




Technology Review

. Introduction

The technology used for DSP implementation is very strongly linked to the astonishing
developments in silicon technology. As was highlighted in the introduction to this book,
the availability of a transistor which has continually decreased in cost has been the major
driving force in creating new markets and has overseen the development of a number of
DSP technologies. Silicon technology has offered an increasingly cheaper platform, and
has done so at higher speeds and at a lower power cost. This has inspired a number of
core markets, such as computing, mobile telephony and digital TV.

As Chapter 2 clearly indicated, there are numerous advantages for digital systems,
specifically guaranteed accuracy, essentially perfect reproducibility and better aging;
these developments are seen as key to the continued realization of future systems. The
earliest DSP filter circuits were pioneered by Leland B. Jackson and colleagues at Bell
Laboratories in the late 1960s and early 1970s (see Jackson 1970). At that time, the main
aim was to create silicon chips to perform basic functions such as FIR and IIR filtering.
A key aspect was the observation that the binary operation of the transistor was well
matched to digital operations required in DSP systems.

From these early days, a number of technologies emerged, ranging from simple micro-
controllers which can process systems with sampling rates typically in the moderate
kilohertz range, right through to dedicated SoC solutions that give performance in the
teraOPS region. The processor style architecture has been exploited in various forms,
ranging from single- to multicore processor implementations, DSP microprocessors
with dedicated hardware to allow specific DSP functionality to be realized efficiently,
and reconfigurable processor architectures. Specialized DSP functionality has also been
added to conventional central processing units (CPUs) and application-specific instruc-
tion processors (ASIPs) that are used for specific markets. All of these are briefly dis-
cussed in this chapter with the aim of giving a perspective against which FPGAs should
be considered.

The major change between this chapter and its first edition counterpart concerns
microprocessors: there has been a major development in architectures, particularly
with the evolution of the Intel multicore and Xeon Phi, resulting in a body of work on

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Technology Review 

parallel programming (Reinders and Jeffers 2014). In addition, multicore DSP architec-
tures have evolved. Finally, graphical processing units (GPUs) are also included as they
are now being widely used in many other fields than graphics including DSP. As Chap-
ter 5 is dedicated to the variety of FPGA architectures, the FPGA perspective is only
alluded to. Major themes include level of programmability, the programming environ-
ment (including tools, compilers and frameworks), the scope for optimization of specifi-
cally DSP functionality on the required platform, and the quality of the resulting designs
in terms of area, speed, throughput, power and even robustness.

Section 4.2 starts with some remarks on silicon technology scaling and how Dennard
scaling has broken down, leading to the evolution of parallelism into conventional DSP
platforms. Section 4.3 outlines some further thoughts on architecture and programma-
bility and gives some insights towards the performance limitations of the technologies,
and also comments on the importance of programmability. In Section 4.4 the functional
requirements of DSP systems are examined, highlighting issues such as computational
complexity, parallelism, data independence and arithmetic advantages. The section ends
with a brief definition of technology classification and introduces concepts of single
instruction, multiple data (SIMD) and multiple instruction, multiple data (MIMD). This
is followed by a brief description of microprocessors in Section 4.5 with some more up-
to-date description of multicore architectures. DSP processors are then introduced in
Section 4.6 along with some multicore examples. Section 4.7 is a new section on GPUs
as these devices have started to be used in some DSP applications. For completeness,
solutions based on the system-on-chip (SoC) are briefly reviewed in Section 4.8, which
includes the development of parallel machines including systolic array architectures. A
core development has been the partnering of various technologies, namely ARM pro-
cessors and DSP microprocessors, and ARM processors incorporated in FPGA fabrics.
A number of examples of this evolution are given in Section 4.9. Section 4.10 gives some
thoughts on how the various technologies compare and sets the scene for FPGAs in the
next chapter.

. Implications of Technology Scaling

Since the first edition of this book, there has been a considerable shift in the direction of
evolution of silicon, largely driven by concerns in silicon scaling. Dennard’s law builds
on Moore’s law, relating how the performance of computing is growing exponentially at
roughly the same rate as Moore’s law. This was driven by the computing and supercom-
puting industries and therefore, by association, refers to DSP technologies.

The key issue is that Dennard’s law is beginning to break down as many computing
companies are becoming very concerned by the power consumption of their devices
and beginning to limit power consumption for single devices to 130 W (Sutter 2009).
This is what Intel has publicly declared. To achieve this power capping requires a slow-
down in clock scaling. For example, it was predicted in the 2005 of ITRS Roadmap (ITRS
2005) that clock scaling would continue and we would have expected to have a clock rate
of 30 GHz today (ITRS 2011). This was revised in 2007 to 10 GHz, and then in 2011 to
4 GHz, which is what is currently offered by computing chip companies. The implica-
tions of this are illustrated in Figure 4.1 reproduced from Sutter (2009).

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Transistors (000)

Clock Speed (MHz)

Power consumption (W)

Performance/clock (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

Figure . Conclusions from Intel CPU scaling

Moore’s law has continued unabated, however, in terms of number of devices on a
single silicon die, so companies have acted to address the shortfall in clock scaling by
shifting towards parallelism and incorporating multiple devices on a single die. As will
be seen later, this has implications for the wider adaption of FPGAs because as the guar-
anteed clock rate ratio of CPUs over FPGAs is considerably reduced, the performance
divide widens, making FPGAs an attractive proposition. This would seem to be reflected
in the various developments of computing companies in exploiting FPGA technologies
largely for data centers where the aim is to be able to reduce the overall power consump-
tion costs, as described in the next chapter.

The authors argue that the main criterion in DSP system implementation is the circuit
architecture that is employed to implement the system, i.e. the hardware resources avail-
able and how they are interconnected; this has a major part to play in the performance
of the resulting DSP system. FPGAs allow this architecture to be created to best match
the algorithmic requirements, but this comes at increased design cost. It is interesting
to compare the various approaches, and this chapter aims to give an overview of the
various technologies available for implementing DSP systems, using relevant examples
where applicable, and the technologies are compared and contrasted.

. Architecture and Programmability

In many processor-based systems, design simply represents the creation of the
necessary high-level code with some thought given to the underlying technology
architecture, in order to optimize code quality and thus improve performance. Crudely

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

speaking, though, performance is sacrificed to provide this level of programmability.
Take, for example, the microprocessor architecture based on the von Neumann sequen-
tial model where the underlying architecture is fixed and the maximum achievable per-
formance will be determined by efficiently scheduling the algorithmic requirements
onto the inherently sequential processing architecture. If the computation under con-
sideration is highly parallel in nature (as is usually the case in DSP), then the resulting
performance will be poor.

If we were to take the other extreme and develop an SoC-based architecture that best
matches the parallelism of computational complexity of the algorithm (as will be out-
lined in the final section of this chapter), then the best performance in terms of area,
speed and power consumption should be achieved. This requires a number of design
activities to ensure that hardware implementation metrics best match the application
performance criteria and that the resulting design operates correctly.

To more fully understand this concept of generating a circuit architecture, consider
the “state of the art” in 1969. Hardware capability in terms of numbers of transis-
tors was limited and thus highly valued, so the processing in the filters described in
Jackson (1970) had to be undertaken in a rather serial fashion. Current FPGA technol-
ogy provides hundreds of bit parallel multipliers, so the arithmetic style and resulting
performance are quite different, implying a very different sort of architecture. The aim
is thus to make the best use of the available hardware against the performance criteria
of the application. Whilst this approach of developing the hardware to match the per-
formance needs is highly attractive, the architecture development presents a number
of problems related to the very process of producing this architecture, namely design
time, verification and test of the architecture in all its various modes, and all the issues
associated with producing a design that is right first time.

Whilst the implementation of these algorithms on a specific hardware platform can be
compared in terms of metrics such as throughput rate, latency, circuit area, energy, and
power consumption, one major theme that can also be used to differentiate these tech-
nologies is programmability (strictly speaking, ease of programmability). As will become
clear in the descriptive material in this section, DSP hardware architectures can vary in
their level of programmability. A simple platform with a fixed hardware architecture
can then be easily programmed using a high-level software language as, given the fixed
nature of the platform, efficient software compilers can be (and indeed have been) devel-
oped to create the most efficient realizations. However, as the platform becomes more
complex and flexible, the complexity and efficiency of these tools are compromised, as
now special instructions have to be introduced to meet this functionality and the prob-
lem of parallel processing rears its ugly head.

In this case, the main aim of the compiler is to take source code that may not have been
written for the specific hardware architecture, and identify how these special functions
might be applied to improve performance. In a crude sense, we suggest that making the
circuit architecture programmable achieves the best efficiency in terms of performance,
but presents other issues with regard to evolution of the architecture either to meet
small changes in applications requirements or relevance to similar applications. This
highlights the importance of tools and design environments, described in Chapter 7.

SoC is at the other end of the spectrum from a programmability perspective; in this
case, the platform will have been largely developed to meet the needs of the system
under consideration or some domain-specific, standardized application. For example,

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

OFDM access-based systems such as LTE-based mobile phones require specific DSP
functionality such as orthogonal frequency division multiple access (OFDMA) which
can be met by developing an SoC platform comprising processors and dedicated hard-
ware IP blocks. This is essential to meet the energy requirements for most mobile phone
implementations. However, silicon fabrication costs have now pushed SoC implemen-
tation into a specialized domain where typically solutions are either for high volume, or
have specific domain requirements, e.g. ultra-low power in low- power sensors.

. DSP Functionality Characteristics

DSP operations are characterized as being computationally intensive, exhibiting a high
degree of parallelism, possessing data independence, and in some cases having lower
arithmetic requirements than other high-performance applications, e.g. scientific com-
puting. It is important to understand these issues more fully in order to judge their
impact for mapping DSP algorithms onto hardware platforms such as FPGAs.

4.4.1 Computational Complexity

DSP algorithms can be highly complex. For example, consider the N-tap FIR filter
expression given in Chapter 2 and repeated here:

y(n) =
N−1∑
i=0

aix(n − i). (4.1)

In effect, this computation indicates that a0 must be multiplied by x(n), followed by the
multiplication of a1 by x(n − i) to which it must be added, and so on. Given that the tap
size is N , this means that the computation requires N multiplications followed by N − 1
additions in order to compute y(n) as shown below:

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) +⋯ + aN−1x(n − N + 1) (4.2)

Given that another computation will start on the arrival of next sample, namely xn+1, this
defines the computations required per cycle, namely 2N operations (N multiplications
and N additions) per sample or two operations per tap. If a processor implementation
is targeted, then this requires, say, a loading of the data every cycle, which would need
two or three cycles (to load data and coefficients) and storage of the accumulating sum.
This could mean an additional three operations per cycle, resulting in six operations
per tap or, overall, 6N operations per sample. For an audio application with a sampling
rate of 44.2 kHz, a 128-tap filter will require 33.9 MSPS, which may seem realistic for
some technologies, but when you consider image processing rates of 13.5 MHz, these
computational rates quickly explode, resulting in a computation rate of 10 gigasamples
per second (GSPS). In addition, this may only be one function within the system and
thus represent only a small proportion of the total processing required.

For a processor implementation, the designer will determine if the hardware can meet
the throughput requirements by dividing the clock speed of the processor by the num-
ber of operations that need to be performed each cycle, as outlined above. This can give
a poor return in performance, since if N is large, there will be a large disparity between
clock and throughput rates. The clock rate may be fast enough to provide the necessary
sampling rate, but it will present problems in system design, both in delivering a very

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

X

z–1

X

z–1

X

+ yn

xn

aN–1

a0

a1

z–1

Figure . Simple parallel implementation of a FIR filter

fast clock rate and controlling the power consumption, particularly dynamic power con-
sumption, as this is directly dependent on the clock rate.

4.4.2 Parallelism

The nature of DSP algorithms is such that high levels of parallelism are available. For
example, the expression in equation (4.1) can be implemented in a single processor,
or a parallel implementation, as shown in Figure 4.1, where each element in the figure
becomes a hardware component therefore implying 127 registers for the delay elements,
128 MAC blocks for computing the products, a1x(N − i), where i = 0, 1, 2,… , N − 1,
and their addition which can of course, be pipelined if required.

In this way, we have the hardware complexity to compute an iteration of the algo-
rithm in one sampling period. Obviously, a system with high levels of parallelism and
the needed memory storage capability will accommodate this computation in the time
necessary. There are other ways to derive the required levels of parallelism to achieve
the performance, outlined in Chapter 8.

4.4.3 Data Independence

The data independence property is important as it provides a means for ordering the
computation. This can be highly important in reducing the memory and data storage
requirements. For example, consider N iterations of the FIR filter computation of equa-
tion (4.1), below. It is clear that the x(n) datum is required for all N calculations and there
is nothing to stop us performing the calculation in such a way that N computations are
performed at the same time for y(n), y(n + 1),… , y(n + N − 1), using the x(n) datum and
thus removing any requirement to store it:

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) +⋯ + aN−1x(n − N + 1)
y(n + 1) = a0x(n + 1) + a1x(n) + a2x(n − 1) +⋯ + aN−1x(n − N + 2)
y(n + 2) = a0x(n + 2) + a1x(n + 1) + a2x(n) +⋯ + aN−1x(n + N + 3)

⋮ = ⋮

y(n + N − 1) = a0x(n + N − 1) + a1x(n + 1) + a2x(n + N + 1) +⋯ + aN−1x(n).

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Obviously the requirement is now to store the intermediate accumulator terms. This
obviously presents the designer with a number of different ways of performing system
optimization, and in this case gives in a variation of schedule in the resulting design.
This is just one implication of data independence.

4.4.4 Arithmetic Requirements

In many DSP technologies, the wordlength requirements of the input data are such
that the use of internal precision can be considerably reduced. For example, consider
the varying wordlengths for the different applications as illustrated at the end of Chap-
ter 3. Typically, the input wordlength will be determined by the precision of the ADC
device creating the source material. Depending on the amount and type of computation
required (e.g. multiplicative or additive), the internal word growth can be limited, which
may mean that a suitable fixed-point realization is sufficient.

The low arithmetic requirement is vital as it means small memory requirements, faster
implementations as adder and multiplier speeds are governed by input wordlengths,
and smaller area. For this reason, there has been a lot of work to determine maximum
wordlengths as discussed in the previous chapter. One of the interesting aspects is that
for many processor implementations both external and internal wordlengths will have
been predetermined when developing the architecture, but in FPGAs it may be required
to carry out detailed analysis to determine the wordlength at different parts of the DSP
system (Boland and Constantinides 2013).

All of these characteristics of DSP computation are vital in determining an efficient
implementation, and have in some cases driven technology evolution. For example, one
the main differences between the early DSP processors and microprocessors was the
availability of a dedicated multiplier core. This was viable for DSP processors as they
were targeted at DSP applications where multiplication is a core operation, but not for
general processing applications, and so multipliers were not added to microprocessors
at that time.

4.4.5 Processor Classification

The technology for implementing DSP ranges from microcontrollers right though to
single-chip DSP multi-processors, which range from conventional processor architec-
tures with a very long instruction word (VLIW) extension to allow instruction-level
parallelism through to dedicated architecture defined for specific application domains.
Although there have been other more comprehensive classifications after it, Flynn’s clas-
sification is the most widely known and used for identifying the instructions and the data
as two orthogonal streams in a computer. The taxonomy is summarized in Table 4.1,
which includes single instruction, single data (SISD) and multiple instruction, single
data (MISD). These descriptions are used widely to describe the various representations
for processing elements (PEs).

. Microprocessors

The classical von Neumann microprocessor architecture is shown in Figure 4.3. This
sequentially applies a variety of instructions to specified data in turn. The architecture

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

Table . Flynn’s taxonomy of processors

Class Description Examples

SISD Single instruction stream operating von Neumann
on single data stream processor

SIMD Several PEs operating in lockstep VLIW processorson individual data streams

MISD Few practical
examples

MIMD Several PEs operating independently Multi-processor
on separate data streams

consists of five types of unit: a memory containing data and instructions, an instruction
fetch and decode (IFD) instruction, arithmetic logic unit (ALU) and the memory access
(MA) unit. These units correspond to the four different stages of processing, which
repeat for every instruction executed on the machine:

1. Instruction fetch
2. Instruction decode
3. Execute
4. Memory access.

Program counter

Program counterIn
st

ru
ct

io
n

Fe
tc

h
an

d
D

ec
id

e
U

ni
t

Instruction Register

Data Memory

Memory

Instruction
Memory

ALU

Reg Reg

Reg

Figure . Von Neumann processor architecture

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

During the instruction fetch (IF) stage, the IFD unit loads the instruction at the address
in the program counter (PC) into the instruction register (IR). In the second, instruction
decode (ID) stage, this instruction is decoded to produce an opcode for the ALU and the
addresses of the two data operands, which are loaded into the input registers of the ALU.
During the execute stage, the ALU performs the operation specified by the opcode on
the input operands to produce the result, which is written back into memory in the MA
stage.

In general, these types of SISD machine can be subdivided into two categories,
depending on their instruction set style. The complex instruction set computer (CISC)
machines have complex instruction formats which can become highly specific for spe-
cific operations. This leads to compact code size, but can complicate pipelined execu-
tion of these instructions. On the other hand, reduced instruction set computer (RISC)
machines have regular, simple instruction formats which may be processed in a regular
manner, promoting high throughput via pipelining, but will have increased code size.

The von Neumann processor architecture is designed for general-purpose computing,
and is limited for embedded applications, due to its highly sequential nature. This makes
this kind of processor architecture suitable for a wide range of applications. However,
whilst embedded processors must be flexible, they are often tuned to a particular appli-
cation and have advanced performance requirements, such as low power consumption
or high throughput. A key evolution in this area has been the ARM series of proces-
sors which have been primarily developed for embedded applications and, in particular,
mobile phone applications. More recently they have expanded to the wider internet of
things (IoT) markets and also data servers, specifically microservers (Gillan 2014).

4.5.1 ARM Microprocessor Architecture Family

The ARM family of embedded microprocessors are a good example of RISC proces-
sor architectures, exhibiting one of the key trademarks of RISC processor architectures,
namely that of instruction execution path pipelining. The pipelines of these processor
architectures (as identified for the ARM processor family in Table 4.2) are capable of

Table . ARM microprocessor family overview

Processor Instruction sets Extensions

ARM7TDMI, Thumb
ARM922T
ARM926EJ-S Improved ARM/Thumb Jazelle
ARM946E-S DSP instructions
ARM966E-S
ARM1136JF-S SIMD instructions Thumb-2, TrustZonezelle
ARM1176JZF-S Unaligned data support
ARM11 MPCore
Cortex-A8/R4/M3/M1 Thumb-2 v7A (applications) - NEON

Thumb-2 v7R (real-time) - H/W divide
Thumb-2 V7M (microcontroller) - H/W

Divide & Thumb-2 only

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

enabling increased throughput of the unit, but only up to a point. A number of innova-
tions have developed as the processor has developed.

� ARM7TDMI has a three-stage pipeline with a single interface to memory.
� ARM926EJ-S has a five-stage pipeline with a memory management unit with various

caches and DSP extensions. The DSP extension is in the form of a single-cycle 32 × 16-
bit multiplier and supports instructions that are common in DSP architectures, i.e.
variations on signed multiply-accumulate, saturated add and subtract, and counting
leading zeros.

� ARM1176JZ(F)-S core has moved to a eight-stage pipeline with improved perfor-
mance in terms of branch prediction, a vector floating-point unit and intelligent
energy management.

� ARM11 MPCore technology has moved to multicore and has up to four MP11 pro-
cessors with cache coherency and an interrupt controller.

� ARM Cortex-A8 has moved to a 14-stage pipeline and has an on-board NEON media
processor.

With increased pipeline depth comes increased control complexity, a factor which
places a limit on the depth of pipeline which can produce justifiable performance
improvements. After this point, processor architectures must exploit other kinds of par-
allelism for increased real-time performance. Different techniques and exemplar pro-
cessor architectures to achieve this are outlined in Section 4.5.2.

The key innovation of the ARM processor is that the company believes that the archi-
tecture comprises the instruction set and the programmer’s model. Most ARMs imple-
ment two instruction sets, namely the 32-bit ARM instruction set and the 16-bit Thumb
instruction set. The Thumb set has been optimized for code density from C code as this
represents a very large proportion of example ARM code. It also gives improved perfor-
mance from narrow memory which is critical in embedded applications.

The latest ARM cores include a new instruction set, Thumb-2, which provides a mix-
ture of 32-bit and 16-bit instructions and maintains code density with increased flexibil-
ity. The Jazelle-DBX cores have been developed to allow the users to include executable
Java bytecode. A number of innovations targeted at DSP have occurred, e.g. as in the
ARM9 family where DSP operations were supported. The evolution in the ARM to sup-
port DSP operations has not substantially progressed beyond that highlighted. A more
effective route has been to incorporate the ARM processor with both DSP processors,
which is discussed in Section 4.9.

ARM Programming Route
The most powerful aspect of microprocessors is the mature design flow that allows pro-
gramming from C/C++ source files. ARM supports an Eclipse-based Integrated Design
Environment (IDE) or IDE-based design flow which provides the user with a C/C++
source editor which helps the designer to spend more time writing code and avoid chas-
ing down syntax errors. The environment will list functions, variables, and declarations,
allows full change history and re-factoring of function names and code segments glob-
ally. This provides a short design cycle allowing code to be quickly compiled into ARM
hardware.

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

It is clear that there have been some architectural developments which make the ARM
processor more attractive for DSP applications, but, as indicated earlier, the preferred
route has been a joint offering either with DSP processors or FPGAs. ARM also offers
an mbed hardware platform (https://mbed.org/) which uses on-line tools.

4.5.2 Parallella Computer

A clear shift in microprocessors has been towards multicores and there have been many
examples of multicore structures, including Intel multicore devices and multicore DSP
devices (see later). The Parallella platform is an open source, energy-efficient, high-
performance, credit-card sized computer which is based on Adapteva’s Epiphany mul-
ticore chips. The Epiphany chip consists of a scalable array of simple RISC processors
programmable in C/C++ connected together with a fast on-chip network within a single
shared memory architecture. It comes as either a 16- or 64-core chip. For the 16-core
system, 1, 2, 3, 4, 6, 8, 9, 12 or 16 cores can be used simultaneously.

The Epiphany is a 2D scalable array of computing nodes which is connected by a low-
latency mesh network-on-chip and has access to shared memory. Figure 4.4 shows the
Epiphany architecture and highlights the core components:

� a superscalar, floating-point RISC CPU that can execute two floating-point operations
and a 64-bit memory load operation on every clock cycle;

� local memory in each mesh node that provides 32 bytes/cycle of sustained bandwidth
and is part of a distributed, shared memory system;

� multicore communication infrastructure in each node that includes a network inter-
face, a multi-channel DMA engine, multicore address decoder, and a network moni-
tor;

� a 2D mesh network that supports on-chip node-to-node communication latencies in
nanoseconds, with zero startup overhead.

The Adapteva processor has been encapsulated in a small, high-performance and low-
power computer called the Parallella Board. The main processor is a dual-core ARM A9
and also a Zynq FPGA. The board can run a Linux-based operating system. The main
memory of the board is contained in an SD card and this also includes the operating files
for the system. There is 1 GB of shared memory between the ARM host processor and
the Epiphany coprocessor.

The system is programmed in C/C++, but there are a number of extra commands
which are specific to the Parallella Board and handle data transfer between the Epiphany
and the ARM host processor. It can be programmed with most of the common parallel
programming methods, such as SIMD and MIMD, using parallel frameworks like open
computing language (OpenCL) or Open Multi-Processing (OpenMP). Two programs
need to be written, one for the host processor and one for the Epiphany itself. These
programs are then linked when they are compiled.

Programming Route
The Parallela is programmed by the Epiphany software development kit (SDK), known as
eSDK, and is based on standard development tools including an optimizing C-compiler,
functional simulator, debugger, and multicore IDE. It can directly implement regular

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://mbed.org/

Technology Review 

Node functionality

Routers

RISC
CPU

Local
Memory

DMA
Engine

Network
Interface

Figure . Epiphany architecture

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

ANSI-C and does not require any C-subset, language extensions, or SIMD style pro-
gramming. The eSDK interfaces with a hardware abstraction layer (HAL) which allows
interaction with the hardware through the user application.

The key issue with programming the hardware is to try to create the program in such
a way that the functionality will efficiently use the memory of each core which has an
internal memory of 32 kB which is split into four separate 8 kB banks. Also, every core
also has the ability to quickly access the memory of the other cores which means that
streaming will work effectively as data can then be passed in parallel. The cores also
have access to the memory shared with the ARM processor, which suggests a means of
supplying input data.

Efficiency is then judged by how effectively the computation can be distributed across
each core, so it is a case of ensuring an efficient partition. This will ensure that a good
usage of the core functionality can be achieved which preserves the highly regular
dataflow of the algorithm so that data passing maps to the memory between cores. This
may require a spatial appreciation of the architecture to ensure that the functionality
efficiency is preserved and a regular matching occurs. This allow the realization to
exploit the fast inter-core data transfers and thus avoid multiple accesses in and out of
shared memory.

. DSP Processors

As was demonstrated in the previous section, the sequential nature of microprocessor
architectures makes them unsuitable for efficient implementation of complex DSP sys-
tems. This has spurred the development of dedicated types of processors called DSP
microprocessors such as Texas Instrument’s TMS32010 which have features that are
particularly suited for DSP processing. These features have been encapsulated in the
Harvard architecture illustrated in Figure 4.5.

The earlier DSP microprocessors were based on the Harvard architecture. This differs
from the von Neumann architecture in terms of memory organization and dedicated
DSP functionality. In the von Neumann machine, one memory is used for storing both
program code and data, effectively providing a memory bottleneck for DSP implementa-
tion as the data independence illustrated in Section 4.4.3 cannot be effectively exploited
to provide a speedup. In the Harvard architecture, data and program memory are sep-
arate, allowing the program to be loaded into the processor independently of the data
which is typically streaming in nature.

DSP processors are designed also to have dedicated processing units, which in the
early days took the form of a dedicated DSP block for performing multiply-accumulation
quickly. In addition, separate data and program memories and dedicated hardware
became the cornerstone of earlier DSP processors. Texas Instrument’s TMS32010 DSP
(Figure 4.6), which is recognized as the first DSP processor, was an early example of the
Harvard architecture and highlights the core features, so it acts as a good example to
understand the broad range of DSP processors. In the figure, the separate program and
data buses are clearly highlighted. The dedicated hardware unit is clearly indicated in
this case as a 16-bit multiplier connected to the data bus which produces a 32-bit out-
put called P32, which can then be be accumulated as indicated by the 32-bit arithmetic

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

Stored
program
and data

Program
control

Input/
Output

Arithmetic
Logic Unit

Stored
program

Program
control

Arithmetic
Logic Unit

Input/
Output

Stored
data

(a) Von Neumann

(b) Harvard

Figure . Processor architectures

logic unit (ALU) and accumulator (ACC) circuitry which is very effective in computing
the function given in equation (4.1).

4.6.1 Evolutions in DSP Microprocessors

A number of modifications have occurred to the original Harvard DSP architecture,
which are listed below (Berkeley Design Technology 2000).
� VLIW. Modern processor architectures have witnessed an increase in the internal

bus wordlengths. This allows a number of operations performed by each instruction
in parallel, using multiple processing functional units. If successful, the processor will
be able to use this feature to exploit these multiple hardware units; this depends on the
computation to be performed and the efficiency of the compiler in utilizing the under-
lying architecture. This is complicated by the move toward higher-level programming
languages which require good optimizing compilers that can efficiently translate the
high-level code and eliminate any redundancies introduced by the programmer.

� Increased number of data buses. In many recent devices the number of data buses has
been increased. The argument is that many DSP operations involve two operands,
thus requiring three p1eces of information (including the instruction) to be fed from
memory. By increasing the number of buses, a speedup is achieved, but this also
increases the number of pins on the device. However, some devices gets around this
by using a program cache, thereby allowing the instruction bus to double as a data
bus when the program is being executed out of the program cache.

� Pipelining. Whilst the introduction of VLIW has allowed parallelism, another way to
exploit concurrency is to introduce pipelining, both within the processing units in
the DSP architecture, and in the execution of the program. The impact of pipelining
is to break the processing time into smaller units, thereby allowing several overlapping

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

3
12

D15-D0

32

1616 16

32

Shifter (0,1,4)

32

ACC (32)

32

ALU (32)

Data RAM
(144 Words)

Address

Data

32

32

MUX

32

16

P(32)

T(16)

Multiplier

Shifter
(0–16)

16

8

DP

7

MUX

8

8

AR1 (16)

AR0 (16)
ARP

16 16

Data Bus

1616

16

Program Bus

A11-A0/
PA2-PA0

12

Instruction

Program
ROM/EPROM
(1.5K Words)

3

RS
INT

MC/MP
BIO

MEN
DEN
WE

Stack
4 × 12

12

12
PC (12)

12

12 LSB

MUX

16

X2/CLKINCLKOUT
X1

C
on

tr
ol

le
r

M
U

X

M
U

X

A
dd

re
ss

Legend:
Accumulator=ACC
Arithmetic Logic Unit=ALU
Auxiliary Register Pointer=ARP
Auxiliary Register 0=AR0
Auxiliary Register 1=AR1
Data Page Pointer=DP
P Register=P
Program Counter=PC
T Register=T

Program Bus

Data Bus

Figure . TI TMS32010 DSP processor (Reproduced with permission of Texas Instruments Inc.)

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

computations to take place at once, in the same hardware. However, this comes at the
expense of increased latency. Pipelining can also be employed within the processor
control unit which controls the program fetch, instruction dispatch and instruction
decode operation.

� Fixed point operations. Some DSP systems only require fixed-point arithmetic and do
not need the full-precision arithmetic offered by some DSP processing units. For this
reason, fixed-point and floating-point DSP microprocessors have evolved to match
application environments. However, even in fixed-point, some applications do not
require the full fixed-point range of some processors, e.g. 32 bits in the TMS320C64xx
series processor, and therefore inefficiency exists. For example, for a filter application
in image processing applications, the input wordlength may vary between 8 and l6
bits, and coefficients could take 12–16 bits. Thus, the multiplication stage will not
require anything larger than a 16 × 16-bit multiplier. The DSP processors exploit this
by organizing the processing unit, e.g. the TMS320C6678, by allowing multiple mul-
tiplications to be take place in one time unit, thereby improving the throughput rate.
Thus, the processors are not compromised in terms of the internal wordlength used.

These optimizations have evolved over a number of years. and have led to improved
performance. However, it is important to consider the operation in order to understand
how the architecture performs in some applications.

4.6.2 TMS320C6678 Multicore DSP

The TMS320C6678 multicore fixed- and floating-point DSP microprocessor is based on
TI’s KeyStone multicore architecture and is illustrated in Figure 4.7. It comprises eight
C66x CorePac DSPs, each of which runs at 1.0–1.25 GHz, giving an overall clock rate
of up to 10 GHz. This gives 320 giga multiply-accumulates (GMAC) at the clock rate of
1.25 GHz. A key aspect has been the introduction of increasing levels of memory in the
form of 32 kB of L1 program cache and 32 kB of L1 data cache with 512 kB of L2 cache per
core. The chip also has 4 MB of L2 shared memory. Clearly, with technology evolution
and in line with processor developments and the response to the slowdown of Dennard
scaling (see Section 4.2), the response has been to create a multicore implementation of
previous processors in this case, the C6000, rather than scale the processor.

Another feature of the latest DSP families has been the inclusion of specific function-
ality, specifically network-on-chip topology in the form of a TeraNet switch fabric which
support up to 2 TB of data. There are also dedicated processing engines such as packet
and security accelerators to address the networking and security markets in which DSP
processors are increasingly being used. The devices also come with an additional fea-
tures such as 64-bit DDR3 and universal asynchronous receiver/transmitter (UART)
interfaces.

The key objective is to be able to exploit the processing capability offered by this mul-
ticore platform which depends on both the computation to be performed and the use
of optimizing compilers that perform a number of simplifications to improve efficiency.
These simplifications include routines to remove all functions that are never called and
to simplify functions that return values that are never used, to reorder function declara-
tions and propagate arguments into function bodies (Dahnoun 2000). The compiler also
performs a number of optimizations to take advantage of the underlying architecture

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

Memory Subsystem

Debug & Trace

Boot ROM

CorePac

Semaphore

PLL 32KB L1

P-Cache

512KB L2 Cache

32KB L1

D-Cache

EDMA

Multicore Navigator

Network Coprocessor

Packet

DMA

Queue

Manager

Security

Accelerator

Packet

Accelerator

E
M

IF
 1

6

G
P

IO

S
w

it
c
hS

P
I

U
A

R
T

P
C

le
 ×

2
C66xTM

T
S

IP
 ×

2

×3

×3

S
R

IO
 ×

4

S
G

M
II

×
2

E
th

e
rn

e
t

S
w

it
c
h

l2
C

TeraNet

Power
Management

MSMC

64-Bit
DDR3 EMIF

4MB
MSM

SRAM

HyperLink

Figure . TMS320C6678 multicore fixed and floating-point DSP microprocessor

including software pipelining, loop optimizations, loop unrolling and other routines to
remove global assignments and expressions (Dahnoun 2000).

. Graphical Processing Units

Another class of processors that has had a major impact is the graphical processing unit
(GPU). It was developed particularly to suit applications in image and video processing
and as such has resulted in a multi-processor array structure with a memory hierarchy
suited to store the initial image data and then portions of the image for highly parallel
computing. While originally designed with a fixed pipeline which is highly suitable for
graphics, the modern GPU’s pipeline is highly programmable and allows for general-
purpose computation. For this reason, the technology has now seen wider adoption. The

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

SP SP

SP SP

SP SP

SP SP

Shared RAM

SMP

SP SP

SP SP

SP SP

SP SP

Shared RAM

SMP

Global Memory

Constant Memory

Figure . Nvidia GeForce GPU architecture

creation of the general-purpose graphical processing unit (GPUPU) presents a powerful
computing platform as it comprises a CPU which computes the sequential part of the
code and the GPU calculates the computer-intensive part of the code.

There are many GPUs available from different manufacturers, and all offer massively
parallel floating-point computation and high-speed, large-capacity RAM. The Nvidia
GeForce GPU is illustrated in Figure 4.8 and shows the computing structure. The archi-
tecture is generally composed of a number of floating-point streaming processors (SP)
optimized for graphics processing, each of which contains a small amount of low-latency
shared memory along with a larger bank of SDRAM which is available to all multi-
processors. This is contained with the shared-memory multi-processors (SMP). The
architecture allows parallel execution of numerous SIMD functions.

Since products from different manufacturers will inevitably differ in their low-level
implementation, there are a number of abstract application programming interfaces
(APIs) including CUDA and OpenCL. CUDA can used to program the devices and allow
the software developer to access the massively parallel SIMD architecture of modern
GPUs for general processing tasks. CUDA was developed by Nvidia and is an extension
of C to enable programming of GPU devices; it allows easy management of parallelism
and handles communications with the host. OpenCL is a broadly supposed open stan-
dard, defined by the Khronos Group, that allows programming of both GPUs and CPUs.
It is supported by Intel, AMD, Nvidia, and ARM, and is the GPGPU development plat-
form most widely used by developers in both the USA and Asia-Pacific.

The key aspect of GPU is hundreds of cores that can be used for highly parallel
implementation of graphics algorithms and high levels of memory. As numerous com-
putations or threads can run on each processor engine, the GPU has thousands of
threads. Because the architecture is fixed and is now being applied to a wider range
of applications, the technology is cheap, certainly compared to DSP microprocessor
and FPGAs.

4.7.1 GPU Architecture

GPU implementations work well for streaming applications where large amounts of
data will be streamed to the GPU and then processed. Obviously this is the case for

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

image and video processing which is what the hardware was developed for in the first
instance. When programming the device, it is paramount to consider the architectural
implications of the hardware, to produce efficient code. It could be argued to some
some extent that this places much more emphasis on the programmer’s ability to get
the performance out of the hardware, but this is increasingly the case for multicore
technology.

For example, the multi-processors share one off-chip global memory and it is not
cached, so it is very important to achieve memory coalescing (Luo et al. 2010). Memory
coalescing occurs when consecutive threads access consecutive memory locations. In
this case, it is important to coalesce several memory transactions into one transaction,
as there is a shared memory within each SMP which is common to all the streaming pro-
cessors inside the multi-processor. As the shared memory is on chip, it can be accessed
within a smaller number of clock cycles, whereas the global memory will be typically an
order of magnitude larger.

Thus the memory can be viewed as follows:

� Global memory is typically several gigabytes and is available to the GPU processors.
It is used for fast caching to the motherboard RAM, as it is used to read and write
large amounts of data and is normally associated with blocks of threads.

� Local shared memory is smaller (tens of kilobytes) and can be accessed extremely
quickly, so it can really speed up computations, since the instruction access cost
is much lower compared to global memory. It is usually associated with a block of
threads

� Private thread memory, as the name suggests, is a very small bank of memory used
within each thread for variables and temporary storage during the computation.

By carefully observing the memory structure and ensuring that the computation is
inherently parallel enough, it is possible to achieve a speedup. For example, the work on
breadth-first search graph operation (Luo et al. 2010) shows that a tenfold increase in
the number of vertices computed only incurs a fivefold increase in the compute time.
GPUs have also been applied to some DSP algorithms such as the low-density parity-
check (LDPC) decoder (Wang et al. 2011). The challenge has been to use the threads
to fully occupy the GPU computation resources when decoding the LDPC codes and
organizing the computation in such a way as to minimize the memory access times.
Work by Falcao et al. (2012) has compared the programming of a GPU and CPU using
OpenCL.

. System-on-Chip Solutions

Up to now, the DSP technology offerings have been in the form of some type of prede-
fined architectural offering. The major attraction of dedicated ASIC offerings is that the
architecture can be developed to specifically match the algorithmic requirements, allow-
ing the level of parallelism to be created to ultimately match the performance require-
ments. For the earlier 128-tap FIR filter, it is possible to dedicate a multiplier and adder
to each multiplication and addition respectively, thereby creating a fully parallel imple-
mentation. Moreover, this can then be pipelined in order to speed up the computation,

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

giving if required an N times speedup for an N-tap filter. How the designer can achieve
this is described in detail in Chapter 8.

When considering programmability, SoC solutions will have been developed with
programmable parts as well as dedicated acceleration blocks. Indeed, the C6000 DSP
described in Section 4.6.2 could be considered to be a DSP SoC. Therefore, such an
approach would have to be driven by a critical factor such as immense computational
performance or power consumption or indeed both, in order to justify the considerable
costs and risks in creating a DSP SoC in the first place. This is normally counterbalanced
by increasing the levels of programmability, but this causes an increase in test and veri-
fication times. Non-recurring engineering (NRE) costs are such that the cost of produc-
ing a number of prototypes now typically exceeds the financial resources of most major
manufacturers. Thus the argument for using dedicated SoC hardware has to be com-
pelling. Currently, it is mostly only mass market smartphones and other mobile devices
which can justify this.

Whilst the sequential model has served well in the sense that it can implement a wide
range of algorithms, the real gain from DSP implementation comes from parallelism of
the hardware. For this reason, there has been considerable interest in developing par-
allel hardware solutions evolving from the early days of the transputer. However, it is
capturing this level of parallelism that is the key issue. A key architecture which was
developed to capture parallelism was the systolic array (Kung and Leiserson 1979; Kung
1988) which forms the starting point for this section.

4.8.1 Systolic Arrays

Systolic array architectures were introduced to address the challenges of very large scale
integration (VLSI) design by Kung and Leiserson (1979). In summary, they have the
following general features (Kung 1988):
� an array of processors with extensive concurrency;
� small number of processor types;
� control is simple;
� interconnections are local.

Their processing power comes from the concurrent use of many simple cells, rather
than the sequential use of a few very powerful cells. They are particularly suitable for
parallel algorithms with simple and regular dataflows, such as matrix-based operations.
By employing pipelining, the operations in the systolic array can be continually filtered
through the array, enabling full efficiency of the processing cells.

A systolic linear array is shown in Figure 4.9. Here, the black circles represent pipeline
stages after each processing element. The lines drawn through these pipeline stages are

schedule vector s

Figure . Linear systolic array

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

schedule
vector s

Figure . Systolic array architecture

the scheduling lines depicting which PEs are operating on the same iteration at the same
time; in other words, these calculations are being performed at the same clock cycle. The
lines drawn through these pipeline stages are the scheduling lines depicting which PEs
are operating on the same iteration at the same time; in other words, these calculations
are being performed at the same clock cycle.

Figure 4.10 shows a classical rectangular systolic array each with local interconnec-
tions. This type of array is highly suitable for matrix–matrix operations. Each PE receives
data only from its nearest neighbor and each processor contains a small memory ele-
ments in which intermediate values are stored. The control of the data through the array
is by a synchronous clock, which effectively pumps the data through the array; hence the
name “systolic” arrays, by analogy with the heart pumping blood around the body. Fig-
ure 4.11 depicts the systolic array applied for QR decomposition. The array is built from
two types of cells, boundary and internal, all locally interconnected.

The concept of systolic arrays was employed in many DSP applications. McCanny
and McWhirter (1987) applied it at the bit level, whereas the original proposer of
the technique developed the concept into the iWarp which was an attempt in 1988
by Intel and Carnegie Mellon University to build an entirely parallel computing node
in a single microprocessor, complete with memory and communications links (Gross
and O’Hallaron 1998). The main issue with this type of development was that it was
very application-specific, coping with a range of computationally complex algorithms;
instead, the systolic array design concept was applied more successfully to develop a
wide range of signal processing chips (Woods et al. 2008). Chapter 12 demonstrates how
the concept has been successfully applied to the development of an IP core for recursive
least squares filtering.

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Technology Review 

schedule
vector s

Figure . Triangular systolic array architecture

. Heterogeneous Computing Platforms

Since the first edition of this book, there have been many alternative developments due
to scaling issues, but rather than evolve existing platforms to cater for DSP processing,
the focus has been to derive new forms of multicore platforms:

� Multicore architectures such as the Parallela (highlighted in Section 4.5.2) which
offers high levels of parallelism, and coprocessing architectures such as the Intel Xeon
PhiTM processor which delivers up to 2.3 times higher peak FLOPS and up to 3 times
more performance per watt. The technology has been used for 3D image reconstruc-
tion in computed tomography which has primarily been accelerated using FPGAs
(Hofmann et al. 2014). They show how not only parallelization can be applied but
also that SIMD vectorization is critical for good performance.

� DSP/CPU processor architectures such as KeyStoneTM II multicore processors, e.g.
the 66AK2Hx platform which comprises a quad-ARM Cortex-A15 MPCoreTM pro-
cessor with up to eight TMS320C66x high-performance DSPs using the KeyStone II
multicore architecture. This has been applied for cloud radio access network (RAN)
stations; Flanagan (2011) shows how the platform can provide scalability.

� SoC FPGAs have evolved by incorporating processors (primarily the ARM processor)
on the FPGA fabric. These effectively present a hardware/software system where the
FPGA programmable fabric can be used to accelerate the data-intensive computation
and the processor can be used for control and interfacing. This is discussed in more
detail in the next chapter.

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 FPGA-based Implementation of Signal Processing Systems

. Conclusions

This chapter has highlighted the variety of technologies used for implementing complex
DSP systems. These compare in terms of speed, power consumption and, of course,
area, although this is a little difficult to ascertain for processor implementations. The
chapter has taken a specific slant on programmability with regard to these technologies
and, in particular, has highlighted how the underlying chip architecture can limit the
performance. Indeed, the fact that it is possible to develop SoC architectures for ASIC
and FPGA technologies is the key feature in achieving the high performance levels. It
could be argued that the fact that FPGAs allow circuit architectures and that they are
programmable are the dual factors that make them so attractive for some system imple-
mentation problems.

Whilst the aim of the chapter has been to present different technologies and, in some
cases, compare and contrast them, the reality is that modem DSP systems are now col-
lections of these different platforms. Many companies are now offering complex DSP
platforms comprising CPUs, DSP processors and embedded FPGA. Thus the next chap-
ter views FPGAs both as heterogeneous platforms in themselves but also as part of these
solutions.

Bibliography

Berkeley Design Technology 2000 Choosing a DSP processor. Available at http://www.bdti.
com/MyBDTI/pubs/choose 2000.pdf (accessed November 6, 2016).

Boland DP, Constantinides GA 2013 Word-length optimization beyond straight line code.
In Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, pp. 105–114.

Dahnoun, N 2000 Digital Signal Processing Implementation Using the TMS320C6000TM

DSP Platform. Prentice Hall, Harlow.
Falcao G, Silva V, Sousa L, Andrade J 2012 Portable LDPC decoding on multicores using

OpenCL. IEEE Signal Processing Mag., 29(4), 81–109.
Flanagan T 2011 Creating cloud base stations with TI’s KeyStone multicore architecture.

Texas Instruments White Paper (accessed June 11, 2015).
Gillan CJ 2014 On the viability of microservers for financial analytics. In Proc. IEEE

Workshop on High Performance Computational Finance, pp. 29–36.
Gross T, O’Hallaron DR 1998 iWarp: Anatomy of a Parallel Computing System. MIT Press,

Cambridge, MA.
Hofmann J, Treibig J, Hager G, Welleinet G 2014 Performance engineering for a medical

imaging application on the Intel Xeon Phi accelerator. In Proc. 27th Int. Conf. on
Architecture of Computing Systems, pp. 1–8.

ITRS 2005 International Technology Roadmap for Semiconductors: Design. available from
http://www.itrs.net/Links/2005ITRS/Design2005.pdf (accessed February 16, 2016).

International Technology Roadmap for Silicon 2011 Semiconductor Industry Association.
Available at http://www.itrs.net/ (accessed June 11, 2015).

Jackson LB 1970 Roundoff noise analysis for fixed-point digital filters realized in cascade or
parallel form. IEEE Trans. Audio Electroacoustics 18, 107–122.

Kung HT, Leiserson CE 1979 Systolic arrays (for VLSI). In Proc. on Sparse Matrix, pp.
256–282.

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}http://www.itrs.net/Links/2005ITRS/Design2005.pdf
http://www.itrs.net/Links/2005ITRS/Design2005.pdf
let &hbox {char '046}http://www.itrs.net/
http://www.itrs.net/
http://www.bdti.com/MyBDTI/pubs/choose_2000.pdf

Technology Review 

Kung SY 1988 VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ.
Luo L, Wong M, Hwu W-M 2010 An effective GPU implementation of breadth-first search.

In Proc. Design Automation Conf., Anaheim, CA, pp. 52–55.
McCanny J, McWhirter JG. 1987 Some systolic array developments in the UK. IEEE

Computer, 20(7), 51–63.
Reinders J, Jeffers J 2014 High Performance Parallelism Pearls: Multicore and Many-Core

Programming Approaches. Morgan Kaufmann, Waltham, MA.
Sutter H 2009 The free lunch is over: A fundamental turn toward concurrency in software.

Available at http://www.gotw.ca/publications/concurrency-ddj.htm (accessed June 11,
2015).

Wang G, Wu M, Yang S, Cavallaro JR 2011 A massively parallel implementation of
QC-LDPC decoder on GPU. In Proc. IEEE 9th Symp. on Application Specific Processors,
pp. 82–85.

Woods RF, McCanny JV, McWhirter JG. 2008 From bit level systolic arrays to HDTV
processor chips. J. of VLSI Signal Processing 53(1–2), 35–49.

 10.1002/9781119079231.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch4 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

let &hbox {char '046}http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

