




FPGA Solutions for Big Data Applications

. Introduction

We live in an increasingly digitized world where the amount of data being generated has
grown exponentially – a world of Big Data (Manyika et al. 2011). The creation of large
data sets has emerged as a hot topic in recent years. The availability of this valuable
information presents the possibility of analyzing these large data sets to give a competi-
tive and productivity advantage. The data come from a variety of sources, including the
collection of productivity data from manufacturing shop floors, delivery times, detailed
information on company sales or indeed the enormous amount of information currently
being created by social media sites. It is argued that by analyzing social media trends, it
should be possible to create potentially greater revenue generating products.

Big Data analytics (Zikopoulos et al. 2012) is the process by which value is created from
these data and involves the loading, processing and analysis of large data sets. Whilst
database analytics is a well-established area, the increase in data size has driven interest
in using multiple distributed resources to undertake computations, commonly known as
scaling out. This is achieved using a process known as MapReduce (Dean and Ghemawat
2004) which helps the user to distribute or map data across many distributed computing
resources to allow the computation to be performed, and then bringing all of these com-
puted outputs together, or reducing, to produce the result. ApacheTM Hadoop® (Apache
2015) is an open source resource for achieving this.

Given this distributed nature of processing, the authors could therefore be accused of
being opportunistic in including this hot topic in a book dedicated to implementation
of DSP systems using FPGA technology, but there is sound reasoning for doing so.
Data analytics comprises the implementation of computationally complex algorithms,
and for classes of algorithms that cannot be scaled out there is a need to improve
processing within the single computing unit. This is known as scaling up and requires
the realization of efficient, scalable hardware to achieve this functionality. As will be
demonstrated in this chapter, the process is similar to many of those applied to signal
processing examples.

There is certainly a strong case, increasingly targeted at FPGA, for developing scaled-
up solutions for a number of key data mining tasks, specifically classification, regression
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and clustering. Such algorithms specifically include decision tree classification (DTC),
artificial neural networks (ANNs) and support vector machines (SVMs). There is a
strong case for developing FPGA-based solutions to achieve scaling up as performance
and especially power will become increasingly important. This chapter considers the
implementation of such algorithms and, in particular, the k-means clustering algorithm.

Big data concepts are introduced in Section 12.2. Details are given on Big Data ana-
lytics and various forms of data mining are introduced in Section 12.3. In Section 12.4,
the acceleration of Big Data analytics is discussed and the concepts of scaling up and
scaling out are introduced. The case for using FPGAs to provide acceleration is made
and a number of FPGA implementations reviewed, including the acceleration of the
Heston model for determining share options. The computation of k-means clustering is
then described in Section 12.5. The idea of using processors to make the heterogeneous
FPGA-based computing platform more programmable is introduced in Section 12.6
and then applied to k-means clustering in Section 12.7. Some conclusions are given in
Section 12.8.

. Big Data

The number of digital information sources continues to grow as we look to digitize
all sorts of information. These sources range from output from social media, storage
of text information from mobile phones, personal digitized information (e.g. medical
records), and information from the increasing number of security cameras. This growth
of information as been labeled Big Data and is recorded in terms of exabytes (1018) and
zettabytes (1021).

Of course, not only has the term “Big Data” emerged to define this new type of infor-
mation, but marketing forces have pushed for the definition of its various forms. Big
Data has been classified in terms of a number of characteristics namely, volume, veloc-
ity, variety, veracity and value, the so-called “five Vs.” Some of the key features of these
are outlined below.

� Volume, of course, refers to the amounts of data being generated. Whether this is
social media data from emails, tweets etc. or data generated from sensor data (e.g.
security cameras, telemetric sources), there is now a need to store these zettabytes
or even brontobytes (1027) of information. On Facebook alone, 10 billion messages
are sent per day! Such data sets are too large to store and analyze using traditional
structured database technology, and so there is a push to store them in unstructured
form using distributed systems.

� Velocity refers to the rate at which these new data sets are generated and distributed.
In our new era of instant financial transactions and smartphone connectivity, there
is a need for immediate response (within seconds). This has major consequences for
not only the computing infrastructure but also the communications technology to
ensure fast low- latency connectivity. Lewis (2014) relates the major activity and cost
involved in creating a fiber link between Chicago and New York just to shave several
milliseconds off the latency for financial markets!

� Variety refers to the different flavors of data, whether it be social media data which
may be incomplete, transitory data or even financial data which have to be secure.
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Whilst structured data databases would have been used in the past for storing infor-
mation, it is estimated that 80% of the world’s data is now unstructured, and therefore
cannot be put easily into conventional databases.

� Veracity refers to the trustworthiness of the data. Social media data are transitory
and less reliable as they may be incorrect (and possibly deliberately so) and of poor
quality, whereas security camera information is inaccurate but possibly of low quality
or low information content. The challenge is then to develop algorithms to cope with
the quality of data and possibly use volume as a means of improving the information
content.

� Value is probably the most relevant data characteristic as it represents the inherent
worth of the information. There is no doubt that it represents the most important
aspect of Big Data as it allows us to make sense of it. However, a major challenge is to
be able to extract the value from the data which is central aspect of Big Data analytics.

These are the challenges for Big Data analytics: it may be useful to have a high volume
of valuable information that has strong veracity, but this is only useful if we can make
sense of the information. Thus whilst Hadoop may provide an infrastructure for storing
and passing information for processing, it is the implementation of very complex analyt-
ics that is critical. Note that McNulty (2014) talks about Big Data in terms of the “seven
Vs,” adding variability and visualization to our list above.

. Big Data Analytics

The availability of such a rich form of data now presents the possibility of identifying
important value. For example, insurance companies currently employ statistical mod-
els on the multiple sources of information available, including previous premium prices
and even on-media and spending habits, to work out appropriate and acceptable insur-
ance premiums! Of course, considerable potential also exists for analyzing Big Data for
marketing reasons, and this represents a key driver for many of the data analytics algo-
rithms. With 1.2 billion people using apps, blogs and forums to post, share and view
content, there is a considerable body of available information.

Another very relevant area is security. With terrorism being a regular issue in our
world today, new forms of technology are increasingly being used by terrorists to com-
municate with each other; these range from using mobile phones to entering informa-
tion on social media sites. Extremist and terrorist groups use the internet for a wide
variety of purposes, including dissemination of propaganda, recruitment, and develop-
ment and execution of operational objectives.

As the volume and velocity of social media data rise exponentially, cyber threats are
increasing in complexity, scale and diversity. Social media intelligence (SOCMINT) is
an emerging science that aims to address this challenge through enhanced analytics
that can present a step-change in a defense intelligence community’s ability to instan-
taneously classify and interpret social media data, identify anomalies and threats, and
prevent future attacks (Omand et al. 2012).

It is therefore clear that Big Data analytics is a growing field of study and seems to
involve applying existing and new algorithms to make sense of data. It is argued that
this is not simply statistics or the result of applying data mining algorithms and that the
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challenges of Big Data require the development of new forms of algorithms. To this end,
the term “Big Data scientist” has been used to describe a specialist who is able to develop
new forms of the most suitable statistical and data mining techniques to data analysis.
The key is to create value from Big Data, and this presents a new computing problem as
it involves analysis of data sets that are at least of the order of terabytes.

With the increase in data size, the concept of using multiple distributed resources to
undertake Big Data computations is now becoming commonplace. A key development
was the creation of MapReduce, which is a programming model to allow algorithms and
large data sets to be distributed on a parallel, distributed computing platform and then
brought back together to produce the result. The open source manifestation of MapRe-
duce has been through ApacheTM Hadoop® (Apache 2015). This is one of the earliest
open source software resources for reliable, scalable, distributed computing. A number
of evolutions have occurred including a structured query language (SQL) engine, Impala
(Cloudera 2016), a generic scheduler, Yarn, and API file formats, namely Crunch.

A lot of hype surrounds Big Data, but there are also a number of major technical chal-
lenges in terms of acquiring, storing, processing and visualizing the data. From an FPGA
perspective, there is a clear need to implement complex data processing algorithms in a
highly parallel and pipelined manner.

12.3.1 Inductive Learning

The key aspect in many Big Data applications is that the user has to learn from data in
cases where no analytical solutions exist but the data are used to construct an empirical
solution (Abu-Mostafa et al. 2012). This is typically known as inductive learning and is a
core area of machine learning. It involves the user spotting patterns in the information
and generalizing them, hoping that they are correct but providing no guarantee that the
solution will be valid. It is the source of many data mining algorithms and probably is
the area where machine learning and data mining intersect. A query can then be applied
to deduce a possible answer from the data (see Figure 12.1).

The key focus is to create chunks of knowledge by applying specific algorithms about
some domain of interest which is presented by the data to be analyzed; this will usually
be capable of providing an answer by transcending the data in such a way that the answer
cannot just be provided by extracting and aggregating value from the data, i.e. creating a
model that represents the data. These predictive models are the core of data mining and
usually involve the application of techniques to transform the data to create the model;
the model is then easier to apply as only the attributes most useful for model creation
need be used and links combined to create new models to provide a better prediction.

Usually the process involves looking at a domain of the data (e.g., financial trans-
actions, hospital bed occupancy rates) which may in many cases be incomplete and
described by a set of features (Marshall et al. 2014). A data set is typically a subset of
the domain described by a set of features; the goal is to apply a set of data mining algo-
rithms to create one or more models from the data.

Training data knowledge
Inductive inference

knowledge query
Deductive inference

+ answer

Figure . Inference of data. Source: Cichosz
2015. Reproduced with permission of John
Wiley & Sons.
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12.3.2 Data Mining Algorithms

The three most widely used data mining tasks, classification, regression and clustering,
can be considered as inductive learning tasks (Cichosz 2015). These aim to make sense
of the data:
� Classification. Prediction of a discrete target attribute by the assignment of the par-

ticular instance to a fixed possible set of classes, which could, for example, involve
detecting odd behavior in credit card fraud.

� Regression. Prediction of a numerical target attributes based on some quantity of inter-
est, for example, working out the length of stay distribution of geriatric patients admit-
ted to one of six key acute hospitals (Marshall et al. 2014).

� Clustering. Prediction of the assignment of the instances to a set of similarly based
clusters to determine the best cluster organization, i.e. similarity of data in a cluster.

12.3.3 Classification

Classification involves assigning instances X from a specific domain and is defined by a
set of features which have been into a set of classes i.e. C. A simplified process is illus-
trated in Figure 12.2, and shows how classifier H1 maximally separates the classes, while
H2 does not separate them. This classification process is known as a concept c and is
defined by X → C. A classification model or classifier h : X → C then produces class
predictions for all instances x ∈ X and is supposed to be a good approximation of the
target concept c on the whole domain.

One way of looking at data for classification purposes is to create contingency tables or
effectively histograms of the data. This is done by picking k attributes from the data set,
namely a1, a2,… , ak and then for every possible combinations of values, a1 = x1, a2 =
x2,… , ak = xk , recording how frequently that combination occurs. Table 12.1 shows
how we can compare the school age of children against their choice of subject for a
group aged between 14 and 18. Typically, on-line analytical processing (OLAP) tools
can be used to view slices and aggregates of these contingency tables. Of course, these
tables will have many more parameters and will comprise many more dimensions.

Classification algorithms comprise DTC, ANNs, Bayesian classifiers and SVM. DTC
is carried out in two steps: a decision tree model is built up using records for which
the category is known beforehand, then it is applied to other records to predict their
class affiliation. They are attractive as they provide high accuracy even when the size of

X2

X1

H1

H2

HSVM
Figure . Simple example of classification
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Table . Age of school children versus most popular subject

Age Maths English Science Language (𝜶)

14 14 6 7 9
15 9 7 10 9
16 11 4 8 11
17 12 8 8 5
18 7 9 5 11

the data set increases (Narayanan et al. 2007). They are used for detecting spam e-mail
messages and categorizing cells in MRI scans. They yield comparable or better accuracy
when compared to ANNs.

ANNs comprise parallel and distributed networks of simple processing units intercon-
nected in a layered arrangement, typically of three layers. They are based on the neural
operation of the brain and are trained using some initial data. There was a lot of interest
in the 1980s and 1990s in this approach, but it fell short of its potential. However, there
has now been a resurgence of interest in a form of ANNs called convolutional neural net-
works (CNNs) (Krizevsky 2014). CNNs comprise layers of alternative local translation-
invariant features, followed by switchable task-specific loss functions which are trained
with stochastic gradient descent. The parameters are very large and represent a signifi-
cant training challenge, but they show considerable potential. They are highly amenable
to FPGA implementation due to the considerable routing resources that FPGAs offer.

Bayesian classifiers are a family of simple probabilistic classifiers based on applying
Bayes’ theorem which relates current probability to the prior probability. They tend to be
useful in applications where the underlying probability has independent parameters. For
example, clementine oranges may be characterized by being orange in color, squishy and
5 cm in diameter, but these features are considered to be independent of each other. So
even if these parameters are interdependent, a naive Bayes classifier considers all of these
properties to independently contribute to the probability that this fruit is a clementine
orange!

An SVM formally constructs a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification, regression, or other tasks. Intu-
itively, a good separation is achieved by the hyperplane that has the largest distance to
the nearest training data point of any class. This would be given as the hyperplane HSVM
in Figure 12.2 which would seem to best split the two groups by providing the best dis-
tance as well.

12.3.4 Regression

Regression is also an inductive learning task that can be thought of as classification with
continuous classes, which means that the regression model predicts numerical values
rather than discrete class labels (Cichosz 2015). It tends to be thought of in the classical
statistical approach where we are trying to fit a regression model to a set of data, but if we
view it as an algorithm applied in a data mining context, then we can think of regression
as being able to provide numerical prediction. This leads to the development of a series
of algorithms which can be used to predict the future demand for a product, volume of
sales, or occupancy of beds in a hospital ward (Marshall et al. 2014).
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In mathematical terms, for a target function f , X → ℜ represents the true assignment
of numerical values to all instances from the domain. This can be determined using
a training set T ⊆ D ⊂ X for regression which will contain some or all of the labeled
instances for which the target set is available. The key is to find the relationship between
the dependent and independent variables. The value of dependent variable is of most
importance to researchers and depends on the value of other variables. Independent
variables are used to explain the variation in the dependent variable.

Regression is classified into two types: simple regression, with one independent vari-
able; and multiple regression, which has several independent variables. In simple regres-
sion, the aim is to create a regression equation involving several regression coefficients
and then determine a best fit using the data; this involves determining the best linear
relationship between the dependent and the independent variables. In multiple regres-
sion analysis, the coefficients indicate the change in dependent variables assuming the
values of the other variables are constant. A number of tests of statistical significance
are then applied, one of which is the F-test.

12.3.5 Clustering

A cluster is a group of objects that belong to the same class, so clustering is the pro-
cess of making a group of abstract objects into classes of similar objects. It is applied to
a broad range of applications such as market research, pattern recognition and image
processing. Its main advantage over classification is that it is adaptable to changes and
helps single out useful features that distinguish different groups.

Clustering methods can be classified as partitioning, hierarchical, density-based, grid-
based, model-based and constraint-based. For a database of n objects, the partitioning
method constructs k ≤ n partitions of the data, each of which will represent a cluster
and where each group must contain an object and each object must belong to one group
only. A well-known method is called k-means clustering (see Section 12.5).

12.3.6 The Right Approach

Whilst this section has highlighted a number of machine learning algorithms, it is
important to identify the right estimator for the job. The key observation is that different
estimators are better suited to different types of data and different problems. The scikit
website (http://scikit-learn.org/stable/tutorial/machine learning map/index.html) pro-
vides a useful indication of how to progress from a data perspective with Python open
source files.

The first stage is to determine if the user is looking to predict a category. If so, then
classification or clustering will be applied; otherwise the user will look to apply regres-
sion and/or dimension reduction. If the categories and labels are known, then the user
will apply classification; if the labels are not known, then the user will apply clustering
to determine the organization.

If applying classification to a small data set (i.e. less than 100,000 samples), then a
stochastic gradient descent learning routine is recommended; otherwise other classifiers
such as SVMs are recommended (Bazi and Melgani 2006). If the data are labeled, then
the choice of clustering will depend on the number samples. If the categories are known
then various forms of k-means clustering are applied, otherwise it is best to apply a form
of a Bayesian classifier.
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Of course, this does not represent an expert view for choosing the right approach, and
the main purpose of this section is just to provide an overview. We highlight some of the
algorithmic characteristics which best match FPGAs; in particular, we are interested in
the highly parallel computation but also the high level of interconnection of ANNs as
these match well the numerous routing capabilities of modern FPGAs. This is a partic-
ularly attractive feature as this algorithmic interconnect would have to be mapped as
multiple memory accesses in processors.

. Acceleration

MapReduce involves scaling out the computation across multiple computers. Thus, it is
possible to use resources temporarily for this purpose, and vendors such as Amazon now
allow you to hire resources, with a higher premium being charged for more powerful
computers in November 2016, Amazon announced a new resource called EC2 which
allows access to FPGA resources (Amazon 2016). Figure 12.3 illustrates the process.
For an original computation as illustrated in Figure 12.3(a), Figure 12.3(c) shows how
it is possible to use Hadoop® to scale out the computation to improve performance.
This works well for problems that can be easily parallelized and distributed, such as
performing multiple searches on a distributed search engine.

12.4.1 Scaling Up or Scaling Out

It is also possible, however, to scale up computation as shown in Figure 12.3(b). For
example, you may be performing multiple, highly complex operations on a single data
set, in which case it makes more sense to scale up the resource as you then avoid the
long communications delay involved in communicating between distributed comput-
ers. This is particularly relevant for highly computationally complex algorithms and also
problems which cannot be easily parallelized invoking high volumes of communications
which act to slow down computation. The issue of whether to scale out or scale up is a
detailed decision (Appuswamy et al. 2013).

App

(a) Original (b) Scale up (c) Scale out

App App

Figure . Scaling computing resources
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12.4.2 FPGA-based System Developments

A number of major system developments have occurred which strongly indicate the
potential of FPGA technology in new forms of computing architectures and there-
fore Big Data applications. These include the heterogeneous platform developments by
Microsoft, Intel and IBM. To date, these have largely been driven by FPGA companies
or academia, but there is interest among large computing companies driven mainly by
the energy problems as indicated in Chapter 1 with the increased computing demand.
Intel’s purchase of Altera (Clark 2015) clearly indicates the emergence of FPGAs as a
core component in future data centers.

Microsoft has developed flexible acceleration using FPGAs called the Catapult fabric
which was used to implement a significant fraction of Bing’s ranking engine. It showed
an increased ranking throughput in a production search infrastructure by 95% at com-
parable latency to a software-only solution (Putnam et al. 2014). The Catapult fabric
comprises a high-end Altera Stratix V D5 FPGA along with 8 GB of DRAM embed-
ded into each server in a half-rack of 48 servers. The FPGAs are directly wired to each
other in a 6 × 8 two-dimensional torus, allowing services to allocate scaling of the FPGA
resources.

The authors implement a query and document request by getting the server to retrieve
the document and its metadata and form several metastreams. A “hit vector” is gener-
ated which describes the locations of query words in each metastream; a tuple is also
created for each word in the metastream that matches a query and describes the relative
offset from the previous tuple, the matching query term, and a number of other prop-
erties. The frequency of use can then be computed, along with free-form expressions
(FFEs) which are computed by arithmetically combining computed features. These are
then used in a machine learning model which determines the document’s position in
the overall ranked list of documents returned to the user.

IBM and Xilinx have worked closely together to develop Memcache2, a general-
purpose distributed memory caching system used to speed up dynamic database-driven
searches (Blott and Vissers 2014). By developing a solution that allows tight integration
between network, computer and memory and by implementing a completely separate
TCP/IP stack, they are able to achieve an order-of-magnitude speed improvement over
an Intel Xeon® solution. This improvement is even greater when considering power,
which is a key issue in data centers.

12.4.3 FPGA Implementations

There have been a number of classification and regression implementations on FPGAs.
Among these are a number of ANNs, including work implementing a general regres-
sion neural network (GRNN) used for iris plant and thyroid disease classification (Polat
and Yıldırım 2009). They have developed an FPGA implementation using VHDL-based
tools; it comprises summation, exponential, multiplication and division operations.
However, the inability to realize the Taylor series efficiently in FPGA has meant that
the implementation would not run much faster than the MATLAB model running in
software on a P4 3 GHz, 256 MB RAM personal computer compared to a fixed-point
Xilinx Spartan3 xc3s2000.

 10.1002/9781119079231.ch12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119079231.ch12 by T

exas A
&

M
 U

niversity L
ibraries E

ric H
artnett, W

iley O
nline L

ibrary on [25/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 FPGA-based Implementation of Signal Processing Systems

An FPGA-based coprocessor for SVMs (Cadambi et al. 2009) implemented on an off-
the-shelf PCI-based FPGA card with a Xilinx Virtex-5 FPGA and 1 GB DDR2 memory
gave an improvement of 20 times over a dual Opteron 2.2 GHz processor CPU with
lower power dissipation. For training, it achieved end-to-end computation speeds of
over 9 GMACs, rising to 14 GMACs for SVM classification using data packing. This
was achieved by exploiting the low precision and highly parallel processing of FPGA
technology by customizing the algorithm for low-precision arithmetic. This allowed the
efficient reuse of the underlying hardware and reduction in off-chip memory accesses
by packing multiple data words on the FPGA memory bus.

A number of implementations have been explored for implementing k-means clus-
tering on FPGA. Lin et al. (2012) implemented an eight-cluster XC6VLX550T design
with a clock frequency of 400 MHz; the design utilized 112 DSP blocks, 16 BRAMs,
2110 slices, 5337 LUTs and 8011 slice registers. A number of blocks were implemented
for performing the distance calculations in parallel, one for each cluster. In Winterstein
et al. (2013), k-means clustering was performed in FPGA without having to involve
off-chip memory. A Xilinx XC4VFX12 with 5107/5549 slices, 10,216 LUTs and a maxi-
mum clock frequency of 63.07 MHz was achieved. It gave a speedup of 200 times over a
MATLAB realization on a GPP Intel core 2 DUO E8400 and 3 GB RAM, and 18 times
over GPU Nvidia GeForce 9600m GT graphics.

12.4.4 Heston Model Acceleration Using FPGA

The Heston model is a well-known model used in option determination in finance
applications which involves calculating the risk for cases where volatility is stochastic
(Heston 1993). The volatility of the underlying asset follows a Brownian motion, which
in turn gives rise to a system of two stochastic differential equations:

dSt = 𝜇Stdt +
√

VtStdWt , (12.1)
dVt = 𝜅(𝜃 − Vt)dt + 𝜉

√
VtdWt . (12.2)

In these equations, St is the price variation, Vt is the volatility process, Wt is the corre-
lated Brownian motion process and 𝜉 is referred to as the volatility of the volatility. Vt
is a square root mean-reverting process with a long-run mean of 𝜃 and a rate of mean
reversion of 𝜅. The mean reversion of the volatility means that the volatility is bound
to revert to a certain value; so when Vt < 𝜃, the drift of the volatility encourages Vt to
grow again, and conversely when Vt > 𝜃, the drift becomes negative and thus the volatil-
ity decreases.

The Heston model works well in many financial applications as the asset’s log-return
distribution is non-Gaussian and is characterized by big tails and peaks. It is argued
that equity returns and the implied volatility are negatively correlated, which presents
problems for models such as the Black–Scholes model (Black and Scholes 1973), which
do not consider volatility, hence the interest in the Heston model.

A useful metric for measuring the performance of different implementations of the
Heston model is the number of steps per second achieved by each technology. In this
model, the cores implement a Monte Carlo simulator and the output of these is aggre-
gated to form the final Heston output (Figure 12.4). The performance is dictated by the
number of cores that can be implemented in the FPGA fabric; the achievable clock speed
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Figure . Core configuration where Monte Carlo simulations can be programmed

will vary depending on the number of cores that can be effectively placed and routed in
the FPGA. A number of possible FPGA configurations have been implemented and are
displayed in Table12.2. Performance is given as the throughput rate (TR) which is cal-
culated in billions of steps per second (BSteps/s).

. k-Means Clustering FPGA Implementation

Clustering is a process used in many machine learning and data mining applications
(Jain 2010). It is an unsupervised partitioning technique which groups data sets into
subsets by grouping each new data into groups with the have data points with similar
features (e.g. same age groups, same image features). A flow diagram for the algorithm
is shown in Figure 12.5. It is used in a range of image processing and target tracking
applications (Clark and Bell 2007), when it is necessary to initially partition data before
performing more detailed analytics.

The k-means algorithm requires the partitioning of a D-dimensional point set X =
{xj}, j = 1,… , N , into clusters Si, i = 1,… , k, where k is provided as a parameter, usually

Table . 32-bit Heston model implemented as both fixed- and floating-point

Performance

Data type MCs LUTs Flip-flops DSPE Clock (MHz) TR (BSteps/s)

Fixed
64 57,757 (13%) 65,210 (8%) 320 (9%) 250 16.0
128 64,865 (15%) 79,676 (9%) 640 (18%) 238 30.5
256 78,061 (18%) 91,573 (11%) 640 (18%) 172 44

Floating 32 240,801 (56%) 366,642 (42%) 1280 (36%) 112 3.6

Note. MCs = Monte Carlo simulations. Percentages give the utilization of Xilinx Virtex-7 VC709 device.
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Figure . Flow chart for k-means algorithm

the number of required data sets, and is usually set by the user (Winterstein et al. 2013).
The goal is to find the optimal partitioning which minimizes the objective function

J({Si}) =
k∑

i=1

∑
xj∈Si

‖xj − 𝜇i‖2, (12.3)

where 𝜇i is the geometric center (centroid) of Si.
The ideal scenario for data organization is to group data of similar attributes closer

together and farther away from data of dissimilar attributes. The k-means algorithm
is one of the main unsupervised data mining techniques used to achieve this for large
data sets (Hussain et al. 2011). In the k-means algorithm, a data set is classified into k
centroids based on the measure of distances between each data set and the k centroid
values (see Figure 12.6).

At the beginning, the number of centroids and their centers are chosen; each data item
then belongs to the centroid with the minimum distance to it. There are many metrics
for calculating distance values in the k-means algorithm, but the most commonly used
ones are the Euclidean and Manhattan distance metrics. The Euclidean distance, DE , is
given by

DE =

√√√√ d∑
i=1

(X − C)2 (12.4)
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Centroid Data point

Figure . Distance calculation

where X is the data point, C is the cluster center and d is the number of dimensions of
each data set. The Manhattan distance DM is given by

DM =
d∑

i=1
|X − C|. (12.5)

Whilst the Euclidean distance metric is more accurate (Estlick et al. 2001), the Manhat-
tan distance metric is preferred as it is twice as fast as the Euclidean distance calculation
and consumes less resources (Leeser et al. 2002).

12.5.1 Computational Complexity Analysis of k-Means Algorithm

The stages involved in k-means algorithm are: distance calculation, comparison and
averaging, as shown in Figure 12.7. The centroid values are chosen from among the exist-
ing data points/pixels or by generating random values and can be viewed as negligible
from a computational analysis point of view. In the distance stage, the distances from
each data point to the centroids are calculated. For each data point of an RGB image,
the Manhattan distance metric is given by

D = |Xr − Cr| + |Xg − Cg| + |Xb − Cb|. (12.6)

This involves 3 absolute values, 2 additions and 3 subtractions, giving rise to 8 opera-
tions. For n data points and k centroids, the number of operations involved in the dis-
tance calculation, kD, is given by kD = 8nk.

In the comparison module, the inputs are k distance values generated by each pixel.
It takes k − 1 comparison steps to get the minimum distance. So for n data, the number
of operations involved in the comparison block is given by kC = n(k − 1).

In the averaging block, data pixels in the dimension are added up and divided by the
number in their dimensions in that cluster, giving an updated centroid value for the
following frame. For a data pixel there are d additions, so for n data there are nd additions

Distance
Calculation

1980 ×1080
24-b
pixels 96b

Comparison
308 Mb

Averaging
50 Mb

Figure . Bits of data in and out of each block
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 FPGA-based Implementation of Signal Processing Systems

and kd divisions. Hence the number of operations involved in the averaging block, KA,
is given by

KA = nd + kd = d(n + k) = 3(n + k) (12.7)

(d = 3 for an RGB image).
The total number of operations, Ktotal, in the k-means algorithm is thus given by

Ktotal = 8nk + n(k − 1) + 3(n + k). (12.8)

Figure 12.7 shows the number of operations and bits in and out of each block for
8 clusters. The number of operations in the distance calculation block is the highest and
increases as the number of clusters increases. The operations in the distance calculation
block are independent and as such can be put in parallel to speed up execution.

. FPGA-Based Soft Processors

As some of the examples earlier in this book and even those reviewed in this chapter
have indicated, FPGAs give a performance advantage when the user can develop an
architecture to best match the computational requirements of the algorithm. The major
problem with this approach is that generating the architecture takes a lot of design effort,
as was illustrated in Chapter 8. Moreover, any simple change to the design can result in
the creation of a new architecture which then incurs the full HDL-based design cycle
which can be time-consuming. For this reason, there has been a lot of interest in FPGA-
based software processors.

A number of FPGA-based image processors have been developed over the years,
including the Xilinx MicroBlaze (Xilinx 2009) and the Altera Nios II processor (Altera
2015), both of which have used extensively. These processors can be customized to
match the required applications by adding dedicated hardware for application-specific
functions. The approach is supported by the FPGA company’s software compilers. How-
ever, attempts to make the processor more programmable compromises the perfor-
mance and have not taken advantage of recent technological FPGA developments.

A number of other processor realizations have been reported, including a vector pro-
cessing approach (Russell 1978) which uses fixed, pipelined functional units (FUs) that
can be interconnected; this takes advantage of the plethora of registers available in
FPGAs. A soft vector processor VESPA architecture (Yiannacouras et al. 2012) employs
vector chaining, control flow execution support and a banked register file to reduce exe-
cution time. Both approaches are limited to a clock rate of less than 200 MHz which
is much less than the 500–700 MHz that is possible in implementing FPGA designs
directly.

VENICE (Severance and Lemieux 2012) is a processor-based solution that provides
support for operations on unaligned vectors, and FlexGrip (Andryc et al. 2013) is an
FPGA-based multicore architecture that allows mapping of pre-compiled CUDA ker-
nels which is scalable, programmable and flexible. However, both solutions only operate
at 100 MHz. They offer flexibility, but the low frequency will result in relatively poorer
implementations when compared to dedicated implementations.
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Chu and McAllister (2010) have created a programmable, heterogeneous parallel soft-
core processor architecture which is focused on telecommunications applications. Sim-
ilarly, iDEA (Cheah et al. 2012) is a nine-stage, pipelined, soft-core processor which
is based around the DSP48E1 and supports basic arithmetic and logical instructions
by utilizing limited FPGA resources. The design runs at 407 MHz which is 1.93 times
faster than Xilinx MicroBlaze and significantly faster than previous work. This improved
performance provides a better proposition for achieving a soft-core-based approach for
data applications. In this book, we concentrate on a processor that has been developed
for image processing.

12.6.1 IPPro FPGA-Based Processor

A custom-designed DSP48-based RISC architecture, called IPPro (Siddiqui et al. 2014)
has been developed; it uses the Xilinx DSP48E2 primitive as the ALU for faster pro-
cessing and supports a wide range of instructions and various memory accesses. The
following design decisions were made to optimize FPGA performance and image pro-
cessing needs:

� High processing capability is required to handle the large amount of data (30–
40 MB/s) needed for real-time video streaming. This is achieved by explicitly mapping
the operations and logic to the underlying FPGA resource primitives and ensuring a
good match. This allowed a 350–450 MIPS performance per processor to be achieved.

� Efficient memory utilization by distributing memory to hide data transfer overheads
between main and local memory to keep IPPro busy in processing data. This matches
the distributed nature of memory in FPGA resources. Dedicated kernel memory
accelerates the linear filter operations and also reduces the code size by avoiding
excessive load/store instructions and maximizing memory reusability.

� Optimized instructions/addressing modes and reduced branch penalty by decreas-
ing the number of pipeline stages as unpredicted branches degrade performance.
The creation of special instruction sets allows the acceleration of image processing
operations; addressing modes to give flexibility to the programmer; and conditional
execution in the form of a customizable and flexible branch controller to support
mask-based conditional execution out-of-box without need of significant architec-
tural changes.

Memory
IPPro is capable of processing 16-bit operations, and uses distributed memory to build
a memory hierarchy, with register file, data memory, and kernel memory. The IPPro
architecture uses a five-stage balanced, pipelined architecture as shown in Figure 12.8.

IPPro is capable of running at 337 MHz on a Xilinx SoC, in particular XC7Z020-3,
using one DSP48E, one BRAM and 330 slice registers per processor. The main idea of
the processor was to keep it compact, reprogrammable and scalable as much as possible
to achieve high throughput rates compared to custom-made HDL designs. It contains
small, fast and efficient memory to locally store data and keep ALU busy in processing
data. This helps to hide data transfer overheads between the main and local memories.

It supports various instructions and memory accesses and is capable of processing
signed 16-bit operations. The IPPro processor architecture uses five-stage balanced
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Figure . IPPro architecture

pipelining and supports streaming mode operation where the input and output data
are read and written back to FIFO structures, as shown in Figure 12.8.

IPPro strikes a balance between programmability and the need to maintain FPGA
performance. Overall it has the following addressing modes: from local memory to
local memory; from local memory to FIFO (LM–FIFO); from kernel memory to FIFO.
The local memory is composed of general-purpose registers used mainly for storing
operands of instructions or pixels. This memory currently contains 32 sixteen-bit reg-
isters. A FIFO is a single internal register of IPPro where the input and output streams
from/to an external FIFO are stored. Kernel memory is a specialized location for coef-
ficient storage in windowing and filtering operations with 32 sixteen-bit registers.
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Data Path
The complete IPPro data path is shown in Figure 12.8. It has a loadstore five-stage bal-
anced pipelined architecture giving a fixed latency of five clock cycles. It exploits the fea-
tures of the Xilinx DSP48E1 to implement all of the supported instructions and provides
a balance between hardware resource utilization, performance, throughput, latency and
branch penalty. A balanced pipeline simplifies the compiler tool chain development
compared to variable pipeline architecture. The deep pipeline comes at the cost of larger
latency and branch penalty which adversely affects the overall performance. Various
techniques predict branches, but none of them was deemed to give a shorter latency.
The five pipeline stages are as follows:

1. Fetch (IF)
2. Decode (ID)
3. Execute 1 (EXE1)
4. Execute 2 (EXE2)
5. Write Back (WB).

Instruction Set
An example of the supported instructions can be seen in Table 12.3. This table shows
the IPPro LM–FIFO addressing mode instructions and some miscellaneous others. The
IPPro instruction set is capable of processing basic arithmetic and logical operations
for different addressing modes. In addition to the unary and binary instructions, it has
support for trinary expressions such as MULADD, MULSUB, MULACC.

Given the limited instruction support and requirements from the application domain,
it is envisaged that coprocessor(s) could be added to provide better support for more
complex processes such as division and square root. Ongoing research is being under-
taken to design such a coprocessor (Kelly et al. 2016).

Flags and Branches
Flags are important status indicators in processors and used to handle exceptions
encountered during data computation. IPPro currently supports the following data flags

Table . Instruction set

LM–FIFO Misc

ADD LOR JMP GET
SUB LNOR BNEQ PUSH
MUL LNOT BEQ NOP
MULADD LNAND BZ BYPASS
MULSUB LAND BNZ DIV
MULACC LSL BS
LXOR LSR BNS
LXNR MIN BNGT

MAX BGT
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but is flexible enough to allow new flags to be defined by modifying the branch controller
shown in Figure 12.8:

1. Greater than (GTF)
2. Equal (EQF)
3. Zero (ZF)
4. Sign Flag (SF).

The flags are generated using the pattern detector function which is embedded inside
the DSP48E1 block as dedicated functionality. It compares the two operands available at
the input of DSP48E1 and sets the pattern detect (PD) bit in the very same clock cycle if
both operands are equal. Therefore no additional clock cycle is needed to compute the
flag bit which is important in the case of conditional/data dependent instructions being
executed in the multicore architecture. The branch controller is flexible and scalable as
it is created using combinational logic. A dataflow-based programming route has also
been created (see Amiri et al. 2016)

. System Hardware

An example of a typical system architecture is given in Figure 12.9. This gives details
of the front-end processor architecture, prototyped on a Zedboard platform which
comprises a Xilinx Zynq SoC which comprises on-chip dual-core ARM processors
and programmable logic. The SIMD-IPPro is comprised of a number of IPPro cores
connected together.

Figure . Proposed system architecture
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Figure . Proposed architecture for k-means image clustering algorithm on FPGA

The main aim from a design perspective for the k-means algorithm is to allocate the
processing requirements (distance calculation, comparison and averaging) to the FPGA
resources. The averaging is a feedback block responsible for recalculation of new cen-
troids for new iteration. The image data is stored in off-chip memory, while the centroid
values are stored in the kernel memory of the IPPro-based FPGA. Figure 12.10 shows
our architecture for the k-means algorithm.

An example of IPPro code is shown in Table 12.4 for the computation of the equation

M10 =
3∑

i=0
(Mi ∗ M(i + 1)) (12.9)

12.7.1 Distance Calculation Block

The distance calculation block is the most computationally intensive block in the k-
means algorithm. Since the distances between each data point and the centroids are
independent, the computation was organized across a number of clusters. One IPPro
is dedicated to each cluster for the distance calculation, which calculates the distance

Table . Example of IPPro code representation

S/N IPPro code Description

1 LD, R1, M Load from data memory M1 to register R1
2 LD, R2, M2 Load from data memory M2 to register R2
3 LD, R3, M3 Load from data memory M3 to register R3
4 LD, R4, M4 Load from data memory M4 to register R4
5 MUL R10, R1, R2 Multiply R1 and R2 and store in register
6 MULACC R10, R3, R4 Multiply R3 and R4 and accumulate in R10
7 ST R10, M10 Store from register to data memory
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between the data pixels and each centroid based on their dimensions, finds their abso-
lute values and sums them. The outputs of the distance block are the distances and the
corresponding centroid values. The distance computation takes 58 cycles and the out-
puts are then stored in the FIFO for use by the next block of the k-means algorithm.

12.7.2 Comparison Block

The comparison block receives the distance and the associated centroid values from
the distance calculation block serially. It compares the distance values and selects the
minimum value, along with the centroid value that stands for the minimum value. These
outputs are part of the inputs to the next comparison block. The last comparison block
produces one centroid output which replaces the image data that it represents, in order
to give a clustered image in the final iteration. The centroid values as an output of the
comparison stage are fed into the averaging block. It takes 81 cycles to compare eight
distance values representing eight clusters.

12.7.3 Averaging

This block receives the centroid values from the comparison block and uses them to
group the image data according to their order. For instance, when it receives centroid
1, and then image pixel D1, it puts D1 under the cluster 1 group. In our architecture,
the averaging block avoids performing the division operation at the end of the iteration,
by averaging each group’s value each time there is an addition; this is done by performing
a binary shift to the right by one position. This is an approximation to doing division at
the end of the pixel count. The outputs of the averaging block are the new centroid values
for the next iteration. It takes 76 cycles to process a pixel for eight clusters.

12.7.4 Optimizations

Some of the ways that we used to achieve the optimization are: data parallelism, cluster
parallelism and code reduction. The focus of the design is to reduce the IPPro assembly
code to the best possible by ensuring that the most suitable and shortest codes are used
to represent the algorithmic decomposition.

The computation was profiled for different multicore arrangements and the result-
ing realizations then compared in terms of execution time. After a number of map-
pings of cores per function, it was decided that one core would be used for the dis-
tance calculation, three cores for the comparison block and one core for the averaging
block. Table 12.5 shows the results for 4, 8 and 9 centroids in terms of number of cycles,

Table . Results for 4, 8 and 9 centroids image clustering

Dist. Comp. Aver.

No. of clusters 4 8 9 4 8 9 4 8 9
No. of cycles 106 106 106 52 78 104 39 75 84
Execution time (s) 0.41 0.41 0.41 0.20 0.30 0.41 0.15 0.29 0.32
Latency (μs) 0.2 0.2 0.2 0.10 0.15 0.20 0.07 0.14 0.15
Throughput (MP/s) 5 5 5 10.0 6.7 5 14 7.2 6.5
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execution time, latency and throughput profiled for a high-definition image of 1920 ×
1080 in a single iteration using color images when the clock frequency is 530 MHz.

. Conclusions

The purpose of the chapter was to acknowledge the major developments in the area
of Big Data applications. This area and the need to develop data centers to meet the
increasing needs of the Big Data analytics have done more than any recent developments
to see FPGAs being used in modern computing systems. The interest by Intel, IBM and
Microsoft has been substantial, ranging from major joint projects with the two main
FPGA companies to the purchase of Altera by Intel.

In some cases, FPGAs offer computing gains over processor-based alternatives such
as CPUs, DSP microprocessors and GPUs, particularly if power consumption is taken
into consideration. Indeed, this is seen as a major advantage of FPGA technologies, so
if they can offer a performance advantage for even a small range of functionality, then
this would be seen as beneficial. Given that some of the data mining algorithms have
characteristics similar to those seen in DSP algorithms, then it would appear that FPGAs
have a major role to play in future computing systems. For this reason, the authors were
motivated to include a chapter in this revised edition of the book.

Certainly the abolition of high-level programming languages described in Chapter 7,
and processor architectures such as the IPPro system described in this chapter, will have
a major impact on how these systems will be built and programmed. In any case, the
length of time need to compile high-level languages onto FPGA hardware will need to
be addressed.
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