in an SFG (or DFG) is a minimal set of edges which partitions the SFG into
two parts. The procedure is based upon two simple rules.

Rule 1: Delay scaling. All delays D presented on the edges of an original SFG may be
scaled by D′, where D′ → 𝛼D; the single positive integer 𝛼 is also known as the pipelining
period of the SFG. Correspondingly, the input and output rates also have to be scaled
by a factor of 𝛼 (with respect to the new time unit D′). Time scaling does not alter the
overall timing of the SFG.

Rule 2: Delay transfer (Leiserson and Saxe 1983). Given any cut-set of the SFG, which
partitions the graph into two components, we can group the edges of the cut-set into
inbound and outbound, as shown in Figure 8.12, depending upon the direction assigned
to the edges. The delay transfer rule states that a number of delay registers, say k, may be
transferred from outbound to inbound edges, or vice versa, without affecting the global
system timing.

Let us consider the application of Rule 2 to the FIR filter DFG of Figure 8.11(a). The first
cut is applied in Figure 8.13(a) where the DFG graph is cut into two distinct regions or
sub-graphs: sub-graph #1 comprising nodes 1, 2, 3 and 4; and sub-graph #2 comprising 5
and 6. Since all edges between the regions are outbound from sub-graph #1 to sub-graph
#2, a delay can be added to each. This gives Figure 8.13(b). The second cut splits the DFG

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Processor
1

Processor
2

Outbound Edge

Outbound Edge

Inbound Edge

Cut

Figure . Cut-set theorem application

into sub-graph #3, comprising nodes 1, 2, 3 and 5, and sub-graph #4, comprising nodes
4 and 6. The addition of a single delay to this edge leads to the final pipelined design, as
shown in Figure 8.11(c).

These rules provide a method of systematically adding, removing and distributing
delays in an SFG and therefore adding, removing and distributing registers through-
out a circuit, without changing the function. The cut-set retiming procedure is then
employed, to cause sufficient delays to appear on the appropriate SFG edges, so that a
number of delays can be removed from the graph edges and incorporated into the pro-
cessing blocks, in order to model pipelining within the processors; if the delays are left
on the edges, then this represents pipelining between the processors.

Of course, the selection of the original algorithmic representation can have a big
impact on the resulting performance. Take, for example, the alternative version of the
SFG shown initially in Figure 8.8(c) and represented as a DFG in Figure 8.14(a); apply-
ing an initial cut-set allows pipelining of the multipliers as before, but now applying the
cut-set between nodes 3 and 5, and nodes 4 and 6, allows the delay to be transferred,
resulting in a circuit architecture with fewer delay elements as shown in Figure 8.14(c).

8.4.3 Application of Delay Scaling

In order to investigate delay scaling, let us consider a recursive structure such as the
second-order IIR filter section given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2) (8.2)

1

3

2DD

2

5

4

6

Sub-graph #1

Sub-graph 2

1

3

D

2

5

4

6

DD D

2D

Sub-graph
3

Sub-graph
4

6

(a) First cut-set (b) Second cut-set

Figure . Cut-set timing applied to FIR filter

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

1

3

2D D

2

5

4

6

Sub-graph 2

1

3

D

D

2

5

4

6

D D D

1

3

2D D

2

5

4

6

Sub-graph #4

D D D

Sub-graph #3

(a) First cut-set

(b) DFG (c) DFG

Figure . Cut-set timing applied to FIR filter

The block diagram and the corresponding DFG is given in Figures 8.15(a) and 8.15(b),
respectively. The target is to apply pipelining at the processor level, thereby requir-
ing a delay D on each edge. The problem is that there is not sufficient delay in the
2 → 3 → 2 loop to apply retiming. For example, if the cut shown in the figure were
applied, this would end up moving the delay on edge 3 → 2 to edge 2 → 3. The issue is

ynun

b1b2

z–1z–1
3

2D

D
4

21

(a) Block diagram (b) DFG

Figure . Second-order IIR filter

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

3

4D

2D
4

21

3

3D

D

DD

4

21

3

2D

2D

D

4

21

DD

3

D

D

(1) (1)

(1) (1)

4

21

(a) Scaled IIR recursion (b) Recursion with second cut applied

(c) Delays moved to processors (d) Final pipelined IIR recursion

Figure . Pipelining of a second-order IIR filter. Source: Parhi 1999. Reproduced with permission of
John Wiley & Sons.

resolved by applying time scaling, by working out the worse-case pipelining period, as
defined by

𝛼c =
Bc
Dc

, (8.3)

𝛼 = max 𝛼c. (8.4)

In equation (8.3), the value Bc refers to the delays required for processor pipelining
and the value Dc refers to the delays available in the original DFG. The optimal pipelining
period is computed using equation (8.4) and is then used as the scaling factor. There are
two loops as shown, giving a worst-case loop bound of 2. The loops are given in terms
of unit time (u.t.) steps:

1 → 2 → 4 → 1 (3u.t.)
2 → 3 → 2 (2u.t.)
Loopbound#1(3∕2 = 1.5u.t.)
Loopbound#2(2∕1 = 2u.t.).

The process of applying the scaling and retiming is given in Figure 8.16. Applying a
scaling of 2 gives the retimed DFG of Figure 8.16(a). Applying the cut shown in the figure
gives the modified DFG of Figure 8.16(b) which then has another cut applied, giving the
DFG of Figure 8.16(c). Mapping of the delays into the processor and adding the numbers
to show the pipelining level gives the final pipelined IIR recursion in Figure 8.16(d).

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

Table . Retiming performance in the Xilinx Virtex-5

Area Throughput

Circuit DSP Flip-flops Clock (MHz) Data rate (MHz)

Figure 8.15(b) 2 20 176 176
Figure 8.16(d) 2 82 377 188

The final implementation has been synthesized using the Xilinx Virtex-5 FPGA and
the synthesis results can be viewed for the circuits of Figure 8.15(b) and Figure 8.16(d)
in Table 8.4.

8.4.4 Calculation of Pipelining Period

The previous sections have outlined a process for first determining the pipelining period
and then allowing scaling of this pipelining period to permit pipelining at the processor
level. This is the finest level of pipelining possible within FPGA technology, although, as
will be seen in Chapter 13, adding higher levels of pipelining can be beneficial for low-
power FPGA implementations. However, the computation of the pipelining period was
only carried out on a simple example of an IIR filter second-order section, and therefore
much more efficient means of computing the pipelining period are needed. A number of
different techniques exist, but the one considered here is the longest path matrix algo-
rithm (Parhi 1999).

8.4.5 Longest Path Matrix Algorithm

A series of matrices is constructed and the iteration bound is found by examining the
diagonal elements. If d is the number of delays in DFG, then create L(m) matrices, where
m = 1, 2,… , d, such that element l1

1,j is the longest path from delay element d which
passes through exactly m − 1 delays (not including di and dj); if no path exists, then
l1
i,j = −1. The longest path can be computed using the Bellman–Ford or Floyd–Warshall

algorithm (Parhi 1999).
Example 1. Consider the example given in Figure 8.17. Since the aim is to produce

a pipelined version of the circuit, we have started with the pipelined version indicated
by the (l) expression included in each processor. This can be varied by changing the
expression to (0) if the necessary pipelining is not required, or to a higher value, e.g.

(1)

1

3

(1) (1) (1)

2 4D D D
d3d2d1

Figure . Simple DFG example (Parhi 1999)

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

(2) or (3), if additional pipelined delays are needed in the routing to aid placement and
routing or for low-power implementation.

The first stage is to compute the L(m) matrices, beginning with L(1). This is done by
generating each term, namely l1

i,j, which is given as the path from delay di through to dj.
For example, d1 to d1 passes through either 1 (d1 → d2 → 2 → 3 → 1 → d1) or 2 delays
(d1 → d2 → 2 → d4 → 1 → d1), therefore l1

(1, 1) = −1. For l1
3,1, the path d3 to d1 passes

through nodes (4) and (1), giving a delay of 2; therefore, l1
3,1 = 2. For l1

2,1, the path d2 to
d1 passes through nodes (2), (3) and (1), therefore l1

2,1 = 3. This gives the matrix

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠ .
The higher-order matrices do not need to be derived from the DFG. They can be recur-

sively computed as

lm+1
i,j = max

k∈K
(−1, l1

i,j + lm
k,j),

where K is the set of integers k in the interval [1, d] such that neither l1
i,k = −1 nor

lm
i,k = −1 holds. Thus for l2

1,1 we can consider K = 1, 2, 3 but K = 1, 3 include −1, so only
K = 2 is valid. Thus

l2
1,1 = max

k∈3
(−1, 0 + 7).

The whole of L(2) is generated is this way as shown below:

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

=
⎛⎜⎜⎜⎝

7 −1 3
6 7 −1

−1 3 −1

⎞⎟⎟⎟⎠
L(2)

.

While L(2) was computed using only L(1), the matrix L(3), is computed using both L(1)

and L(2) as shown below, with the computation for each element given as

l3
i,j = max

k∈K
(−1, l1

i,j + l2
k,j)

as before. This gives the computation of L(3) as

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

⎛⎜⎜⎜⎝
7 −1 3
6 7 −1

−1 3 −1

⎞⎟⎟⎟⎠
L(2)

=
⎛⎜⎜⎜⎝

6 7 −1
14 6 10
10 −1 6

⎞⎟⎟⎟⎠
L(3)

.

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

Once the matrix L(m) is created, then the iteration bound can be determined from the
equation

T∞ = max
i,m∈1,2,…,D

{
lm
1,l
m

}
. (8.5)

In this case, m = 3 as there are three delays, therefore L(3) represents the final iteration.
For this example, this gives

T∞ =
{7

2
, 7

2
, 6

3
, 6

3
, 6

3

}
.

Example 2. Consider the lattice filter DFG structure given in Figure 8.18(a). Once
again, a pipelined version has been chosen by selecting a single delay (1) for each pro-
cessor.

+

X

X
 D

(1)

(1)

(1)

+

(1)

+

X

X
D

(1)

(1)

In

Out

M1

M2

M3

M4

A1

A2

A3

A4

D2 D1

(1)

+

(1)

+

X

X
5D

+

+

X

X
5D

In

Out
3D

#3

#2#4

2D

#1

4D

3D

+

+

X

X
4D

(1)

(1)

(1)

+

(1)

+

X

X
3D

(1)

(1)

In

Out

M1

M2

M3

M4

A1

A2

A3

A4
3D

(1)

+

(1)

(a) DFG

(b) DFG with cuts indicated

(c) Delays moved to processors

Figure . Lattice filter

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

The four possible matrix values are determined as follows:

D1 → M3 → A3 → D1
D1 → A4 → D2 and D1 → M4 → A3 → M3 → A4 → D2
D2 → M2 → A1 → A3 → D1
D2 → M2 → A1 → A3 → M2 → A4 → D2,

thereby giving(2 4
3 5

)
.

The higher-order matrix L2 is then calculated as shown below:(
2 4
3 5

)
L(1)

(
2 4
3 5

)
L(1)

=
(

7 9
8 10

)
L(2)

This gives the iteration bound

T∞ = max
i,m∈1,2

{
lm
1,l
m

}
. (8.6)

For this example, this gives

T∞ =
{2

1
, 5

1
, 7

2
, 10

2

}
= 5.

Applying this scaling factor to the lattice filter DFG structure of Figure 8.18(b) gives
the final structure of Figure 8.18(c), which has pipelined processors as indicated by the
(1) expression added to each processor. This final circuit was created by applying delays
across the various cuts and applying retiming at the processor level to transfer delays
from input to output.

. Parallel Operation

The previous section has highlighted methods to allow levels of pipelining to be applied
to an existing DFG representation, mostly based on applying processor-level pipelining
as this represents the greatest level applicable in FPGA realizations. This works on the
principle that increased speed is required, as demonstrated by the results in Table 8.4,
and more clearly speed improvements with FIR filter implementations. Another way
to improve performance is to parallelize up the hardware (Figure 8.19). This is done by
converting the SISO system such as that in Figure 8.19(a) into a MIMO system such as
that illustrated in Figure 8.19(b).

This is considered for the simple FIR filter given earlier. Consider the four-tap delay
line filter given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3). (8.7)

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

xn ynSISO MIMO
xk yk

yk+1xk+1

(a) SISO (b) MIMO

Figure . Manipulation of parallelism

Assuming blocks of two samples per clock cycle, we get the following iterations per-
formed on one cycle:

y(k) = a0x(k) + a1x(k − 1) + a2x(k − 2) + a3x(k − 3),
y(k + 1) = a0x(k + 1) + a1x(k) + a2x(k − 1) + a3x(k − 2).

In these expressions, two inputs, x(k) and x(k + 1), are processed and corresponding
outputs, y(k) and y(k + 1), produced at the same rate. The data are effectively being pro-
cessed in blocks and so the process is known as block processing, where k is given as the
block size. Block diagrams for the two cycles are given in Figure 8.20. Note that in these
structures any delay is interpreted as being k delays as the data are fed at twice the clock
rate. As the same data are required at different parts of the filter at the same time, this
can be exploited to reduce some of the delay elements, resulting in the circuit of Figure
8.20(b).

The FIR filter has a critical path of TM + (N − 1)TA where N is the number of filter taps
which determines the clock cycle. In the revised implementation, however, two samples
are being produced per cycle, thus the throughput rate is 2/TM + (N − 1)TA. In this way,
block size can be varied as required, but this results in increased hardware cost.

Parhi (1999) introduced a technique where the computation could be reduced by
reordering the computation as

y(k) = a0x(k) + a2x(k − 2) + z−1(a1x(k + 1) + a3x(k − 1)).

By creating two tap filters, given as y(1k) = a0x(k) + a2x(k − 2) and y(2k) = a1x(k + 1) +
a3x(k − 1), we recast the expressions for y(k) and y(k + 1) as

y(k) = y(1k) + z−1(y(2(k + 1))),

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))
− a0x(k) − a1x(k + 1) − a2x(k − 2) − a3x(k − 1).

This results in a single two-tap filter given in Figure 8.21, comprising a structure with
coefficients a0 + a1 and a2 + a3, thereby reducing the complexity of the original four-
tap filter. It does involve the subtraction of two terms, namely y(k) and y(2k + 1), but
these were created earlier for the computation of y(k). The impact is to reduce the over-
all multiplications by two at the expense of one addition/subtraction. This is probably
not as important for an FPGA implementation where multiplication cost is comparable
to addition for typical wordlengths. More importantly, though, the top and bottom fil-
ters are reduced in length by 2(N∕2) taps and an extra 2 − (N∕2)-tap filter is created to
realize the first line in each expression. In general terms, filters have been halved, thus

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

a3

yk

a2a0 a1

xk xk–1 xk–2 xk–3

a3

yk+1

a2a0 a1

xk+1 xk xk–1 xk–2

(a) Two iterations

a3

yk

a2

a3

 xk+1 xk–1

 xk xk–2

yk+1

a2

Not needed
but shown for
completeness

a0 a1

a0 a1

(b) Combined operation

Figure . Block FIR filter

the critical path is given as TM + (N∕2)TA + 3TA with three adders, one to compute
x(k) + x(k + 1), one to subtract y(1k) and one to subtract y(2(k + 1)):

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))
−y(1k) − y(2(k + 1)).

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

yk

xk+1+xk

xk xk–2

a0 a1

 xk xk–2

a0+a1 a2+a3

–

–

yk+1

a0 a2

Figure . Reduced block-based FIR filter

8.5.1 Unfolding

The previous section indicated how we could perform parallel computations in blocks.
Strictly speaking, this is known as a transformation technique called unfolding, which
is applied to a DSP program to create a new program that performs more than one
iteration of the original program. It is typically described using an unfolding factor J
which describes the number of iterations by which it is unfolded. For example, consider
unfolding the first-order IIR filter section, y(n) = x(n) + by(n − 1) by three, giving the
expressions below:

y(k) = x(k) + by(k − 1),
y(k + 1) = x(k + 1) + by(k),
y(k + 2) = x(k + 2) + by(k + 1).

The SFG and DFG representation is given in Figure 8.22(a), where the adder is replaced
by processor A and the multiplier by B. The unfolded version is given in Figure 8.22(b),
where A0, A1 and A2 represent the hardware for computing the three additions and B0,
B1 and B2 that for computing the three multiplications. With unlooped expressions, each
delay is now equivalent to three clock cycles. For example, the previous value needed at

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

xn

yn

X

(a) SFG and DFG (b) Unfolded Operation

D+

a

BDA

A0 B0

A1
D B1

A2 B2

Figure . Unfolded first-order recursion

processor B0 is y(n − 1) which is generated by delaying the output of A0, namely y(n +
2), by an effective delay of 3. When compared with the original SFG, the delays would
appear to have been redistributed between the various arcs for A0 − B0, A1 − B1 and
A2 − B2.

An algorithm for automatically performing unfolding is based on the fact that the kth
iteration of the node U(i) in the J-unfolded DFG executes the J(k + i)th iteration of the
node U in the original DFG (Parhi 1999):

1. For each node U in the original DFG, draw the J nodes U(0), U(1),… , U(J − 1).
2. For each edge U → V with 𝜔 delays in the original DFG, draw the J edges U(i) →

V (i + 𝜔)∕J with (i + w%J) delays for i = 0, 1,… , J − 1, where % is the remainder.

Consider the FIR filter DFG, a DFG representation of the FIR filter block diagram of
Figure 8.23(a). Computations of the new edges in the transformed graphs, along with
the computation of the various delays, are given below for each edge:

X0 → A(0 + 0)%2 = A(0), Delay = ⌊0∕2⌋ = 0
X1 → A(1 + 0)%2 = A(1), Delay = ⌊1∕2⌋ = 0
X0 → B(0 + 1)%2 = B(1), Delay = ⌊1∕2⌋ = 0
X1 → B(1 + 1)%2 = A(2), Delay = ⌊2∕2⌋ = 1
X0 → C(0 + 2)%2 = C(0), Delay = ⌊2∕2⌋ = 1
X1 → C(1 + 2)%2 = C(1), Delay = ⌊3∕2⌋ = 1
X0 → D(0 + 3)%2 = D(1), Delay = ⌊3∕2⌋ = 1
X1 → D(1 + 3)%2 = D(0), Delay = ⌊4∕2.⌋ = 2

This gives the unfolded DFG of Figure 8.23(b) which equates to the folded circuit given
in Figure 8.23(a).

8.5.2 Folding

The previous section outlined a technique for a parallel implementation of the FIR filter
structure. However, in some cases, there is a desire to perform hardware sharing, i.e.
folding, to reduce the amount of hardware by a factor, say k, and thus also reduce the
sampling rate. Consider the FIR filter block diagram of Figure 8.24(a). By collapsing the

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

X

B

2DD

A

E

C

F

(a) Original block diagram

(b) Unfolded operation

3D

D

G

X0

B0

DD

A0

E0

C0

F0

2D

D0

G0

B1

D

A1

E1

C1

F1

D

D1

G1

X1

Figure . Unfolded FIR filter-block

filter structure onto itself four times, i.e. folding by four, the circuit of Figure 8.24(b) is
derived. In the revised circuit, the hardware requirements have been reduced by four
with the operation scheduled onto the single hardware units, as illustrated in Table 8.5.

The timing of the data in terms of the cycle number number is given by 0, 1, 2 and 3,
respectively, which repeats every four cycles (strictly, this should by k, k + 1, k + 2 and

(a) Folded FIR filter section (b) Folded circuit

yk

xk

0

a0 a1 a2 a3

a0
a1
a2
a3

yk

xk

0

Figure . Folded FIR filter section

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Table . Scheduling for Figure 8.24(b)

Cycle Adder Adder Adder System
clock input input output output

0 a3 0 a3x(0) y(3)′′′
1 a2 0 a2x(0) y(2)′′
2 a1 0 a1x(0) y(1)′
3 a0 0 a0x(0) y(0)
4 a3 0 a3x(1) y(4)′′′
5 a2 a2x(1) a2x(1) + a3x(0) y(3)′′
6 a1 a1x(1) a1x(1) + a2x(0) y(2)′
7 a0 a0x(1) a1x(1) + a2x(0) y(1)
8 a3 0 a3x(2) y(5)′′′
9 a2 a2x(1) + a3x(0) a2x(1) + a2x(1) + a3x(0) y(4)′′

k + 3). It is clear from the table that a result is only generated once every four cycles, in
this case on the 4th, 8th, ..., cycle. The partial results are shown in brackets as they are
not generated as an output. The expression y(3)′′′ signifies the generation of the third
part of y(3), y(3)′′ means the second part of y(3), etc.

This folding equation is given by

DF (U
e
→ V) = Nw(e) − Pu + v − u, (8.8)

where all inputs of a simplex component arrive at the same time and the pipelining levels
from each input to an output are the same (Parhi 1999). In equation (8.8), w(e) is the
number of delays in the edge U

e
→ V , N is the pipelining period, Pu is the pipelining

stages of the Hu output pin, and u and v are folding orders of the nodes U and V that
satisfy 0 ≤ u, v ≤ N − 1. Consider the edge e connecting the nodes U and V with w(e)
delays shown in Figure 8.25(a), where the nodes U and V may be hierarchical blocks.
Let the executions of the ith iteration of the nodes U and V be scheduled at time units
NL + u and NL + v respectively, where u and v are folding orders of the nodes U and V
that satisfy 0 ≤ u, v ≤ N − 1.

The folding order of a node is the time partition to which the node is scheduled to exe-
cute in hardware (Parhi 1999). Hu and Hv are the functional units that execute the nodes
U and V , respectively. N is the folding factor and is defined as the number of operations
folded onto a single functional unit. Consider the lth iteration of the node U . If the Hu
output pin is pipelined by Pu stages, then the result of the node U is available at the
time unit Nl + u + Pu, and is used by the (l + w(e))th iteration of the node V . If the min-
imum value of the data time format of Hu input pin is Av, this input pin of the node V is
executed at N(l + w(e)) + v + Av. Therefore, the result must be stored for DF (U

e
→ V) =

[N(l + w(e)) + v + Av]−[Nl + Pu + Av + u] time units. The path from Hu to Hv needs

U w(e)D V HU PUD HV
DF(U? V) ..Nl+v+Av

(a) An edge U → U with w(e) delays (b) Corresponding folded data path

Figure . Folding transformation

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

X

BA

F

C

G

D

E

(0) (1) (2) (3)

(0) (1) (2) (3)
D D D

H

(0) a0

(3) a3

(2) a2

(1) a1

y(n)

x(n)

0
 (3)

 (0,1,2)

 (0)

 (1,2,3)

(a) Original block diagram (b) Folded circuit

Figure . Folding process

D′

F (U
e
→ V) delays, and data on this path are inputs Hv at Nl + v + Av, as illustrated in

Figure 8.25(b). Therefore, the folding equation for hierarchical complexity component
is given by

DF (U
e
→ V) = Nw(e) − Pu + Av + v − u. (8.9)

This expression can be systematically applied to the block diagram of Figure 8.25(a) to
derive the circuit of Figure 8.25(b). For ease of demonstration, the DFG of Figure 8.26(a)
is used. In the figure, an additional adder, H has been added for simplicity of folding. In
Figure 8.26(a), we have used a number of brackets to indicate the desired ordering of
the processing elements. Thus, the goal indicated is that we want to use one adder to
implement the computations a3x(n), a2x(n), a1x(n) and a0x(n) in the order listed. Thus,
these timings indicate the schedule order values u and v. The following computations
are created as below, giving the delays and timings required as shown in Figure 8.26(a):

DF(A→H) = 4(0) − 0 + 0 − 0 = 0
DF(B→E) = 4(0) − 0 + 1 − 1 = 0
DF(C→F) = 4(0) − 0 + 3 − 3 = 0
DF(D→G) = 4(0) − 0 + 4 − 4 = 0
DF(H→E) = 4(1) − 0 + 1 − 2 = 3
DF(E→F) = 4(1) − 0 + 2 − 3 = 3
DF(F→G) = 4(1) − 0 + 3 − 4 = 3.

Figure 8.27(a) shows how a reverse in the timing ordering leads to a slightly different
folded circuit in Figure 8.27(b) where the delays on the feedback loop have been changed
and the timings on the multiplexers have also been altered accordingly. This example

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

X

BA

F

C

G

D

E

(0) (2) (1) (3)

(0) (2) (1) (3)
D D D

H

(0) a0

(3) a3

(1) a2

(2) a1

y(n)

x(n)

0
 (3)

 (0,1) (2)

 (0)

 (2)

 (1,3)

(a) Revised block diagram (b) Changed schedule

Figure . Alternative folding

demonstrates the impact of changing the time ordering on the computation. The various
timing calculations are shown below:

DF(A→H = 4(0) − 0 + 0 − 0 = 0
DF(B→E = 4(0) − 0 + 2 − 2 = 0
DF(C→F = 4(0) − 0 + 1 − 1 = 0
DF(D→G = 4(0) − 0 + 3 − 3 = 0
DF(H→E = 4(0) − 0 + 0 − 2 = 2
DF(E→F = 4(0) − 0 + 2 − 1 = 5
DF(F→G = 4(0) − 0 + 1 − 3 = 2.

The example works on a set of order operations given as (1), (3), (2) and (4), respectively,
and requires two different connections between adder output and input with different
delays, namely 3 and 6.

The application of the technique becomes more complex in recursive computations,
as demonstrated using the second-order IIR filter example given in Parhi (1999). In this
example, the author demonstrates how the natural redundancy involved when a recur-
sive computation is pipelined, can be exploited to allow hardware sharing to improve
efficiency.

. Conclusions

The chapter has briefly covered some techniques for mapping algorithmic descriptions,
in the form of DFGs, into circuit architectures. The initial material demonstrates how
we could apply delay scaling to first introduce enough delays into the DFGs to allow

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Architecture Derivation for FPGA-based DSP Systems 

retiming to be applied. This translates to FPGA implementations where the number of
registers can be varied as required.

In the design examples presented, a pipelining of 1 was chosen as this represents the
level of pipelining possible in FPGAs at the processor level. However, if you consider
the Xilinx DSP48E2 or the Altera DSP block as a single processing unit, these will allow
a number of layers of pipelining as outlined in Chapter 5. Mapping to these types of
processor can then be achieved by altering the levels of pipelining accordingly, i.e. by
ensuring inter-iteration constraints on the edges which can then be mapped into the
nodes to represent pipelining. The delays remaining on the edges then represent the
registers needed to ensure correct retiming of the DFGs.

The chapter also reviews how to incorporate parallelism into the DFG representation,
which again is a realistic optimization to apply to FPGAs, given the hardware resources
available. In reality, a mixture of parallelism and pipelining is usually employed in order
to allow the best implementation in terms of area and power that meets the throughput
requirement.

These techniques are particularly suitable in generating IP core functionality for spe-
cific DSP functionality. As Chapter 11 illustrates, these techniques are now becoming
mature, and the focus is moving to creating efficient system implementations from high-
level descriptions where the node functionality may already have been captured in the
form of IP cores. Thus, the rest of the book concentrates on this higher-level problem.

Bibliography

Altera Corp. 2014 Understanding peak floating-point performance claims. Techical White
Paper WP-01222-1.0. Available from www.altera.com (accessed May 11, 2016)].

Leiserson CE, Saxe JB 1983 Optimizing synchronous circuitry by retiming. In Proc. 3rd
Caltech Conf. on VLSI, pp. 87–116.

Kung SY 1988 VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ.
Monteiro J, Devadas S, Ghosh A 1993 Retiming sequential circuits for low power. Proc.

IEEE Int. Conf. on CAD, pp. 398–402.
Parhi KK 1999 VLSI Digital Signal Processing Systems: Design and Implementation. John

Wiley & Sons, New York.

 10.1002/9781119079231.ch8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch8 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}www.altera.com
www.altera.com

